
29th International Conference on
Automated Planning and Scheduling

July 10–15, 2019, Berkeley, CA, USA

WIPC 2019
Proceedings of the

2019 Workshop on the International Planning
Competition

Edited by:

Álvaro Torralba, Florian Pommerening, Thomas Keller, Amanda
Coles, and Andrew Coles

Organization

Álvaro Torralba
Saarland University, Germany

Florian Pommerening
University of Basel, Switzerland

Thomas Keller
University of Basel, Switzerland

Amanda Coles
King’s College London, United Kingdom

Andrew Coles
King’s College London, United Kingdom

ii

Contents

Hierarchical Planning in the IPC
Gregor Behnke, Daniel Höller, Pascal Bercher, Susanne Biundo, Damien Pellier, Humbert Fiorino, and Ron Alford 1

Insights from the 2018 IPC Benchmarks
Isabel Cenamor and Alberto Pozanco 8

Cost-Optimal Planning in IPC 2018: Symbolic Search and Pattern Databases vs. Portfolio Planning
Stefan Edelkamp and Ionut Moraru 15

Performance Robustness of AI Planners to Changes in Software Environment
Chris Fawcett, Mauro Vallati, Alfonso Gerevini, and Holger Hoos 22

An Analysis of the Probabilistic Track of the IPC 2018
Florian Geißer, David Speck, and Thomas Keller 27

Benchmarks Old and New: How to compare domain independence for cost-optimal classical planning?
Ionut Moraru and Stefan Edelkamp 36

Planner Metrics Should Satisfy Independence of Irrelevant Alternatives (Position Paper)
Jendrik Seipp 40

Democratizing Usage of Planning Systems by Facilitating Research in Algorithm Selection for Planning (Discussion
Topic)
Michael Katz and Silvan Sievers 42

The Role of IPC in Setting Standards for Experimental Evaluation in Planning Research (Discussion Topic)
Michael Katz and Silvan Sievers 43

iii

Hierarchical Planning in the IPC

G. Behnke∗, D. Höller∗, P. Bercher∗, S. Biundo∗, D. Pellier†, H. Fiorino†, and R. Alford‡
∗Institute of Artificial Intelligence, Ulm University, 89081 Ulm, Germany
{gregor.behnke, daniel.hoeller, pascal.bercher, susanne.biundo}@uni-ulm.de

†University Grenoble Alpes, LIG, F-38000 Grenoble, France
{damien.pellier, humbert.fiorino}@imag.fr

‡The MITRE Corporation, McLean, Virginia, USA
ralford@mitre.org

Abstract
Over the last years, the amount of research in hierarchical
planning has increased, leading to significant improvements
in the performance of planners. However, the research is di-
verging and planners are somewhat hard to compare against
each other. This is mostly caused by the fact that there is no
standard set of benchmark domains, nor even a common de-
scription language for hierarchical planning problems. As a
consequence, the available planners support a widely varying
set of features and (almost) none of them can solve (or even
parse) any problem developed for another planner. With this
paper, we propose to create a new track for the IPC in which
hierarchical planners will compete. This competition will re-
sult in a standardised description language, broader support
for core features of that language among planners, a set of
benchmark problems, a means to fairly and objectively com-
pare HTN planners, and for new challenges for planners.

Introduction
When the International Planning Competition (IPC) started
out in 1998 it aimed to include both classical and hierarchi-
cal planners as competitors (McDermott 2000). To provide
a fair competition and foster further research in planning,
a unified description language for planning problems, the
Planning Domain Definition Language (PDDL), was cre-
ated. The main objective of PDDL was to separate the de-
scription of the physics of a domain from additional ad-
vice. Planners should operate on the physics of the domains
only. This way the competition shows how good the underly-
ing domain-independent techniques are for solving planning
problems based on the description of a domain’s physics.
Notably, PDDL also included features for expressing hier-
archical planning problems. Hierarchical planning was not
included in the first IPC, as there were no competitors.

The second and third IPC subsequently included a sepa-
rate track for “Hand-Tailored Systems”, where the planner
was allowed to have additional advice for each individual
domain. This was within the spirit of hierarchical planning
at the time (see e.g. SHOP’s participation (Nau et al. 1999)).
Hierarchical structures in a planning problem were – at the
time – almost exclusively seen as additional advice given
to the planner in order to speed up planning. The hierarchy
was viewed as specifying pre-defined recipes for a given ob-
jective. After the third IPC, no further attempt was made to
include hierarchical planning into the IPC.

Since the third IPC in 2002, the research in hierarchical
planning has progressed significantly. Especially the view
what hierarchical planning is, has changed sharply. A hi-
erarchy over a planning problem is not (only) a means to
provide advice to the planner, but a general means to spec-
ify parts of the domain. Just like non-hierarchical struc-
tures, it may be used to model advice (as done before),
but also to describe additional physics of the domain. Re-
search in hierarchical planning has, over the last decade,
mostly focussed on a single formalism: Hierarchical Task
Network (HTN) Planning (Erol, Hendler, and Nau 1996)1.
The physics expressible in HTN planning cannot be equiv-
alently expressed in classical planning (Höller et al. 2014;
Höller et al. 2016). In fact, HTN planning allows for express-
ing undecidable problems, like Post’s Correspondence Prob-
lem or Context-free Grammar Intersection (Erol, Hendler,
and Nau 1996). Based on the researcher’s focus on a sin-
gle, theoretically understood formalism, we think the time
is right for an IPC track in which HTN planners compete.
Creating such a competition was one of the motivations be-
hind organising the Workshops on Hierarchical Planning at
ICAPS 2018 and 2019. A discussion on the details of a (po-
tential) IPC track for HTN planning is planned for this year’s
workshop.

The HTN planning community lacks a strong unifying
force like the IPC is for classical planning. Due to the lack
of a competition in HTN planning, there is no precisely
agreed-upon semantics for modelled planning problems2,
no unified input language readable by all planners, and no
standardised benchmark to compare planners. A competi-
tion should resolve these problems and provide a solid basis
for future work, as was the case for classical planning. We
therefore propose to add a new track to the IPC in which
HTN planners will compete. In this paper, we first give a
brief overview of HTN planning, report on results of an on-
line questionnaire on an HTN IPC track, and then present
the details of our prosed HTN IPC track.

1Note that there is also research within hierarchical planning
that does not qualify as HTN planning, such as work on HGN and
GTN planning (Shivashankar et al. 2013; Alford et al. 2016b). See
Bercher, Alford, and Höller (2019) for an overview.

2Although there is a theoretical formalism almost all planners
add their individual bells and whistles making them incomparable.

1

HTN Planning – State of the Art
We start by giving a quick overview over HTN planning, by
reporting on theoretical and practical results related to it.

Theory
While classical planning has only one type of tasks – actions
– HTN planning distinguishes two types: primitive tasks
(also called actions) and abstract tasks. Only actions hold
preconditions and effects, which are defined in the usual
(STRIPS or ADL) way. In contrast to actions, abstract tasks
cannot be executed directly. Instead, each abstract task A
has a set of associated decomposition methods (A, tn) that
allow for achieving A by performing the tasks (that may,
again, be primitive or abstract) contained in tn. Here tn is
a task network, which gives HTN planning its name. A task
network is a partially ordered multi-set of tasks.

The objective in HTN planning is given by an initial
state and an initial abstract task (replacing the state-based
goal definition in classical planning3). A solution is any se-
quence of actions that is executable in the initial state, pro-
vided it can be obtained from the initial abstract task by re-
peatedly applying decomposition methods. In this structure,
HTN planning is very similar to formal languages, where
terminals correspond to actions and non-terminals to ab-
stract tasks (Höller et al. 2014; Barták and Maillard 2017).

A simplistic formal description of HTN planning was pro-
posed by Geier and Bercher (2011). An equivalent formu-
lation in terms of combinatorial grammars was given by
Barták, Maillard, and Cardoso (2018). The simplistic for-
malism by Geier and Bercher is theoretically well under-
stood, witnesses by the multitude of papers based on it.

The plan existence problem in HTN planning in its gen-
eral form is undecidable (Erol, Hendler, and Nau 1996).
There are, however, several restrictions to the formalism that
make it decidable. The most notable one is totally-ordered
HTN planning. Here, all task networks in decomposition
methods must be sequences of tasks instead of partially-
ordered sets. In contrast to general HTN planning, ground,
totally-ordered HTN planning is EXPTIME-complete (Erol,
Hendler, and Nau 1996).

Planners
In the past, a multitude of HTN planners have been devel-
oped. This includes the older systems which were mostly
based on uninformed search, like SHOP (Nau et al. 1999),
SHOP2 (Nau et al. 2003), or UMCP (Erol, Hendler, and Nau
1994). Recently, the portfolio of available methods to solve
HTN planning problems has increased significantly. Many
ideas developed for classical planning have been transferred
to HTN planning and proved successful there. This lead to a
wide range of (partially) available HTN planners.
• FAPE (Dvorak et al. 2014), a temporal HTN planner with

strong pruning techniques
• PANDA (Bercher et al. 2017), a plan-space planner using

heuristic search
3Note that every classical planning problem can be converted

into an equivalent HTN planning problem (Erol, Hendler, and Nau
1996).

• PANDApro (Höller et al. 2018; Höller et al. 2019b), a
progression-based planning system using heuristic search

• GTOHP (Ramoul et al. 2017), a planner based on intelli-
gent grounding and blind search

• HTN2ASP (Dix, Kuter, and Nau 2003), a planner that
translates (totally-ordered) HTN planning problems into
answer set programming

• HTN2STRIPS (Alford et al. 2016a), a planner translating
HTN planning problems into a sequence of classical plan-
ning problems

• totSAT (Behnke, Höller, and Biundo 2018) and Tree-
Rex (Schreiber et al. 2019), planners that translates
(totally-ordered) HTN planning problems into proposi-
tional logic

• partSAT (Behnke, Höller, and Biundo 2019a; 2019b), a
planner based on a translation into propositional logic

It is noteworthy that four of the planners (GTOHP, tot-
SAT, Tree-Rex, and HTN2ASP) are specifically designed
for solving totally-ordered HTN planning problems. Fur-
ther, HTN2STRIPS is based on an older encoding of totally-
ordered HTN planning problems into classical planning (Al-
ford, Kuter, and Nau 2009).

Online Questionnaire
In order to better understand the needs and interest of the
community when organising a deterministic HTN IPC track
in 2020, we conducted a short online questionnaire and sent
the link for participation to the planning community.

We obtained 23 responses from 20 different research
groups. 80% of the respondents would like to participate in
an HTN IPC track in 2020. Those not wishing to participate
often justified their refusal with the lack of HTN standards
(language, benchmarks, tools). We would argue that starting
the competition is the only way to produce such a standard in
the first place. As such, organising an HTN IPC competition
seems to respond to the needs of the community.

The main motivation for those wishing to participate is
to be able to objectively compare the performance of HTN
planners. However, this was not the only reason given by re-
spondents. People also wished to increase the expressiveness
of the PDDL language by adding HTN language standards.

We also asked what the respondents thought to be abso-
lute necessities for the competition. The four top answers
ranked in order of importance are:
1. a standard language definition for HTN planning,
2. an accessible HTN benchmarks repository,
3. an HTN plan validator, and
4. an HTN parser.

In terms of tracks, most people think that optimal and sat-
isfying should be enough for a first IPC competition. Some
people also expressed interest in participating in a tempo-
ral track. For the first HTN IPC, we propose to restrict the
competition to a non-temporal setting, with the option of a
temporal track to be added in the future. We think that the
competition should focus on the core of HTN planning and
thus should compare the planners on the absolute essentials.

In terms of metrics that should be used to compare HTN
planners, opinions are divided. 50% of the respondents think

2

that the IPC score is suitable for an HTN IPC track. 50%
think that we need to devise new metrics, which they could
propose as free text answers. Respondents proposed to use
(1) the number of backtracking operations performed by the
planner, (2) the depth the explored search space, (3) the size
of the method library used by the planner, and (4) the ex-
pressivity and explicability of the solution.

We propose to keep the IPC score as opposed to these
proposals. First, we argue that all planners in the competition
must use the same HTN method library to ensure that the
results of the competition are correct, objective, and fair. If
every planner would be allowed its own set of methods, we
would not measure the performance of the planner, but the
ingenuity of the modeller. Furthermore, the set of solutions
the problems encodes would differ from planner to planner
– which makes little to no sense, as a comparison between
the mechanics of planners is not possible anymore.

Using either the number of backtracking operations or the
depth of the explored search space would restrict the com-
petition to search-based planners, as e.g. SAT-based plan-
ners can’t produce these measures. We think that these two
metrics stem from the idea that the planners may use their
own HTNs for the domains, as both the number of back-
tracking operations as well as the depth of the search space
are metrics to measure the “difficulty” of an HTN domain.
Further, to measure these metrics, we would have to rely on
the information reported by the planners about their inter-
nal search, which is somewhat strange for an objective com-
petition. Similarly, measuring the explicability of solutions
objectively is hard or even impossible at the moment.

In terms of HTN planning language, a majority of people
thinks it is better to add hierarchical planning concepts to the
PDDL language rather than redefining a new language from
scratch. We elaborate on this in the next section.

Concerning benchmarks, most respondents wish to par-
ticipate to the definition of HTN benchmarks. We asked re-
spondents which types of domains they wished to see as
part of the benchmark set (see Fig. 1). Note that these an-
swers have to be considered with care, as most of the men-
tioned types of domains are also domains used in the classi-
cal IPC. HTN planning is not a means to solve classical plan-
ning problems faster, but a complex combinatorial problem
in its own right. There are structural restrictions (e.g. PCP
and Grammar Intersection domains) to plans that cannot
be expressed by preconditions and effects of actions, while
it is possible to formulate them in an HTN domain (Erol,
Hendler, and Nau 1996; Geier and Bercher 2011; Höller
et al. 2014). Further, the domain’s hierarchy can express
physics that is not modelled in the primitive actions and is
thus an integral part of the problem definition. For exam-
ple, in a transport domain, the location of each truck can be
fully modelled in an HTN problem without introducing state
variables pertaining to the location of the truck. Without the
hierarchy, the primitive action theory in this model makes
no sense at all. As such, the mentioned domain proposals
should be viewed as potential topics for modelling domains
with highly complex restrictions on plans and not as the sug-
gestion that the domain should express the same mechanics
as its classical counterpart.

Figure 1: Types of domains proposed by respondents for
HTN IPC track

Common Description Language
Organising the first IPC track on HTN planning also in-
volves defining a fixed input language for all participating
planners. For classical planning, there is one universally ac-
cepted description language – PDDL. The situation for HTN
planning is drastically different. Of the planners mentioned
in the previous section, PANDA, PANDApro, totSAT, and
partSAT accept the same input language. Similarly GTOHP
and Tree-Rex have a common input language, which is dis-
tinct from PANDA’s. All other planners use their own indi-
vidual description languages. Both groups of planners us-
ing the same input language also share a common parser
and grounder. The two formats are somewhat incompatible
and the format of GTOHP and Tree-Rex does only support
totally-ordered HTN planning problems.

Some of the description languages are based on PDDL,
while others, like SHOP’s language and ANML (Smith,
Frank, and Cushing 2008) are drastically different. We think
that a language based on PDDL is the most sensible way
to define the HTN description language, as it will allow
for close contact between the HTN and classical plan-
ning communities (tools for preprocessing like Fast Down-
ward’s grounder which transforms the planning problem into
the SAS+ format (Helmert 2009) might, e.g. be used in
both communities). A proposal for an HTN description lan-
guage (Höller et al. 2019a) has been accepted at this year’s
Workshop on Hierarchical Planning at ICAPS.

The proposed language is based on the STRIPS part (lan-
guage level 1) of the PDDL 2.1 language definition (Fox and
Long 2003). In this paper, we want to introduce the exten-
sions made and explain some of the design decisions. In the
original paper (Höller et al. 2019a), we give a much broader
discussion, especially with respect to several alternative def-

3

deliver(?p, ?ld)

get-to(?lp) pickup(?lp, ?p) get-to(?ld) drop(?ld, ?p)

get-to(?ld)

get-to(?li) drive(?li, ?ld)

get-to(?ld)

drive(?ls, ?ld)

get-to(?l)

∅

Figure 2: The method set of a simple transport domain. Ac-
tions are given as boxed nodes, abstract tasks are unboxed.
All methods are totally ordered (source of figure: Höller et
al., 2019a).

initions from related work and also provide a full EBNF def-
inition of the entire language.

We want to introduce the language using a simplistic
transport domain that is illustrated in Figure 2. There is only
a single transporter that has to deliver packages. The method
set is designed to exemplify the features of the language
(so we know that there are more compact equivalent def-
initions). The overall deliver task can be decomposed (by
the method given at the top) into a get-to task that moves
the transporter to the package, a pick-up action, another get-
to task that makes the transporter move to the position the
package shall be delivered, and a drop action. For the get-to
task, there are three methods (given at the bottom, from left
to right): the first one is recursive and makes the transporter
get to an intermediate position from which the target posi-
tion can be reached directly by a primitive drive action, the
second one can be used when it is already directly reachable
by a drive action, and the third one can be used when the
transporter is already at its destination, it decomposes the
get-to into an empty task network. The search is started with
one or more deliver tasks.

When we look at the proposed input language, the begin-
ning of the domain definition is equal to PDDL, defining the
domain name, a type hierarchy, and predicates.

1 (define (domain transport)
2 (:types location package - object)
3 (:predicates
4 (road ?l1 ?l2 - location)
5 ...)

The first element we had to add is the definition of tasks.
There are two common ways to define them: as an explicit
enumeration, or, by simply using the tasks in the method
specifications and defining the set of abstract tasks as the
union of all tasks used in methods. We decided to require
an explicit definition of abstract tasks and tried to keep it
close to the one of actions in PDDL (in fact, both actions
and abstract tasks are quite similar in HTN planning) due to
the following reasons:
• In our opinion, an implicit definition is against the design

spirit of PDDL. Take the predicate definitions as an exam-
ple. It would be sufficient to omit the explicit definition of
predicates and just use them in action definitions. PDDL
opted for the first variant, an explicit definition.

• There are hierarchical planning approaches where ab-
stract tasks hold preconditions and effects. A definition as
given here allows for a simple extension to support such
approaches.

• Lastly, there are benefits to being able to explicitly model
the types of parameters of abstract tasks (see how tasks
are used in method definitions).

The following listing defines the two abstract tasks used in
the transport example.

6 (:task deliver :parameters (?p - package
?l - location))

7 (:task get-to :parameters (?l - location))

There is a single method decomposing the deliver task:

8 (:method m-deliver
9 :parameters (?p - package

?lp ?ld - location)
10 :task (deliver ?p ?ld)
11 :ordered-subtasks (and
12 (get-to ?lp)
13 (pick-up ?ld ?p)
14 (get-to ?ld)
15 (drop ?ld ?p)))

The method definition starts with its name (here:
m-deliver) and is followed by the parameter definition.

The parameters could, again, be either defined explicitly
(like we did), or implicitly by just using them. Having an
explicit definition has two advantages:

• Having an explicit definition allows for consistency
checks by the planning system.

• By having the method parameters specified explicitly, one
can restrict the applicability of a method via the type def-
inition. As an example, consider a transport domain with
several types of packages. Some of them might need spe-
cial ways to be delivered, e.g. hazardous materials.

In the proposed language, all variables used in a method
must be declared as parameters of that method – similar
to the parameters of PDDL actions. This includes variables
used for the specification of the abstract task that is decom-
posed, in the specification of the subtasks, and the constraint
set.

Next, the task that the method decomposes is specified
(line 10). It has to be defined in the domain as given before.

The method definition closes with the subtasks (starting
in line 11). In the given method, the tasks shall be totally
ordered. To enable a compact domain definition, the mod-
eller can use the :ordered-subtasks keyword to indi-
cate that all subtasks shall be totally ordered in the order in
which they are specified. As subtasks, any action or task de-
fined in the domain can be used, while their arguments can
be constants and any of the parameters of that method.

In the next method, we see how to define the order of
subtasks explicitly.

16 (:method m-drive-to-via
17 :parameters (?li ?ld - location)
18 :task (get-to ?ld)
19 :subtasks (and

4

20 (t1 (get-to ?li))
21 (t2 (drive ?li ?ld)))
22 :ordering (and
23 (t1 < t2)))

The subtasks are “marked” with IDs (here: t1 and t2).
The order is specified using these IDs. Supporting these two
ways to specify ordering, we enable a compact definition
of totally ordered networks (using the first variant) without
loosing the expressivity to specify arbitrary partial order.

Many HTN planners allow for method preconditions (see
Höller et al. (2019a) for a discussion of this feature). We
decided to include them as well.

24 (:method m-already-there
25 :parameters (?l - location)
26 :task (get-to ?l)
27 :precondition (tAt ?l)
28 :subtasks ())

Here, the get-to task may be achieved by doing nothing when
the transporter is already at its final position. This is checked
by the state-based precondition (line 27).

HTN planners from the literature support various forms
of conditions, like e.g. equality and inequality of variables,
constraints on the types, but also conditions on the state that
need to hold between two tasks. Though we decided to keep
the initial formalism simple, we added a constraints
section to our definition that can be seen in the following
listing (line 32).

29 (:method m-direct
30 :parameters (?ls ?ld - location)
31 :task (get-to ?ld)
32 :constraints
33 (not (= ?li ?ld))
34 :subtasks (drive ?ls ?ld))

In the first language version, only equality and inequality are
supported, but the presence of the constraints section allows
for an easy extension in future language versions.

The action definitions remain as defined in PDDL2.1.

35 (:action drive
36 :parameters (?l1 ?l2 - location)
37 :precondition (and
38 (tAt ?l1)
39 (road ?l1 ?l2))
40 :effect (and
41 (not (tAt ?l1))
42 (tAt ?l2)))
43 ...)

Another important change is made to the problem def-
inition. Here, the initial task network is specified (start-
ing in line 6), its definition is similar to the definition
of method sub-networks (therefore we included the empty
:ordering and :constraints in the next listing to
show the similarity, these might, of course, be omitted).

1 (define (problem p)
2 (:domain transport)
3 (:objects
4 city-loc-0 city-loc-1 city-loc-2 -

location

5 package-0 package-1 - package)
6 (:htn
7 :tasks (and
8 (deliver package-0 city-loc-0)
9 (deliver package-1 city-loc-2))

10 :ordering ()
11 :constraints ())
12 (:init
13 (road city-loc-0 city-loc-1)
14 (road city-loc-1 city-loc-0)
15 (road city-loc-1 city-loc-2)
16 (road city-loc-2 city-loc-1)
17 (at package-0 city-loc-1)
18 (at package-1 city-loc-1)))

Another point we want to highlight is the specification of
the problem class given in line 6. It is specified by the
keyword :htn. There are many slightly different problem
classes in hierarchical planning (see Bercher, Alford, and
Höller (2019) for an overview). Some allow, e.g., for task
insertion. The explicit definition in the problem file allows
to extend the language standard to other classes than com-
mon HTN planning.

Tracks
As in the IPC for deterministic, classical planning, we pro-
pose to run competitions for optimal, satisficing, and agile
planning. Further we propose to split the competition be-
tween the types of problems handled by the planners. Since
there is a large group of existing HTN planners that is re-
stricted to totally-ordered HTN planning problems, we pro-
pose to include a separate track for those planners in which
all input problems are totally-ordered. Naturally, all HTN
planners that are capable of handling general HTN planning
problems can take part in a totally-ordered competition, but
should be at a disadvantage. In a second set of sub-tracks, the
planners that are able to solve general, i.e. partially-ordered,
HTN planning problems will compete. As a result, we pro-
pose six tracks: optimal totally-ordered, satisficing totally-
ordered, agile totally-ordered, optimal general, satisficing
general, and agile general.

Timeline and Organisation
We propose to roughly follow the usual schedule of the IPC.

May – July 2019 Agreeing on a common
input language for all planners.

July 2019 Announcement of the track
Call for domains
Call for expression of interest

October 2019 Registration deadline
November 2019 Demo problems provided
January 2020 Submission of preliminary

planner versions
February 2020 Domain submission deadline
April 2020 Final planner submission deadline
May 2020 Paper submission deadline
May 2020 Contest run
June 2020 Presentation of the results at

ICAPS 2020

5

As did the first IPC track on unsolvability (Muise and
Lipovetzky 2015), we also expect that there will be many
technical issues with the submitted planners. We assume that
most of them will be centred around correct support of the
input language, for which issues will usually take some time
to debug and fix. Further, HTN planners have to provide the
decompositions they used as their output as well – in order
to be able to verify their solutions in time. Without these de-
composition, verification is NP-complete (Behnke, Höller,
and Biundo 2015) and thus may take a long time. We will
use the preliminary submissions of the planners to validate
that their outputs are correctly formatted and can be verified
against the domain. As such, we propose a first submission
of the planners early on, so that we can test them sufficiently
before the actual competition.

Scoring and Setting
For scoring the planner, we will adopt the metrics used in
the last deterministic, classical IPC. We further propose to
use the same technical setting (1 core, 8 GB of RAM, and
30 minutes). All planners will be provided with the same
HTN planning domain, i.e. set of primitive actions, abstract
tasks, and decomposition methods, the same planning prob-
lem, i.e. initial state and initial abstract task, and are not
allowed to have any additional domain-dependent informa-
tion. They have to output both the solution, i.e. a sequence
of primitive actions, as well as a witness that this solution is
obtainable via decomposition form the initial abstract task.

Domains
As noted before, there is no large set of available bench-
marking domains for HTN planners, which would have to
be created for the competition. The IPC has so far relied
for the domains in the competition on an open call for the
community to submit domains. We propose will also call for
such community-provided domains (once a input language
has been fixed). In addition, we propose to add a new mode
of providing benchmark domains that has been recently
adopted by the SAT community: Bring Your Own Bench-
mark (BYOB). The SAT Competition 20174 and 20185 used
BYOB. In it, each competing program – in our case planner
– is required to submit a domain with 20 instances. Of these
20 instances, the planner of the submitter must be able to
solve at most 10. This requirement forces submissions of do-
mains that are not advantageous to the planner of the submit-
ter. This encourages the submission of problems that are of
medium difficulty for the individual planner. We argue that
they will both provide a good basis for comparison against
other planners as well as a good starting point for future sci-
entific investigations based on the difficulties in them.

From a content perspective, we especially encourage sub-
missions of domains that pose problems which cannot be ex-
pressed in classical planning, i.e. in PDDL6. Such domains
exists, like PCP and Grammar Intersection, but it would be

4https://baldur.iti.kit.edu/sat-competition-2017/
5http://sat2018.forsyte.tuwien.ac.at/
6without numbers

interesting to see where HTN planning can further use its
high expressive power.

Discussion
With a new IPC track on HTN planning, we think that the
research in hierarchical planning will be more focussed and
successful in the future. As a result of the competition, we
expect that

• the HTN community will agree upon a set of core features
supported by every planner and an input language for it,
which is important for users of HTN planning, as well as
for comparing systems against each other.

• a set of benchmark domains will be available, allowing
for better judging and fairer comparisons of planners than
is currently possible.

• a core of (relatively) error-free software to be used by
many planners will emerge, like Fast Downward (Helmert
2006) for classical planning, allowing for both easy use by
planning researchers and users of planning technology.

• hints for future research in HTN planning will be given.

While the first three points are valuable to the community
and outsiders wanting to use HTN planning, we want to em-
phasise the fourth. The results of planning competitions will
regularly show the weaknesses of the so-far developed ap-
proaches and techniques. These weaknesses are valuable in-
formation and point out where planners can and should be
improved in the future.

References
Alford, R.; Behnke, G.; Höller, D.; Bercher, P.; Biundo, S.;
and Aha, D. W. 2016a. Bound to plan: Exploiting classical
heuristics via automatic translations of tail-recursive HTN
problems. In Proc. of the 26th Int. Conf. on Autom. Plan.
and Sched., (ICAPS 2016), 20–28. AAAI Press.
Alford, R.; Shivashankar, V.; Roberts, M.; Frank, J.; and
Aha, D. W. 2016b. Hierarchical planning: relating task and
goal decomposition with task sharing. In Proc. of the 25th
Int. Joint Conf. on AI (IJCAI 2016). AAAI Press.
Alford, R.; Kuter, U.; and Nau, D. 2009. Translating HTNs
to PDDL: A small amount of domain knowledge can go a
long way. In Proc. of the 21st Int. Joint Conf. on AI (IJCAI
2009), 1629–1634. AAAI Press.
Barták, R., and Maillard, A. 2017. Attribute grammars
with set attributes and global constraints as a unifying frame-
work for planning domain models. In Proc. of the 19th Int.
Symp. on Principles and Practice of Declarative Program-
ming (PPDP 2017), 39–48. ACM.
Barták, R.; Maillard, A.; and Cardoso, R. C. 2018. Valida-
tion of hierarchical plans via parsing of attribute grammars.
In Proc. of the 28th Int. Conf. on Autom. Plan. and Sched.
(ICAPS 2018). AAAI Press.
Behnke, G.; Höller, D.; and Biundo, S. 2015. On the com-
plexity of HTN plan verification and its implications for plan
recognition. In Proc. of the 25th Int. Conf. on Autom. Plan.
and Sched. (ICAPS 2015), 25–33. AAAI Press.

6

Behnke, G.; Höller, D.; and Biundo, S. 2018. totSAT –
Totally-ordered hierarchical planning through SAT. In Proc.
of the 32nd AAAI Conf. on AI (AAAI 2018), 6110–6118.
AAAI Press.
Behnke, G.; Höller, D.; and Biundo, S. 2019a. Bringing
order to chaos – A compact representation of partial order in
SAT-based HTN planning. In Proc. of the 33rd AAAI Conf.
on AI (AAAI 2019). AAAI Press.
Behnke, G.; Höller, D.; and Biundo, S. 2019b. Finding opti-
mal solutions in HTN planning – A SAT-based approach. In
Proc. of the 28th Int. Joint Conf. on AI (IJCAI 2019). IJCAI.
Bercher, P.; Alford, R.; and Höller, D. 2019. A survey on
hierarchical planning – One abstract idea, many concrete re-
alizations. In Proc. of the 28th Int. Joint Conf. on AI (IJCAI
2019). IJCAI.
Bercher, P.; Behnke, G.; Höller, D.; and Biundo, S. 2017.
An admissible HTN planning heuristic. In Proc. of the 26th
Int. Joint Conf. on AI (IJCAI 2017), 480–488. IJCAI.
Dix, J.; Kuter, U.; and Nau, D. 2003. Planning in answer set
programming using ordered task decomposition. In Proc. of
the 26th Annual German Conf. on AI (KI 2003), 490–504.
Springer.
Dvorak, F.; Bit-Monnot, A.; Ingrand, F.; and Ghallab, M.
2014. A flexible ANML actor and planner in robotics. In
Proc. of the 4th Work. on Plan. and Rob. (PlanRob 2014),
12–19.
Erol, K.; Hendler, J.; and Nau, D. 1994. UMCP: A sound
and complete procedure for hierarchical task-network plan-
ning. In Proc. of the 2nd Int. Conf. on AI Plan. Systems
(AIPS), 249–254. AAAI Press.
Erol, K.; Hendler, J.; and Nau, D. 1996. Complexity results
for HTN planning. Annals of Mathematics and AI 18(1):69–
93.
Fox, M., and Long, D. 2003. PDDL2.1 : An extension to
PDDL for expressing temporal planning domains. Journal
of Artificial Intelligence Research (JAIR) 20:61–124.
Geier, T., and Bercher, P. 2011. On the decidability of HTN
planning with task insertion. In Proc. of the 22nd Int. Joint
Conf. on AI (IJCAI 2011), 1955–1961. AAAI Press.
Helmert, M. 2006. The fast downward planning system.
Journal of Artificial Intelligence Research (JAIR) 26:191–
246.
Helmert, M. 2009. Concise finite-domain representations
for pddl planning tasks. Artificial Intelligence 173(5-6):503–
535.
Höller, D.; Behnke, G.; Bercher, P.; and Biundo, S. 2014.
Language classification of hierarchical planning problems.
In Proc. of the 21st Europ. Conf. on AI (ECAI 2014), volume
263, 447–452. IOS Press.
Höller, D.; Behnke, G.; Bercher, P.; and Biundo, S. 2016.
Assessing the expressivity of planning formalisms through
the comparison to formal languages. In Proc. of the 26th
Int. Conf. on Autom. Plan. and Sched., (ICAPS 2016), 158–
165. AAAI Press.
Höller, D.; Bercher, P.; Behnke, G.; and Biundo, B. 2018. A

generic method to guide HTN progression search with clas-
sical heuristics. In Proc. of the 28th Int. Conf. on Autom.
Plan. and Sched. (ICAPS 2018), 114–122. AAAI Press.
Höller, D.; Behnke, G.; Bercher, P.; Biundo, S.; Fiorino, H.;
Pellier, D.; and Alford, R. 2019a. HDDL – a language to
describe hierarchical planning problems. In Proc. of the 2nd
ICAPS Workshop on Hierarchical Planning.
Höller, D.; Bercher, P.; Behnke, G.; and Biundo, S. 2019b.
On guiding search in HTN planning with classical planning
heuristics. In Proc. of the 28th Int. Joint Conf. on AI (IJCAI
2019). IJCAI.
McDermott, D. 2000. The 1998 AI planning systems com-
petition. AI Magazine 21(2):35–55.
Muise, C., and Lipovetzky, N. 2015. Unplannability IPC
track. In Proc. of the 2015 Works. on the IPC (WIPC 2015).
Nau, D.; Cao, Y.; Lotem, A.; and Munoz-Avila, H. 1999.
SHOP: Simple hierarchical ordered planner. In Proc. of the
16th Int. Joint Conf. on AI (IJCAI 1999), 968–973.
Nau, D.; Au, T.-C.; Ilghami, O.; Kuter, U.; Murdock, J.; Wu,
D.; and Yaman, F. 2003. SHOP2: An HTN planning system.
Journal of Artificial Intelligence Research (JAIR) 20:379–
404.
Ramoul, A.; Pellier, D.; Fiorino, H.; and Pesty, S. 2017.
Grounding of HTN planning domain. International Journal
on Artificial Intelligence Tools 26(5):1–24.
Schreiber, D.; Balyo, T.; Pellier, D.; and Fiorino, H. 2019.
Tree-REX: SAT-based tree exploration for efficient and
high-quality HTN planning. In Proc. of the 29th Int. Conf.
on Autom. Plan. and Sched. (ICAPS 2019). AAAI Press.
Shivashankar, V.; Alford, R.; Kuter, U.; and Nau, D. S. 2013.
Hierarchical goal networks and goal-driven autonomy: Go-
ing where AI planning meets goal reasoning. In Goal Rea-
soning: Papers from the ACS Workshop, 95–110.
Smith, D.; Frank, J.; and Cushing, W. 2008. The anml lan-
guage. In Proc. of the Work. on Knowledge Engineering for
Plan. and Sched. (KEPS 2008).

7

Insights from the 2018 IPC Benchmarks

Isabel Cenamor and Alberto Pozanco
Departamento de Informática, Universidad Carlos III de Madrid

Avda. de la Universidad, 30. 28911 Leganés (Madrid). Spain
icenamorg@gmail.com, apozanco@pa.inf.uc3m.es

Abstract

The International Planning Competition (IPC) empiri-
cally evaluates state-of-the-art planning systems on a
set of benchmark problems. The selection of this bench-
marks plays an important role in the competition, since
they can significantly affect competition results.
In this paper we analyze the diversity of the benchmarks
employed in the last IPC through extracting some fea-
tures from the domains and problems of the optimal
track. Finally, we provide some insights from the col-
lected data and propose to use a similar method to select
the benchmarks of future competitions.

Introduction
In Artificial Intelligence, it is common to have competitions
associated with each particular research area. These com-
petitions aim to bring together different state-of-the-art sys-
tems, evaluating them on a set of benchmarks. Just like in
Satisfiability Testing (Järvisalo et al. 2012), or in Answer
Set Programming (Gebser, Maratea, and Ricca 2017), the
Automated Planning community promotes the development
of innovative planning techniques since 1998 through the In-
ternational Planning Competition (IPC).

In the IPC, participating planning systems are tested in
several benchmark problems. The selection of these bench-
mark domains and problems instances plays an important
role in the competition, since they can significantly affect
competition results (Howe and Dahlman 2002). This task is
non-trivial, and it has given a lot of headaches to the or-
ganizers of previous competitions (Linares López, Celor-
rio, and Olaya 2015; Vallati, Chrpa, and McCluskey 2018).
One of the main consensuses among the different post-
competition discussions, is that benchmark domains and
problems should be as diverse as possible (Vallati and Va-
quero 2015), in order to (1) enrich the competition, and (2)
not bias the results in favour of any planner.

In this paper, we analyze the diversity of benchmarks em-
ployed in the IPC 2018. We do that by extracting some fea-
tures from the domains and problem instances of the optimal
tracks. Features from domains and problems have been suc-
cessfully used to predict planner’s coverage (Roberts et al.
2008; Roberts and Howe 2009) or run time (Fawcett et al.
2014); and also to generate state-of-the-art planning portfo-
lios (Cenamor, de la Rosa, and Fernández 2016). Here we

use these features to evaluate and analyze the diversity of
the competition benchmarks.

In the rest of the paper we introduce the feature extrac-
tion process, including a brief description of the features.
Then, we detail how we process the raw data and intro-
duce our different analyses, in which we also include the
IPC 2014 for comparison purposes. Firstly, we perform an
intra-domain analysis to test how diverse are the problem
instances within the same planning domain. Secondly, we
perform an inter-domain analysis to test how diverse are the
domains and problems among them. Finally, we merge the
data from IPC 2014 and IPC 2018 to group the domains and
problems based on their similarity. We conclude our analysis
by providing some insights from the results, and outlining
a procedure similar to the one we carried out to select the
benchmarks of future IPCs.

Planning Features
We use the same features extracted by the IBaCoP family of
portfolios (de la Rosa, Cenamor, and Fernández 2017). The
extraction process collects data from different steps of the
Fast Downward system (Helmert 2006), in the version that
was available before the IPC 2014. We briefly describe the
set of 114 real-valued features we will use throughout our
analysis by classifying them into the following categories:

• PDDL. These features are extracted from the original do-
main and problem definition in the PDDL files. If the
domain contains conditional effects, we parse them us-
ing ADL2STRIPS (Hoffmann et al. 2006). Specifically,
we have implemented the compilation that creates artifi-
cial actions for effect’s evaluation (Nebel 2000). Some of
these features are: number of actions, number of objects
or number of goals.

• Fast Downward Instantiation. The pre-processor of Fast
Downward instantiates and translates the planning tasks
into a finite domain representation (Helmert 2009). Some
of these features are: number of mutex groups, memory
used for the translation process or whether action costs
are used or not.

• SAS+. These features are based on the causal
graph (Helmert 2004) and domain transition graphs (Jon-
sson and Bäckström 1998) associated to the finite domain
representation. Some of these features are: number of

8

variables and edges of the causal graph, ratio of variables
involved in the goal, or sum of the number of nodes of all
domain transition graphs.

• Heuristics. These features represent different heuristic
values of the initial state of the search. Some of these fea-
tures are: the FF heuristic (Hoffmann and Nebel 2001),
the landmark-cut heuristic (Helmert and Domshlak 2009)
or the red-black heuristic (Katz, Hoffmann, and Domsh-
lak 2013).

• Fact Balance. These features are extracted from the re-
laxed plan of the initial state when the FF heuristic is com-
puted.

• Landmarks. These features are extracted from the land-
mark graph computed by Fast Downward (see details
in (Cenamor, de la Rosa, and Fernández 2016)). Some of
these features are the number of landmarks, the number
of edges in the landmark graph or the number of interme-
diate nodes in the graph.

Through extracting these features, we aim to characterize
each problem instance to later compare them.

Data Extraction
We extract the IBaCoP features of the domains and prob-
lems of the IPC 2018 optimal track1. We decided to per-
form our analysis on that track given that we were able to
successfully extract most of the features for all the problem
instances, while the extraction results were worse in the sat-
isficing track due to time and memory issues. We also ex-
tracted the features of the IPC 2014 optimal track2 so we
can compare them properly. The feature extraction process
was run on an Intel Core i5-2410M CPU @ 2.30GHz and
4GB of RAM. We apply a time limit of 1800 seconds to the
extraction of the features of each problem3.

#Features Success
PDDL 8 100%
FD 16 100%
SAS+ 50 100%
Heuristic 16 82%
FB 10 76%
Landmarks 14 100%
Total 114

Table 1: Feature type, number of features per type, and ex-
traction success.

Table 1 shows the extraction success for each feature type
in the IPC 2018. As we can see, most of the features are
extracted correctly. Table 2 shows different metrics related
to the time needed to extract the features in each domain

1https://bitbucket.org/ipc2018-classical/
domains/src

2https://helios.hud.ac.uk/scommv/IPC-14/
benchmark.html

3The extracted data is available at https://github.com/
apozanco/wipc-icaps2019 for IPC 2014 and 2018

Name Min Max Mean Std Median
agricola 32.0 164.0 87.9 36.2 80.0
caldera 97.0 382.0 319.8 76.6 339.0
caldera-split 64.0 280.0 135.3 50.0 124.0
data-network 2.0 6.0 3.6 0.9 3.0
nurikabe 61.0 634.0 311.1 169.1 324.5
organic-synthesis-split 80.0 844.0 257.8 230.8 133.0
organic-synthesis - - - - -
settlers 100.0 283.0 177.6 52.1 167.5
snake 12.0 53.0 29.5 13.1 26.0
spider 167.0 671.0 383.6 137.3 408.0
termes 2.0 3.0 2.2 0.4 2.0
petri-net 7.0 30.0 18.4 6.8 17.5

Table 2: Minimum, maximum, average, standard deviation
and median time to extract features for each domain in the
IPC 2018 optimal track. In bold the higher values per col-
umn.

of the IPC 2018. While it is easy to extract the features in
some domains such as termes and data-network, there are
other domains like spider or organic-synthesis-split in which
this process may take up to two more orders of magnitude.
This is because these domains present ADL, action costs,
and negative preconditions, which need a special PDDL
pre-process. We discarded organic-synthesis, since we only
could extract the features of 5 problem instances within the
time limit.

Data Pre-processing
After extracting the features, we have a features matrixM.
Each row in the matrix represents a problem instance pk, and
each column represents a feature fi. Each cell contains the
numeric value of a feature for that problem, fi(pk). As we
showed in Table 1, we do not have all the features’ values
for all the problems. So first of all, we have to deal with the
missing values.

Here we have two main options: (1) discard those features
with any missing value for any problem; or (2) substitute the
missing values by actual values. Discarding features implies
losing information. If the system is not able to extract a fea-
ture in a problem, it means that this instance is different from
others in which it can be extracted. Moreover, we have high
extraction success in almost all the features, so we opted for
the second alternative, substituting the missing values. These
values can be replaced in many ways. We chose to replace
them by either:

• Setting the feature value to 0, if there is no problem in
the domain in which the feature has been successfully ex-
tracted.

• Setting the feature value to the average of that feature val-
ues in the domain, if there exist at least one problem in
the domain in which the feature has been successfully ex-
tracted.

Then, we cleaned the data by removing the features
that were not sufficiently informative. For this purpose, we
deleted the set of features which have the same value for all

9

the problem instances of the competition. This make our set
of features to reduce from 114 to 107. We deleted 3 features
from the PDDL description, 3 from the SAS+ representa-
tion, and 1 from the heuristic values.

Finally, we normalized the features matrix by applying
the following equation to every remaining feature fi ∈M,

f ′
i(pk) =

fi(pk)− fmin

fmax − fmin

where fi(pk) is the current value of the feature fi in the
problem instance pk; fmin and fmax are the minimum and
maximum values of the feature fi for all the problem in-
stances pk ∈M; and f ′

i(pk) is the new normalized value of
the feature fi in the instance pk. After this process, the fea-
tures matrixM is normalized, with all the features’ values
within the [0, 1] range.

If we take a look to these features’ values, there are some
that have similar values for all problem instances, while
others are very different. As instance, in the IPC 2018, all
the problem instances have a similar ratio between the to-
tal number of variables and the total number of edges in the
causal graph. On the other hand, the most different features
correspond with the number of predicates and types in the
problem instances.

In the following experiments, we will refer as problem
features’ vector Vpk

to the list of values that describe the
features of a problem instance pk.

Intra-domain Analysis
Our first analysis aim to test how diverse are the problem in-
stances within the same planning domain. For each planning
domain, we compute a matrix with the columns and rows
being the problem instances pk of that domain. Each cell
of the matrix denotes the difference between two problem
features’ vectors Vx and Vy . This difference is computed as
follows:

Vx − Vy =
i=107∑

i=1

|fi(px)− fi(py)|

This value can range from 0 to 107. Values closer to
0 mean that the two problem instances are similar, while
higher values mean diverse problem instances.

To test how diverse the problems of a domain are, we then
sum all the rows (or columns) in the matrix and divide that
number by n2, where n is the number of problems in the
domain. This number reflects how different/similar is an av-
erage problem with the rest of problem instances of its do-
main. This number can range from 0 to 37.5 in the case of
domains with 20 problems. Table 3 show the results of our
intra-domain analysis for both IPC 2014 and 2018.

As we can see, there is a lot of variation in the results.
Domains like parking and visitall in 2014, and spider or
organic-synthesis in 2018 have very diverse problems, while
all the instances in data-network or barman seem to be sim-
ilar. The IPC 2018 has more diverse problems within the
same domain, with an average difference of 5.6 against the
average difference of 4.5 in the case of the IPC 2014.

Domain 2014 Difference Domain 2018 Difference
parking 9.5 spider 12.5
tetris 8.5 organic-synth 10.5
visitall 7.4 nurikabe 9.9
transport 6.7 caldera 7.5
tidybot 4.9 caldera-split 4.4
openstacks 4.8 petri-net 4.1
citycar 4.1 agricola 4.1
cave-diving 4.1 snake 3.8
hiking 3.6 settlers 2.2
GED 3.5 termes 1.5
child-snack 2.2 data-network 0.9
floortile 1.4
maintenance 1.1
barman 0.9

Table 3: Intra-domain Analysis.

To better illustrate how diverse the problems within a do-
main are, we plotted together all the problem features’ vec-
tor of each domain. The results for the domains with most
and least similar problems in the IPC 2018 are shown in Fig-
ure 1.

We also ran a small experiment to see if these results
correlate with the planners’ performance. We hypothesized
that in domains with similar problems such as data-network,
planners would perform similarly, i.e., they would solve
most or almost none of the problems in the domain. On the
other hand, in domains with different instances such as spi-
der, planners would solve the problems in a more different
way. To check this, we computed the standard deviation of
each planner solving the problems of each domain (1 if a
problem is solved, 0 otherwise). Lower values for a planner
imply that it has been able to solve most or almost none of
the instances in the domain. Then we compute the average
of each planner for each domain.

However, our hypothesis is not met. As instance, spider
which is the domain with most different instances, has a
standard deviation of 0.47, while data-network which is the
domain with most similar problems, has a standard deviation
of 0.49. Some of the possible reasons why these results do
not correlate are: (1) the competitor planners are very differ-
ent from each other, and hence some domains and problems
could be more suitable for one or other planner; and (2), the
fact that a domain has similar problems does not necessarily
imply that they can be solved in the same way. This little
differences may come from increasing the number of ob-
jects, and therefore planners will only solve a small subset
of them.

Inter-domain Analysis
Our second analysis aim to test how diverse are the domains
among them. For each planning domain, we compute a do-
main features’ vector VDk

which is a problem features’ vec-
tor representative of the domain Dk. We do that by assigning
to each feature the average of the values of that feature in all
the problem instances of the domain.

∀fi ∈M, fi(VDk
) =

∑
pk∈Dk

fi(pk)

|Dk|

10

Figure 1: Domains with most similar (top) and least simi-
lar (bottom) problems. Each color represent one of the 20
different problem features’ vector of each domain.

By doing this, we are capturing all the information of a
domain within just one features’ vector. However, we may
lose some information, mostly in those domains with diverse
problem instances.

After that, we compute a matrix that in this case will have
domain features’ vectors both in the rows and columns. Each
cell of this matrix denotes the difference between two do-
main features’ vectors. This value can range from 0 to 107.
If we sum each row (column) in the matrix and divide that
number by k, the number of domains in the competition, we
get how different is on average a domain with respect to the
other domains. Table 4 shows the results of our inter-domain
analysis of the IPC 2018.

As we can see, petri-net-alignment is the domain that
keeps more differences with respect to the rest of domains,
with an average value of 27.2. Moreover along with agri-
cola, they are the most different pair of domains. On the
other hand, caldera is the domain which is more similar to
the others in the competition, with an average value of 12.0.
Caldera and caldera-split is the most similar pair of domains
in the IPC. This make sense, since both domains only differ
in the problems’ grounding. To better illustrate how diverse
are the domains among them, we plotted together some do-
main features’ vectors together in Figure 2.

We performed the same inter-domain analysis for the IPC
2014. In this case, the most different domain is tidybot, with
an average value of 21.4. On the other hand, barman is the
domain which is more similar to the others in the competi-
tion, with an average value of 9.2.

Figure 2: Similar domains (top) and different domains (bot-
tom) in the IPC 2018.

These maximum and minimum values are less distanced
than the values of the IPC 2018. In fact, while the average
of the domains’ differences in the IPC 2018 is 15.6, this av-
erage is 12.0 in the case of the IPC 2014. This means that
the set of domains and problem instances in the IPC 2018 is
more diverse that the one of the IPC 2014.

We also ran a small experiment to see if these results cor-
relate with the planners’ performance. We hypothesized that
planners would perform akin in similar domains and dif-
ferent in domains with different features. To check this, we
computed for every planner the difference in absolute value
of the number of problems solved in each pair of domains.
Then we sum the results of each planner for each combina-
tion of domains and divide it by the number of planners.
Lower values imply that the planners of the competition
solve a similar number of problems in the given domains.

In this case, our hypothesis is met in most cases. As in-
stance, if we take termes and data-network (the most simi-
lar domains except for the two versions of caldera), we get
a value of 0.16, while in the case of agricola and petri-net
(the most different domains), we get a value of 0.29. This
is a common trend across domains, although there are some
cases in which it is not fulfilled. As instance, the value ob-
tained when comparing nurikabe and organic-synthesis is
0.13, which is lower than in the case of termes and data-
network. Again, this can happen for the same reasons de-
scribed in the intra-domain analysis.

11

organic-synths agricola caldera-split spider termes data-network snake nurikabe caldera petri-net settlers
organic-synth 0.0 19.4 14.2 20.4 17.6 15.6 16.9 15.3 13.0 33.3 11.9

agricola 19.4 0.0 16.7 22.9 18.1 13.8 17.2 15.5 14.4 33.5 15.3
caldera-split 14.2 16.7 0.0 16.8 10.3 10.7 13.4 12.9 7.7 26.9 8.3

spider 20.4 22.9 16.8 0.0 20.7 22.1 16.2 19.3 15.7 33.2 18.3
termes 17.6 18.1 10.3 20.7 0.0 8.3 11.1 14.0 11.5 25.0 12.4

data-network 15.6 13.8 10.7 22.1 8.3 0.0 13.9 13.1 10.6 25.8 10.2
snake 16.9 17.2 13.4 16.2 11.1 13.9 0.0 13.1 10.4 31.7 13.7

nurikabe 15.3 15.5 12.9 19.3 14.0 13.1 13.1 0.0 10.7 31.3 10.8
caldera 13.0 14.4 7.7 15.7 11.5 10.6 10.4 10.7 0.0 29.2 8.9

petri-net 33.3 33.5 26.9 33.2 25.0 25.8 31.7 31.3 29.2 0.0 28.9
settlers 11.9 15.3 8.3 18.3 12.4 10.2 13.7 10.8 8.9 28.9 0.0
Average 16.1 17.0 12.5 18.7 13.5 13.1 14.3 14.2 12.0 27.2 12.6

Table 4: Differences among domains from the IPC 2018. Green cells identify diverse domains, while purple cells identify
similar domains. Bold numbers represent the most diverse and similar domains in the competition.

Clustering Domains
Our last analysis aim to group the benchmarks of the IPCs
2014 and 2018 based on their similarity. For this purpose,
we merge the raw data of the extracted feaures of both com-
petitions, and follow the same pre-processing step as before.
We compute a features’ vector for each domain, as we did in
our inter-domain analysis.

Now we perform a hierarchical clustering to the 25 do-
main features’ vectors (11 from the IPC 2018 and 14 from
the IPC 2014). We do that to test (1) if there exist similar do-
mains across different competitions, hence being part of the
same cluster; and (2) which domains are the most different
from the rest, hence conforming they own cluster.

Figure 3 shows the result of our hierarchical clustering in
the shape of a dendrogram. As we can see, domains like bar-
man, child-snack or hiking are grouped together first. This
means that they are the most similar ones within both com-
petitions. The most diverse domains are shown at the bottom
of the y axis. They correspond to spider, settlers, visitall,
agricola, parking, tidybot, organic-synthesis and petri-net-
alignment, which is the most different domain across com-
petitions.

Discussion
The selection of the benchmark domains and problem in-
stances plays an important role in the IPC. A desirable prop-
erty of these benchmarks is that they should be as diverse
as possible, in order to enrich the competition and not bias
the results in favor of any planner. In this paper we have pre-
sented a study of the diversity of the benchmarks of the IPCs
2018 and 2014. We carried out three different analyses: an
intra-domain analysis, to test how diverse are the problem
instances within the same planning domain; an inter-domain
analysis, to test how diverse are the domains and problems
among them; and a clustering procedure to group the do-
mains of both IPCs based on their similarity.

Our analyses suggest that the IPC 2018 employed more
diverse domains and problem instances than the IPC 2014.
From the results, we can also conclude that in both compe-
titions there are domains which are not similar to any other,
not only within the same competition but also if we take

other IPCs into account. We think these different domains
such as spider, agricola or parking really enrich the IPC.

However, our results should be read carefully, and more
like a photograph of the benchmarks, than a test that deter-
mines how good or bad a problem/domain/competition is.

The first reason for that is that throughout our analyses,
we measure the similarity or diversity of problems and do-
mains with respect to their set of features. These features,
even though proved useful by other works, may not conform
the best set of features for differentiating problems; also,
some of these features may be too correlated and introduce
noise in the similarity computation. Further work on the set
of features should be done to properly characterize problem
instances. We also want to note that the fact that a domain
has similar problem instances, or a competition similar do-
mains, does not mean anything bad. It may be the case that
all these similar domains are challenging for the planners.
Moreover, the low intra-domain differences in domains like
barman may be related to having problems with increasing
number of objects or goals. These type of domains are useful
to test planners’ scalability and should be present at future
competitions.

The second reason is that a competition comprises both
benchmarks and planners. Although other works has fo-
cused on that relationship (Cenamor, de la Rosa, and
Fernández 2016; de la Rosa, Cenamor, and Fernández
2017), here we only focused on the benchmarks, leaving
the planners’ performance over these benchmarks out of the
scope of this paper. This work should be extended to take
diverse planners into account, characterizing them and ana-
lyzing how they solve each kind of domain and/or problem
instances. By doing this, it would be possible to know which
set of features make the problem instances hard to solve by
each kind of planner. This information would be very useful
when selecting the domains and problems of a competition.

We believe that by improving this work in the outlined
directions, we may have some of the key ingredients to select
(or even generate) diverse benchmarks for future IPCs.

Acknowledgments
Alberto Pozanco is funded by FEDER/Ministerio de Cien-
cia, Innovación y Universidades Agencia Estatal de Investi-

12

Figure 3: Hierarchical clustering of domains. The domains are represented in the y axis, while the x axis represents a measure
of error. Domains grouped first are the most similar. Domains grouped last, depicted at the bottom of the y axis, are the most
different.

gación/TIN2017-88476-C2-2-R and RTC-2016-5407-4.

References
Cenamor, I.; de la Rosa, T.; and Fernández, F. 2016. The
IBaCoP planning system: Instance-based configured portfo-
lios. J. Artif. Intell. Res. 56:657–691.
de la Rosa, T.; Cenamor, I.; and Fernández, F. 2017. Per-
formance modelling of planners from homogeneous prob-
lem sets. In Proceedings of the Twenty-Seventh Interna-
tional Conference on Automated Planning and Scheduling,
ICAPS 2017, Pittsburgh, Pennsylvania, USA, June 18-23,
2017., 425–433.
Fawcett, C.; Vallati, M.; Hutter, F.; Hoffmann, J.; Hoos,
H. H.; and Leyton-Brown, K. 2014. Improved features
for runtime prediction of domain-independent planners. In
Proceedings of the Twenty-Fourth International Confer-
ence on Automated Planning and Scheduling, ICAPS 2014,
Portsmouth, New Hampshire, USA, June 21-26, 2014.
Gebser, M.; Maratea, M.; and Ricca, F. 2017. The sixth
answer set programming competition. Journal of Artificial
Intelligence Research 60:41–95.
Helmert, M., and Domshlak, C. 2009. Landmarks, critical
paths and abstractions: What’s the difference anyway? In
Proceedings of the 19th International Conference on Auto-
mated Planning and Scheduling, ICAPS 2009, Thessaloniki,
Greece, September 19-23, 2009.
Helmert, M. 2004. A planning heuristic based on causal

graph analysis. In Proceedings of the Fourteenth Interna-
tional Conference on Automated Planning and Scheduling
(ICAPS 2004), June 3-7 2004, Whistler, British Columbia,
Canada, 161–170.
Helmert, M. 2006. The fast downward planning system. J.
Artif. Intell. Res. 26:191–246.
Helmert, M. 2009. Concise finite-domain representations
for PDDL planning tasks. Artif. Intell. 173(5-6):503–535.
Hoffmann, J., and Nebel, B. 2001. The FF planning system:
Fast plan generation through heuristic search. J. Artif. Intell.
Res. 14:253–302.
Hoffmann, J.; Edelkamp, S.; Thiébaux, S.; Englert, R.; dos
S. Liporace, F.; and Trüg, S. 2006. Engineering benchmarks
for planning: the domains used in the deterministic part of
IPC-4. J. Artif. Intell. Res. 26:453–541.
Howe, A. E., and Dahlman, E. 2002. A critical assessment
of benchmark comparison in planning. J. Artif. Intell. Res.
17:1–3.
Järvisalo, M.; Le Berre, D.; Roussel, O.; and Simon, L.
2012. The international SAT solver competitions. AI Maga-
zine 33(1):89–92.
Jonsson, P., and Bäckström, C. 1998. State-variable plan-
ning under structural restrictions: Algorithms and complex-
ity. Artif. Intell. 100(1-2):125–176.
Katz, M.; Hoffmann, J.; and Domshlak, C. 2013. Red-
black relaxed plan heuristics. In Proceedings of the Twenty-

13

Seventh AAAI Conference on Artificial Intelligence, July 14-
18, 2013, Bellevue, Washington, USA.
Linares López, C.; Celorrio, S. J.; and Olaya, A. G. 2015.
The deterministic part of the seventh international planning
competition. Artif. Intell. 223:82–119.
Nebel, B. 2000. On the compilability and expressive power
of propositional planning formalisms. J. Artif. Intell. Res.
12:271–315.
Roberts, M., and Howe, A. E. 2009. Learning from planner
performance. Artif. Intell. 173(5-6):536–561.
Roberts, M.; Howe, A. E.; Wilson, B.; and desJardins, M.
2008. What makes planners predictable? In Proceedings
of the Eighteenth International Conference on Automated
Planning and Scheduling, ICAPS 2008, Sydney, Australia,
September 14-18, 2008, 288–295.
Vallati, M., and Vaquero, T. 2015. Towards a protocol for
benchmark selection in IPC. In Proceedings of the 4th Work-
shop on the IPC.
Vallati, M.; Chrpa, L.; and McCluskey, T. L. 2018. What
you always wanted to know about the deterministic part of
the international planning competition (IPC) 2014 (but were
too afraid to ask). Knowledge Eng. Review 33:e3.

14

Cost-Optimal Planning in the IPC 2018:
Symbolic Search and Planning Pattern Databases vs. Portfolio Planning

Stefan Edelkamp and Ionut Moraru
King’s College London

{stefan.edelkamp,ionut.moraru}@kcl.ac.uk

Abstract

The optimal track is one the most exiting events in the Inter-
national Planning Competition (IPC).
In this position paper we argue that —despite of not winning
the competition— symbolic search and pattern databases
were likely the most influential planning approaches in the
latest IPC in 2018, and, in continuation to the precursor IPC
in 2014, should be considered as candidates for the current
state-of-the-art.
Five of the Top 6 planners in the 2018 competition, namely
Complementary (1 and 2), Planning-PDBs, Symbolic-Bi-
directional, and Scorpion are based on these technologies.
These planners use the same technology across all domains
and plan in one state space.
The winner of IPC 2018 with an ≈ 1% lead in problems being
solved, however, is a so-called portfolio planner, consisting of
a selection of many different planners, one of which is chosen
in a classifier that was trained on a manually selected set of
benchmark instances. In about half of its successful runs, it
called the winner of the previous IPC, which in turn is based
on symbolic search. We argue on whether or not to exclude
portfolios from the IPC is possible and wanted.

Introduction
Being inspired by the ultimate goal of general problem solv-
ing, in the field of action planning, there is a common under-
standing that planning competitions ran on a set of unknown
and partly new set of benchmark problems, advance plan-
ning technology the most.

Starting in 1998, over the years considerable progress has
been made in the development of new planners, due to com-
petitors being brave enough to face a coding contest with
an unknown benchmark set and with the obligation to offer
their source code. Competitors have been confronted with
an increasing set of challenges including extended expres-
siveness of planning domain description language (PDDL),
involved planning task metrics, in inherent problem com-
plexity, and in scaling problem sizes. While several tracks
were spawned, one is the deterministic part of the IPC, and
its track on cost-optimal planning.

The outcome of the optimal track in the most recent 2018
International Planning is revisited in Table 11. The corre-

1Readers interested in the planners listed are forwarded to the

sponding output on IPC 2014 has been provided and dis-
cussed by (Edelkamp, Kissmann, and Torralba 2015).

While most planners present one sole planning technol-
ogy, the winning planner Delfi (Sievers et al. 2019) is a port-
folio, a mixture of different technologies. Given a problem
task, it selects a planner based on a classifier, being trained
on a manually chosen set of known planning benchmark in-
stances. In its set of planners, 16 were contained as part of
the Fast Downward planning framework, including at least
one (Canonical PDB) that used pattern databases. The most
effective approach chosen by this classifier, however, was
the symbolic search planning system, which won the pre-
cursor 2014 IPC competition. Moreover, in the only domain,
where Delfi scored overall clear best, it called this planner.

From the mere planning side, in portfolios there is often
little that is novel, the contribution of these planners is often
found in the machine learning algorithm, which is trained
on a set of known planning problems and which eventually
selects the planner configuration to call. In Delfi one plan-
ner is called per instance. In terms of the potential of differ-
ent planning approaches available to Delfi, the IPC outcome
with a lead of two more being solved (≈ 1% of 200 bench-
mark problems) is quite small, showing that cost-optimal
planning is tough, even for portfolios. A change in one do-
main would have resulted a different outcome.

While portfolio planning was in alignment with the rules
of the competition, one underlying issue is some participat-
ing planners avoided using portfolio technology, presumably
in favour of getting a clearer picture on what technology is
currently leading. They seemed to prefer working on new
plan search technologies, instead of going in for a mixture
of existing planners.

Facing the outcome of the competition and the different
type of contributions available in portfolio and non-portfolio
planners, people interested in planning especially outside to
the core planning community have to be warned not to derive
wrong scientific conclusions by only looking at the outcome.
Competition results always have to be dealt with care.

This position paper aims to provide a clearer picture on
what is the currently leading technology according to IPC
2018 and discusses on whether or not a portfolios help to
push or blur the outcome of a competition. The stress of this

according planner abstracts found in the IPC 2018 competition
booklet at https://ipc2018-classical.bitbucket.io/planners

15

Agri- Cal Data Net Nuri- Organic Petri Net Sett-
cola dera Network kabe Synthesis Alignment lers Snake Spider Termes Σ

Delfi1 12 13 13 12 13 20 9 11 11 12 126
Complementary2 6 12 12 12 13 18 9 14 12 16 124
Complementary1 10 11 14 13 13 17 8 11 11 16 124
Planning-PDBs 6 12 14 11 13 18 8 13 11 16 122

SymbBiDir 15 10 13 11 13 19 8 4 7 18 118
Scorpion 2 12 14 13 13 0 10 14 17 14 109

Delfi2 11 11 13 11 13 9 8 7 7 15 105
FDMS2 14 12 9 12 13 2 8 11 11 12 104
FDMS1 9 12 10 12 13 2 9 11 11 12 101
DecStar 0 8 14 11 14 8 8 11 13 12 99
Metis1 0 13 12 12 14 9 9 7 11 6 93
MSP 7 8 13 8 12 10 0 11 6 16 91

Metis2 0 15 12 12 14 9 0 7 12 6 87
ExplBlind 0 8 7 11 10 7 8 12 11 10 84
Symple-2 1 8 9 7 13 2 0 0 5 13 58
Symple-1 0 8 9 8 13 2 0 0 4 13 57
maplan-2 2 2 9 0 6 0 0 14 1 12 46
maplan-1 0 2 12 0 6 0 0 7 10 6 43

Table 1: IPC 2018 results, measured in the coverage of benchmark problems, i.e, in the number of tasks solved per domains.

paper, therefore, is to argue that, while not winning the com-
petition because of portfolio planning, the two technologies
of BDD-based symbolic search planning (Edelkamp and
Helmert 2001) and planning pattern databases (Edelkamp
2001) first joint up by (Edelkamp 2005) seemingly domi-
nated the overall outcome competition.

Symbolic Search and Pattern Databases
The IPC 2018 planner Symbolic-Bidirectional (SymbBiDir)
was suggested by the authors and accepted by the organiz-
ers as a baseline planning technology. It includes no lower
bound at all and, thus, relies on so-called blind search, i.e., a
search with no heuristic search guidance. As actions carry
cost, instead of a breadth-first exploration this induces a
cost-first traversal of the state-space graph.

In symbolic planning, the core difference to explicit-
state space planning is the use of binary decision dia-
grams (BDDs) to represent state sets in the search com-
pactly (Bryant 1986). As actions can also be represented in
form of BDDs encoding the transition relation, it is possi-
ble to progress and regress planning state in this succinct
functional state set representation to perform forward and
backward exploration in an operation called relational prod-
uct (Clarke et al. 1996). A first A*-type algorithm for BDD-
based heuristic search has been proposed by (Edelkamp and
Reffel 1998).

One obsevation is that memory savings obtained via the
compact representation in a BDD in turn often also lead to
significant savings in CPU time. The gain of a symbolic rep-
resentation in IPC 2018 is amplified, when comparing the
performance gap of SymBiDir with the other baseline plan-
ner ExplicitBlind. As the names indicate, the two baseline
planners are not executing the same exploration, due to the
fact that coding regression search is not immediate for the
usually given partial goal representation; so that the latter

conducts a forward state-space traversal only.
To the contrary, SymBiDir executes bidirectional cost-

based search, much in the sense of bidirectional application
of Dijkstra’s single-source shortest path algorithms (Dijk-
stra 1959), taking care of the fact that the optimal solution
might not be established on the first meeting of both search
frontiers. As the BDDs represent state sets, recursive so-
lution construction is needed for extracting optimal plans.
Aspects like a partitioned computation of successors (called
the image), variable ordering based, as well as the inclusion
invariant constraints to rule out illegal and dead-end states
turn out to be crucial factors to improve the exploration effi-
ciency (Torralba et al. 2017).

The performance results of SymBiDir revealed, that in
only two of the ten domains (Snake, Spider) is was not do-
ing well, otherwise the baseline planner would have won
the competition! This indicates the power of symbolic state
space representation and exploration, and suggests that at
least across the entire IPC 2018 benchmark set, the vast
amount of refined heuristics for planning do not always lead
to a throughout leading technology.

According to the result of the 2018 competition, planning
pattern databases (PDBs) (Edelkamp 2001) appears to be
one of the few exceptions. On the testbet of IPC 2018 the
combination of PDBs and symbolic search in the planners
Complementary (1/2) and Planning-PDB are outperforming
Symbolic Bidirectional Search. The former two are inspired
by results of (Franco et al. 2017), while the latter improves
on bin packing algorithms for the pattern selection problem.
Besides a major rewrite, one new feature of these new plan-
ners is that the forward search is in fact explicit-state, while
only the backward traversal is symbolic.

Of course, many heuristics besides PDBs are still worth
further investigation. For the case if Snake and Spider were
removed, it is difficult to draw a conclusion on different

16

types of heuristics from the IPC-18 results.
There is no free lunch. But the overall performance of

bidirectional symbolic search is surprisingly good, while
not using any heuristic. Whether the aspect of bidirectional
or the symbolic search contributes the most to this perfor-
mance, we haven’t checked, but we expect one would need
both.

SymbBidir performs much better in Agricola than the
other planners. Using a PDB heuristics seems to hurt sym-
bolic search and fails in 5 to 9 instances where SymbBiDir
succeeds. Some of these problems have been identified and
overcome by using perimeter pattern databases (Felner and
Ofek 2007).

About the bad performance in Spider and Snake there are
reasons on why the BDD explode, which relate to the subtle
ordering problem of dependent BDD variables in grids, This
issue has been analyzed and proven to be crucial for repre-
senting the goal to ConnectFour as a BDD (Edelkamp and
Kissmann 2011), and might be detected fully automatically.

Recall, that planning pattern databases are serving as
heuristics and are based on a complete backward exploration
in some state-space abstraction. Often a larger number of
(hopefully) diverse and complementary patterns are gener-
ated and the corresponding databases sought to be combined
in an admissible manner to preserve being a lower bound.

While Scorpion is partly a PDB planner performing
slightly worse to SymbBiDir in IPC 2018, it showed dis-
tinguished performance and scored best in 5 out of 10 do-
mains. Further investigations illustrate that it is performing
much better across all IPC benchmarks, i.e., ones includ-
ing the ones from previous competitions (Seipp and Helmert
2018; 2019). It also has to be added that part of the suc-
cess of Scorpion is due to Cartesian abstractions combined
with a counterexample abstraction refinement (CEGAR) ap-
proach (Clarke et al. 2000).

As both heuristics are based on state space abstractions,
one may view PDB and Cartesian abstraction heuristics as
being related estimates of a similar type. While PDBs and
Cartesian abstractions are an important part of Scorpion,
much of its strength is in the sophisticated method to com-
bine these abstraction heuristics. While the competing BDD
based PDB planners mainly use 0/1 cost partitioning a more
advanced concept saturated cost-partitioning.

When normalizing the success alongside the domains
(some have 150 instances), Scorpion compares well with the
top-tier symbolic planning systems: 0.621 (Complementary
2), 0.601 (Scorpion), 0.594 (Planning PDBs), 0.576 (Com-
plementary 1), 0.555 (SymBiDir). Using Delfi in this com-
parison hardly applies, as for this case the training set over-
laps the test set.

Again, all or most planners, even the ones that were not
at the top, had some positive results (e.g. being among the
planners that solve most instances in some individual do-
mains). Even planners at the bottom have some cases where
they perform among the best (e.g. ma-plan in Snake).

Portfolio Planning
Portfolios erected on existing plan technology, are a recur-
ring pattern in many competitions, and range from restarting

strategies, over learning classifiers, to scheduling time slices
to existing planners.

Once having fixed the metric and submission instructions,
the IPC 2018 organizers felt that they had to follow them.
If a planner wins by the metric they decided on before, the
competition and the organizers didn’t crown it the winner,
the teams would rightfully complain.

The coverage metric of problems being solved seemed not
to be the issue, so one thing the organizers could have done,
would have been to change the rules for submissions. They
explained that they had an internal discussion about portfo-
lios early on in the course of running the competition, but
decided that the line between a planner with multiple com-
ponents and a portfolio was too blurry to accurately define.
That is why they decided to not have a special rule against
portfolios. As one reason given, the LAMA system (Richter
and Westphal 2010), one previous IPC winner, might have to
be considered a portfolio, because it runs different planners
one after the other.

In terms of the organizers of the competition is difficult to
set rules that identify portfolios to give them a special treat-
ment, because either they’d be too restrictive and most plan-
ners of the competition would be considered portfolios, or
they would be too ambiguous, generating complains about
what planners are considered to be portfolios. This said,
there are certainly many interesting aspects to be learned
from portfolios on a per-domain or even per-instance base.
Proper portfolio designs with a close-to-optimal choice of
planners as in Delfi is a research area on its own.

One way to limit the impact of portfolios in the competi-
tion is what Mauro and others have suggested for the Sparkle
planning competition2, where planners are evaluated based
on how well they do on individual instances/domains, rather
than on getting a good average score. However, this sugges-
tion comes with some issues as well. In particular, the score
of a planner completely depends on which other planners
are submitted to the competition. Henceforth, if someone
submits a version of your planner that works only slightly
better, he could get 0 points. One has to wait for the re-
sults to see how the approach materializes. Unfortunately,
the organizers of this competition are only running the ag-
ile track, without insisting on cost-optimal plans. In com-
plexity terms, however, optimality is known to be of crucial
importance. For example, finding any plan for many plan-
ning benchmarks (such as Blocksworld, Logistics, Sliding-
Tile Puzzle) is polynomial. In this case of satisficing plan-
ning where only plan existence is requested problem tend to
be tractable, while the corresponding optimization are often
provably hard (Slaney and Thiébaux 2001; Parberry 2015;
Helmert 2008).

The emerging set of portfolio and the difficulty of exclud-
ing them may be seen as a side effect of the requirement of
releasing source code for the planners, as it becomes easier
to bundle the planners into one code base. Of course public
access to the source code is not a strict necessity for these
type of planners.

For some planning researchers, the core issue and concern

2http://ada.liacs.nl/events/sparkle-planning-19

17

of portfolio planning is that other researchers use their code,
and not so much that the participating planner is a portfolio.
So the organizers thought about having had a rule against
using code from another research groups. That would have
excluded most planners based on Fast Downward planner
framework, though, and since they were the majority of the
submissions, this would not have been a good idea as well.

The solution Fahiem Bacchus suggested (in personal con-
versation with the authors) based on his own experience with
portfolios in the SAT competitions, is having stated a license
that prohibits the use of the code in other tools, would be an
option, but then the authors of the planners would have to do
so before the competition. In case of planners based on Fast
Downward, this, however, is also problematic because such
a clause would be hardly compatible with the license of the
framework.

While intuitively rather obvious, it is far from simple to
distinguish portfolio from non-portfolio planner in a formal
definition. One may try to start with the following criteria.

A planner portfolio selects, invokes, and possibly ter-
minates different existing planners, based on a trained
or hard-coded decision procedure.

This definition may not be a perfect discriminator, as one
might be able to transform a portfolio into a non-portfolio
without changing the performance by much: just moving the
decision procedure further down the line.

It does also not cover a planner that uses the maximum
of ten heuristics in an A* search. Some people would like
to treat this as a portfolio, because there is no contribution
except for the selection procedure of the ten heuristics. At
the end, the question remains on when a planner is a novel
contribution.

Another suggested definition for identifying portfolio
planning is the following.

A non-portfolio planner is a single core planning tech-
nology, which invokes a plan search in one state space.

But what is with traversing state-space abstractions,
which are needed to compute heuristic estimates? Clearly, as
highlighted by the IPC organizers, defining portfolios turns
out to be intrinsically difficult. There are planners that are
clearly portfolios, there are planners that are clearly not, and
there is a larger gray area in between.

According to a definition, FF (Hoffmann and Nebel 2001)
should not be judged as a portfolio planner. It searches
one state space with one heuristic. But FF switches from
enforced hill-climbing to best-first search, based on some
progress measure. This alone should not classify it as a port-
folio approach.

LAMA runs a greedy search based on hFF and a land-
mark heuristic (three techniques developed by different au-
thors) and then several weighted A* searches (a different
planner and an algorithm also developed by other authors).
LAMA may or may not be seen as a portfolio. If it runs
three independent searches in parallel, then this may be in-
terpreted as a portfolio technology, but the interconnection
of the search is more subtle. LAMA had additional algorith-
mic contributions on how to move back and forth the states

in the different priority queues. If LAMA continues search-
ing the same search space, this is a sign of a non-portfolio.
At least it does not start different existing planner.

It is, however, abundantly clear that Delfi is a portfolio
planner (not even the authors questions that). It even logs its
task-dependent calls to the planner binaries. Delfi actually
uses 2 executables, SymBA*, and 16 parameters of selecting
planners in the Fast Downward framework. It has a decision
procedure trained on a set of manual selected planning tasks.
Note that in this setting, we do not count the learning as
running, but as programming time.

The performance overhead of portfolio designs can be
small. The often criticized effect is that frequently more than
99.9% of the actual running time of a portfolio planner is
exclusively spend on existing technology. This is a probably
unwanted aspect, which can makes other competitors that
contribute non-portfolio planners wondering and reluctant
to tune their planners for efficiency. Of course, the size of
a contribution must not necessarily be taken in direct corre-
spondence to the profiled time that was spend in running the
code added.

By public access to the planners at IPC 2018, one can look
at the source code of the contributed planner to validate, on
whether or not a planner is in fact a portfolio.

Fast Downward’s code base has grown too big, there are
pros and cons to that. On the pro side the planner suite is
good for benchmarking. For the symbolic search engines in
IPC 2018, it was better to use it to combine explicit with
symbolic search than sticking to an independent technology
in Gamer. In fact, there are myriads of parameters that make
Fast Downward behave totally different. Fast Downward is
no longer one planner, it is a framework. On the cons side,
results on mixing different calls it may blur the messages
you to take home.

There were at least two different portfolio planners in IPC
2018: Delfi1 and Delfi2, where Delfi1 was so much better,
so that in the following we concentrate on this one, and used
Delfi for its shortcut notation. There is published work of
the planner authors in the IPC booklet that explain the ar-
chitecture and the machine learning approach of using deep
neural nets in more detail, so that we concentrate on the main
aspects. The main idea is to train a classifier on the perfor-
mance curves of known planning benchmark problems, pro-
vided as input images. We had some problems to reproduce
the results on our machine, but could look at the competition
results. The planners being invoked by Delfi in the IPC 2018
are shown in Table 2. Note that Delfi combines the heuristics
listed with symmetry and partial-order reduction.

The story on portfolios will go on. Portfolios have already
started integrating the systems from 2018. Essentially, even
when pushing the field with new and brilliant ideas, one
hardly can win the race against a portfolio, at least in general
terms.

While portfolios have dominated some tracks in the IPC
(the satisficing track, for example) in the optimal track, the
winner of IPC 2014 was not a portfolio. As seen in IPC 2018,
there were several planners that got a very close performance
to Delfi. Also, some other portfolios participated. Delfi2 and
other portfolios (MSP and DecStar could be considered port-

18

Approach Used Successfully
SymBA* 110 73
LM cut 64 37

Merge&Shrink 47 20
Canonical PDB 17 13

Blind search 2 2
Total 240 147

Table 2: Planners chosen by the Portfolio Delfi1 based on
analysing the log files of IPC 2018. Only main planner tech-
nologies are mentioned, many more parameters apply to the
actual invocation of the code. Note that the number of prob-
lems being solved is slightly higher than in the competition
outcome, as there were some reformulations of the same
problem, where the planner was run, too.

folios as well) were behind many non-portfolio planners.
Overall, the results do not show dominance of portfolio plan-
ners in general.

What is worse, with winning of the IPC in the pocket,
portfolio planners help to acquire project money and to pub-
lish in high-ranked journals and conference proceedings,
where non-portfolio planners often have a harder time ar-
guing that they are carrying the actual contribution in tech-
nology, as especially in research, a second place is often not
considered state-of-the-art.

Instead of arguing, whether portfolios should participate
or not, we should discuss about how people interpret the re-
sults of the IPC and how an analysis that goes beyond Plan-
ner X is the winner is absolutely necessary. Even planners
that are not at the top show that there are domains where
they can be really useful. We view this position paper as one
step towards this end.

About credits. For a scientific paper it is rather clear that
one has to become a co-author, if one contributes substan-
tially to the outcome. With portfolios this is slightly differ-
ent. In the extreme case, it may happen tbat the one coder
contributes and the other one coder using portfolio technol-
ogy take the credits for the efficiencies of the work.

Of course we wouldn’t ask Hart, Nilsson and Raphael to
be co-authors of every forward-search planning paper using
A* but we would still cite their work (Hart, Nilsson, and
Raphael 1972). Probably the same is true for portfolio plan-
ners: they should give credit, where it is due (and the planner
abstracts do this).

No question, portfolios also have their own contribution.
The contribution in a portfolio planner is the combination of
techniques, e.g., how much better is this combination than
just running all n components for 1 n-th of the time.

In this respect the competition booklet helps a lot as it
links the IPC planners to the outside people, but one the
other hand, in the scientific race a booklet is no archival
publication is rarely counted as a success. This is what one
may ask for a portfolio, to be explicit on which planner call
achieves which individual performance, and not to bury this
information in a lot of other stuff, e.g., on how advanced the
machine learning (e.g., deep neural network training) is.

We often insist on a proper publication before the release

of the code, but this also does not work for competitions like
IPC 2018. The problem is essential, as with the competition
the coders provide all source to the public, so we should take
more care on who contributes what.

If an outside contribution is dominating the own one con-
sider asking the authors. Sometimes you cite and acknowl-
edge, sometimes you feel this is authorship. For the IPC, we
see people taking code, shake it a bit to improve the results
slightly, and go on publishing.

Whether or not portfolio planners being trained on sample
plans are domain-independent, is also a controversy, espe-
cially given that training plan samples selected by hand. Ex-
tremist think they are not, but other people may think differ-
ently. Surely portfolio planners belong to the learning track.
Of course, organizers were quite happy to have that many
competitors, and for us it was a tremendous success to see
how good our planners performs, even when facing portfo-
lios. We enjoyed to see how hard it is to get some good result
in cost-optimal by machine learning.

Conclusion
This position paper aims at arguing on what is the cur-
rently leading technology and discusses whether or not
portfolios help to push or blur the outcome of a com-
petition. There is indication but not one definite conclu-
sion alias strong proposal along this paper on how to deal
with the given observations, the main purpose of the pa-
per is look behind the scenes and to spawn a discussion.
Such discussions have tradition in the IPC. We had a dis-
cussion on domain-independence at the emerge of control
rules in TL- and TAL-Plan (Bacchus and Kabanza 2000;
Kvarnström and Magnusson 2003), we also had a discussion
on the effect of hand-coded selection in planners like SG-
Plan (Wah and Chen 2004), with complaints on hand-written
domain-dependent branching inside the planners’ code. In-
terestingly, the one who complains most about the current
IPC organizes the next IPC. Now in 2018 the topic is port-
folio planning and the problem of identifying and securing
individual planner contributions.

The international planning competition 2018 pushed the
field in action planning, set up and executed a well-designed
externally controlled experiment, aimed at insights about the
true performance of planners, falsified and strengthened hy-
potheses on essential components, compared different tech-
nologies on a common rule set, same architecture, and an
agreed input formalism. It awarded scientific prizes and pro-
vided opportunities for upcoming publications. The evalua-
tion is much better than what one experiences in conference
and journal papers. The results are often surprising, when
compared to the wisdom taken from existing publications.
Of course, every competition is limited in what it can prove,
but its scientific impact is not to be underestimated.

This paper discusses two separate claims: 1) An analy-
sis of the result of the optimal track, claiming that symbolic
search and PDBs are leading methods for cost-optimal plan-
ning. 2) The advantages and disadvantages of considering
portfolios as part of the IPC.

The IPC has always been a competition where the best
mix of scientific and engineering skill wins. It has never

19

been just one good idea that won the competition, but also
the skill to implement it efficiently, and even before port-
folios there was a chance that the better software developer
outperforms the better researcher, possibly even with some-
thing that would never be published.

In this case most arguments are made only about IPC 2018
(Delfi vs Complementary/PlanningPDBs). The discussion of
what is the place of portfolios in the IPC and other competi-
tions tracks and events is of course a a general one.

What to do? In a competition it is always good to refer to
a wider set of planners, but fundamental differences should
be highlighted and could have been put into the awarding
considerations. It is fine to have portfolios inside the com-
petition, but they should at least be tagged as such, given a
portfolio is a different type of planner, and, otherwise, wrong
conclusions might be drawn from the event. Otherwise, the
competition is doomed to swallow its own core contributors.
The risk is that these efforts will die out.

Considering on how many different planning heuristics
have been suggested in the past, given that places two to
six are symbolic search and planning pattern database plan-
ners only, and that the winner of IPC 2018 called a symbolic
search planner half of its time is a striking fact. We are not
aware of any technology that performs better especially on
the 2018 IPC benchmark set. Given fluctuations in the re-
sults many planners are playing in the same ballpark.

Recent improvements and simplifications indicate that
one can lift the results of symbolic pattern database planning
towards winning the IPC 2018 competition post mortem.

While portfolios usually dominate non-optimal IPC
tracks, it is indeed a tighter race in the cost-optimal track.
Optimal planning seems to be a tough nut to crack for port-
folios given the limits in time and space, even when hav-
ing a bigger toolbox. Portfolios can take on novel contribu-
tion for free and quite quickly. The advance one to put on
top from event to event is counterbalanced with using many
planners at once. Whether such an advance is always possi-
ble, is a subject projection. But at least it may be argued that
it appears that it might be exhausting for the competitors
with non-portfolio planners to come up with novel, original
and breakthrough technology at every new IPC and compete
with the portfolios of the last one.

Acknowledgement Programming is a serious art and
comes with a lot of fun. The IPC 2018 is a programming
contest that allowed all competitors to impress with stunning
and outstanding performance results on yet unseen complex,
and diverse problem domains. We thank all competitors for
the variety of new planning approaches, advancing the state-
of-the-art in many respects. The organizers of the IPC 2018
did a great job, both with the choice/design of the bench-
mark domains and for running the competition. Eventually,
they had to decide on the winner according to the rules set.

References
Bacchus, F., and Kabanza, F. 2000. Using temporal logics to
express search control knowledge for planning. Artif. Intell.
116(1-2):123–191.

Bryant, R. E. 1986. Graph-based algorithms for boolean
function manipulation. IEEE Trans. Computers 35(8):677–
691.
Clarke, E. M.; McMillan, K. L.; Campos, S. V. A.; and
Hartonas-Garmhausen, V. 1996. Symbolic model checking.
In Computer Aided Verification, 8th International Confer-
ence, CAV ’96, New Brunswick, NJ, USA, July 31 - August
3, 1996, Proceedings, 419–427.
Clarke, E. M.; Grumberg, O.; Jha, S.; Lu, Y.; and Veith,
H. 2000. Counterexample-guided abstraction refinement.
In Computer Aided Verification, 12th International Confer-
ence, CAV 2000, Chicago, IL, USA, July 15-19, 2000, Pro-
ceedings, 154–169.
Dijkstra, E. W. 1959. A note on two problems in connexion
with graphs. Numerische Mathematik 1:269–271.
Edelkamp, S., and Helmert, M. 2001. MIPS: the
model-checking integrated planning system. AI Magazine
22(3):67–72.
Edelkamp, S., and Kissmann, P. 2011. On the complexity of
BDDs for state space search: A case study in Connect Four.
In Proceedings of the Twenty-Fifth AAAI Conference on Ar-
tificial Intelligence, AAAI 2011, San Francisco, California,
USA, August 7-11, 2011.
Edelkamp, S., and Reffel, F. 1998. OBDDs in heuristic
search. In KI-98: Advances in Artificial Intelligence, 22nd
Annual German Conference on Artificial Intelligence, Bre-
men, Germany, September 15-17, 1998, Proceedings, 81–
92.
Edelkamp, S.; Kissmann, P.; and Torralba, Á. 2015. BDDs
strike back (in AI planning). In Proceedings of the Twenty-
Ninth AAAI Conference on Artificial Intelligence, January
25-30, 2015, Austin, Texas, USA., 4320–4321.
Edelkamp, S. 2001. Planning with pattern databases. In
European Conference on Planning (ECP).
Edelkamp, S. 2005. External symbolic heuristic search with
pattern databases. In Proceedings of the Fifteenth Interna-
tional Conference on Automated Planning and Scheduling
(ICAPS 2005), June 5-10 2005, Monterey, California, USA,
51–60.
Felner, A., and Ofek, N. 2007. Combining perimeter search
and pattern database abstractions. In Abstraction, Refor-
mulation, and Approximation, 7th International Symposium,
SARA 2007, Whistler, Canada, July 18-21, 2007, Proceed-
ings, 155–168.

Franco, S.; Torralba, Á.; Lelis, L. H. S.; and Barley, M.
2017. On creating complementary pattern databases. In Pro-
ceedings of the Twenty-Sixth International Joint Conference
on Artificial Intelligence, IJCAI 2017, Melbourne, Australia,
August 19-25, 2017, 4302–4309.
Hart, P. E.; Nilsson, N. J.; and Raphael, B. 1972. Correction
to ”a formal basis for the heuristic determination of mini-
mum cost paths”. SIGART Newsletter 37:28–29.
Helmert, M. 2008. Understanding Planning Tasks: Domain
Complexity and Heuristic Decomposition, volume 4929 of
Lecture Notes in Computer Science. Springer.

20

Hoffmann, J., and Nebel, B. 2001. The FF planning system:
Fast plan generation through heuristic search. J. Artif. Intell.
Res. 14:253–302.
Kvarnström, J., and Magnusson, M. 2003. TALplanner in
the third international planning competition: Extensions and
control rules. J. Artif. Intell. Res. 20:343–377.

Parberry, I. 2015. Solving the (n2 - 1)-puzzle with 8/3 n3
expected moves. Algorithms 8(3):459–465.
Richter, S., and Westphal, M. 2010. The LAMA planner:
Guiding cost-based anytime planning with landmarks. J. Ar-
tif. Intell. Res. 39:127–177.
Seipp, J., and Helmert, M. 2018. Counterexample-guided
cartesian abstraction refinement for classical planning. Jour-
nal of Artificial Intelligence Research (62):535–577.
Seipp, J., and Helmert, M. 2019. Subset-saturated cost parti-
tioning for optimal classical planning. In International Con-
ference on Automated Planning and Scheduling (ICAPS).
Sievers, S.; Katz, M.; Sohrabi, S.; Samulowitz, H.; and Fer-
ber, P. 2019. Deep learning for cost-optimal planning: Task-
dependent planner selection. In Proceedings of the 33rd
AAAI Conference on Artificial Intelligence (AAAI).
Slaney, J. K., and Thiébaux, S. 2001. Blocks world revisited.
Artif. Intell. 125(1-2):119–153.
Torralba, Á.; Alcázar, V.; Kissmann, P.; and Edelkamp, S.
2017. Efficient symbolic search for cost-optimal planning.
Artif. Intell. 242:52–79.
Wah, B. W., and Chen, Y. 2004. Subgoal partitioning
and global search for solving temporal planning problems
in mixed space. International Journal on Artificial Intelli-
gence Tools 13(4):767–790.

21

Performance Robustness of AI Planners
to Changes in Software Environment

Chris Fawcett
University of British Columbia

fawcettc@cs.ubc.ca

Mauro Vallati
University of Huddersfield

m.vallati@hud.ac.uk

Alfonso E. Gerevini
Università degli Studi di Brescia

alfonso.gerevini@unibs.it

Holger H. Hoos
University of Leiden

hh@liacs.nl

Abstract

Solver competitions have been used in many areas of AI to
assess the current state of the art, and to guide future research
and real-world applications. AI planning is no exception, and
the International Planning Competition (IPC) has been fre-
quently run for nearly two decades. Due to the organizational
and computational burden involved with running these com-
petitions, solvers are generally compared using a single ho-
mogeneous software environment for all competitors.
In this work, we use the competing planners and benchmark
instance sets from the 2014 IPC Agile and Optimal tracks to
investigate two questions. First, how is planner performance
affected by the specific choice of software environment? Sec-
ond, is it a good strategy to run planners with more recent
versions of their software dependencies, in order to maximise
performance? By running these competition tracks on eight
distinct software environments, we show that planner perfor-
mance varies significantly based on the chosen software en-
vironment, that the magnitude of this variation differs consid-
erably between planners, and that using more recent software
versions is not always beneficial.

Introduction
Automated Planning has been studied extensively for several
decades, resulting in automated planners being deployed in
a variety of real-world applications. Part of the considerable
progress in developing powerful domain-independent plan-
ners can be ascribed to the International Planning Competi-
tions (IPCs). Competitions play an important role in many
areas of AI, helping to drive forward research and devel-
opment of solvers for prominent problems, as well as in-
centivising the development and distribution of related tools
and benchmarks. Competitions also play a prominent role in
assessing and improving the state of the art in solving chal-
lenging AI problems, such as planning.

While all of the planning systems participating in the IPC
are available to be used after the competition, top-ranked
planners receive much of the attention and often have con-
siderable long-term impact on research as well as on real-
world applications. For this to make sense, we need to as-
sume that, at least from a qualitative point of view, con-
clusions derived from competition results generalise well to
other – even significantly different – hardware and software
environments than those used for running the competition. It
is well-known that competition results are already strongly

affected by the set of benchmark instances and the evalua-
tion function used to assess planner performance, as well as
by the way in which benchmarks are described, and by the
set of competitors (Howe and Dahlman 2002; Long and Fox
2003; Hoffmann and Edelkamp 2005; Gerevini et al. 2009;
Linares López, Celorrio, and Olaya 2015a; Vallati and Va-
quero 2015). It also comes as no surprise that results are
strongly affected by resource bounds – in particular, the run-
ning time cutoff and the amount of RAM available to the
planner. Moreover, an analysis performed on the SAT com-
petition showed that ranks of solvers are also affected by
pseudo-random number seeds used in runs of randomised
solvers (Hurley and O’Sullivan 2015).

Interestingly, a previous investigation performed by Howe
and Dahlman (2002) showed that the relative (qualitative)
performance of planners can vary, among other factors, also
when run using different hardware environment configura-
tions. However, as their work focused on identifying poten-
tial sources of performance variation, their analysis concen-
trated on assessing differences between two different ma-
chines having the same software environment configuration.

In this work, we present an investigation into the impact
of software environment choices on competition outcomes.
Our experimental analysis involves eight different software
configurations, including the choice of C/C++ compiler ver-
sion, Python interpreter version and Java version. We at-
tempt to identify aspects that have unequal impact on plan-
ner performance, in order to emphasise those aspects that
have to be carefully considered when interpreting competi-
tion results.

When dealing with such software configuration choices, a
question naturally arises:

Is it better to use the latest available versions of software
environment components such as compilers or interpreters,
or stick to the specific environment used during the IPC?

To help address questions such as this, we investigate the
performance variation of planners that took part in two de-
terministic tracks of the 2014 International Planning Com-
petition: the Optimal and Agile tracks. The Optimal track
is one of the longest-standing tracks in the IPC series, with
many participating planners and substantial impact on the
field of AI planning. While the Agile track was new for IPC
2014, its emphasis on planner running time and low resource
requirements made it ideally suited for our analysis.

Our results show that competition rankings are strongly

22

affected by the software environment. For a more extensive
analysis, which shows also the impact of different hardware
configurations on planners, the interested reader is referred
to (Bocchese et al. 2018).

Sources of Performance Variation
In this work, given the lack of analysis in the literature, we
focus on the impact of software environment on planners’
performance. However, there are many possible sources of
performance variation that can affect empirical performance
analyses and competition outcomes. Here, we briefly survey
some of the most important of these sources of variation.
Planner randomization. Many planners take advantage of
randomization to improve average-case performance and to
avoid manual deterministic development choices. This ran-
domization can result in very different planner trajectories
in repeated runs with different random seeds, with a cor-
respondingly wide variation in the resulting performance
(Hurley and O’Sullivan 2015).
Running time and memory. Generally, increasing the run-
ning time or memory allocated to a planning system will re-
sult in more problem instances solved. However, this perfor-
mance improvement will not be uniform across planners; for
example, planners that perform extensive precomputation or
use pattern databases tend to benefit more from increased
memory limits (Linares López, Celorrio, and Olaya 2015b).
Hardware environment. It is clear that hardware choices,
such as CPU type and speed, can affect planner perfor-
mance, and it is known that planners are affected to vary-
ing degree by such differences in hardware environment
(Howe and Dahlman 2002). Other aspects of the hardware
environment that can have significant impact on planner
performance include CPU cache, memory bandwidth, local
storage medium, general-purpose graphics processing units
(GPGPU) and network fabric.
Software environment. There are many aspects of the soft-
ware environment configuration that can affect planner per-
formance. These choices include the operating system and
version, versions and compilation of system libraries (e.g.,
LIBC), as well as the version, linking, and compiler used for
building all further software components required by a given
planning system.
Benchmark instances. The instances used for evaluating
planning systems should be challenging and need to allow
for performance differences between planners to be iden-
tified. While it is clear that the use of different bench-
marks can lead to very different results, we note that plan-
ning instances are often created using randomised genera-
tors, where a few parameters define the size and the diffi-
culty of the resulting instances. The choice of problem in-
stance domains, generator settings, as well as instance set
size and distribution will all have an effect on planner per-
formance (Howe and Dahlman 2002). Furthermore, also the
order in which elements are listed in benchmarks has strong
influence on planner performance (Vallati et al. 2015b;
Vallati and Serina 2018).
Ranking mechanism. The metric used to assess planner
performance (running time, instance set coverage, solution
quality) and the techniques for aggregating performance

GCC Python JVM

gpj 4.7.2 2.7.3 1.7
Gpj 4.8.2 2.7.3 1.7
gPj 4.7.2 2.7.10 1.7
GPj 4.8.2 2.7.10 1.7
gpJ 4.7.2 2.7.3 1.8
GpJ 4.8.2 2.7.3 1.8
gPJ 4.7.2 2.7.10 1.8
GPJ 4.8.2 2.7.10 1.8

Table 1: The 8 software configurations considered in this in-
vestigation. Lowercase and uppercase are used to distinguish
the “base” and “newer” configurations of each component.

across a given set of benchmark instances affect the out-
come of empirical performance evaluations and competi-
tions. Some competitions use an absolute scoring mecha-
nism (such as mean running time), while others (such as
earlier editions of the IPC) use relative scoring mecha-
nisms, where the performance score of a planner is poten-
tially affected by the performance of its competitors. The
performance of a given planning system in relation to oth-
ers can vary considerably depending on the ranking mech-
anism used (Linares López, Celorrio, and Olaya 2015b;
Vallati, Chrpa, and McCluskey 2018).

Methodology
For our experimental analysis of the impact of the software
environment on planner performance, we chose two sequen-
tial, deterministic tracks of the 2014 International Planning
Competition (IPC): the Agile (15 participants) and Optimal
(17 participants) tracks. These two tracks provide a very in-
teresting test-bed, as they rank competitors using nearly op-
posite metrics. The competing planners are therefore likely
to exploit significantly different approaches and techniques.
In the Optimal track, planner running time is of limited im-
portance: planners are assessed according to their ability to
generate optimal solution plans within a given (large) cut-
off time. In the Agile track, on the other hand, the quality of
solutions is irrelevant, as planners are ranked according to
their ability to quickly find a solution.

We chose to investigate three major software components
in our analysis: GCC compiler version, Python interpreter
version, and Java version. Nearly every planner which took
part in IPC 2014 was entirely or partially reliant on compo-
nents compiled with GCC, and different compiler versions
are very likely to produce different executables even when
identical command-line options are used. We selected GCC
versions 4.7.2 and 4.8.2 as the two configuration options,
since 4.7.2 was that used in the competition and several of
the planners did not successfully compile with GCC ver-
sions more recent than 4.8.2.

Python and Java were by far the next most common soft-
ware dependencies for the planners we considered. We se-
lected Python 2.7.3 and Oracle Java 1.7.0 45, the versions
used in IPC-2014, as well as Python 2.7.10 and Oracle Java
1.8.0 65, the most recent versions at the time of our experi-
ments under which planners would run successfully.

The combination of these choices resulted in 8 poten-

23

tial software configurations, all of which were used in this
work. Table 1 details each of the 8 configurations consid-
ered. For conciseness, each configuration will be referred to
using one letter for each component: g for the GCC version,
p for the Python version, and j for the Java virtual machine
version. Since we consider two versions of each component,
we use lowercase for indicating the base version, and upper-
case when referring to the more recent version of the given
component. Therefore, we denote the default configuration
provided by the organisers of IPC 2014 as gpj (the base con-
figuration), and the configuration with the more recent of
each option as GPJ (the newer configuration).

Many of the planners that took part in the tracks we con-
sidered did require some modification in order to run suc-
cessfully on our hardware and software configurations, for
example to avoid writing temporary files into their source
directories and polluting results when executing runs con-
currently. We consider these modifications minor and do
not believe that they had any effect on planner execution
or running times. There were two exceptions, namely the
Freelunch planner from the Agile track and the AllPaca plan-
ner from the Optimal track. In the case of Freelunch, we
could not successfully run the planner on our computer clus-
ter with any version of Java. As far as we can determine,
this was caused by the high-memory shared environment on
each cluster node, as Freelunch would crash immediately on
launch with a Java JVM memory allocation exception. In the
case of AllPaca, the planner relied on the presence of a spe-
cific commercial Lisp variant, and we were unable to modify
it to work with any of the Lisp distributions available on our
systems. These two planners have therefore been removed
from our results, but we fully expect that if these issues were
to be fixed, they would not significantly impact our results.

All the experiments were run on a cluster of homogeneous
machines running CentOS version 5.0, each containing two
Intel Xeon X5650 2.66GHz six-core processors with 12MB
cache, and 24GB of available RAM. All planner runs were
performed independently in parallel, with each run assigned
one CPU core, 8GB of RAM, and the running time limits
used in each track of IPC 2014. Running time and memory
limits were monitored and enforced using tools from AClib
(Hutter et al. 2014).

It is common practice in automated planning to include
randomised components in planning systems. Randomisa-
tion is useful, e.g., for breaking ties during the heuristic
search, introducing some noise in the heuristic search state
evaluation, or performing search restarts. Evidently, planner
performance can be affected by this source of stochasticity.
In order to account for this and attempt to isolate the impact
of software configuration on planner performance, our re-
sults for any given planner were obtained by averaging over
five independent runs on each benchmark instance.

Empirical Analysis
Table 2 illustrates how the instance set coverage of the Op-
timal track planners are affected by our software configura-
tions. Several planners exhibit a sizeable performance drop
when Java 1.8 is used instead of version 1.7. The planners
most affected by this are MIPlan and NuCeLaR; the plan-

Instance coverage for each software configuration

Planner gpj Gpj gPj GPj gpJ GpJ gPJ GPJ

cGamer-bd 130.2 131.4 131.4 130.8 128.2 127.4 127 128.8
RIDA 117.2 115.8 117.4 116 117.4 116.2 117 116.4
Metis 112.2 112.4 112.6 112.6 112.8 112.6 112.4 111.8
SymBA-1 108.2 108.6 108.4 108.4 108.8 108.6 108.4 108.6
SymBA-2 108 108.8 108.2 108.6 108.6 109 108.4 108.4
MIPlan 112.6 112.6 113.2 113 102.2 103.2 103.4 103
D-Gamer 107.6 110 109 106.6 104.2 105.6 104.6 105.4
NuCeLaR 108.8 108.6 108.2 108.6 98.6 98.6 98.4 98.8
DPMPlan 101.4 101.8 102.2 102.2 102.4 102.8 102.4 102.4
Cedalion 95.4 96 96 96.2 95.2 95.8 95.6 95.8
Gamer 96.8 96.4 96.4 96.4 93.2 92.6 91.8 93.8
Rlazya 91 91.8 92.2 91.8 91.8 92 92.6 91.8
SPMaS 75.8 76.8 74.6 75.4 77.2 75.6 74.8 75.4
Hflow 56 57 56.8 57.2 56 57.2 56.6 57
Hpp 15 15 15 15 15 15 15 15
Hpp-ce 15 15 15 15 15 15 15 15

Table 2: Number of problem instances solved (instance cov-
erage) for each of our 8 software configurations, using the
IPC 2014 Optimal track planners and benchmark instance
set. We present the mean coverage over 5 independent runs.
Boldface is used to indicate the best performance achieved
by a planner, in presence of variations.

IPC score for each software configuration

Planner gpj Gpj gPj GPj gpJ GpJ gPJ GPJ

Cedalion 107.4 106.2 106.9 107.6 105.8 107.1 107.6 107.0
IBaCoP 70.1 65.8 70.0 64.9 69.1 66.0 69.8 66.2
USE 79.3 77.7 79.6 78.1 78.1 78.1 77.6 75.7
ArvandHerd 89.2 90.2 88.1 88.2 87.9 87.5 88.8 89.8
IBaCoP2 59.6 56.6 60.0 55.7 58.1 55.6 58.6 56.1
Jasper 84.8 83.7 84.3 79.9 82.3 82.3 84.5 79.7
Mercury 67.8 67.5 67.8 66.5 66.4 67.7 67.1 67.0
BFS-f 66.1 66.4 66.2 66.7 64.7 66.1 66.1 66.5
Probe 71.4 71.2 71.3 71.4 70.7 71.4 71.5 71.2
YAHSP3 73.7 73.6 73.5 73.2 73.3 73.1 73.8 73.5
Madagascar-pc 63.4 62.6 63.4 62.6 63.1 62.6 63.2 62.4
YAHSP3-mt 56.0 54.2 54.2 53.8 53.7 54.4 56.0 53.4
Madagascar 64.1 63.9 64.0 63.9 63.9 64.1 64.0 63.3
SIW 49.6 50.2 50.1 49.8 49.4 50.3 50.0 50.1

Table 3: IPC score for each of our 8 software configurations,
using the IPC 2014 Agile track planners and benchmark in-
stance set. We present the mean coverage over 5 independent
runs. Where performance variations exist for a given plan-
ner, we show the best performance achieved by that planner
in boldface.

ners based on Gamer, i.e., Gamer, cGamer-bd and Dynamic-
Gamer also show a performance drop, although not as sig-
nificant as for the previously-mentioned planners. We note
that the performance variations observed for MIPlan, NuCe-
LaR, Dynamic-Gamer and Gamer were sufficient to cause
changes in competition ranking between software environ-
ment configurations. The remaining planners of the Optimal
track show minor performance fluctuation. Figure 1(a) pro-
vides a visual representation of the performance variation on
each of the 8 considered configurations.

Table 3 shows how the software configuration affects
planner performance for the Agile track. Performance is
measured in terms of IPC score 1, which is focused on the
running time required to find any satisficing plan; the qual-
ity of those plans is not considered. Some planners from
this track demonstrated high sensitivity to the GCC com-

1https://helios.hud.ac.uk/scommv/IPC-14/rules.html

24

gpj Gpj gPj GPj gpJ GpJ gPJ GPJ
80

90

100

110

120

130

140

C
o
v
e
ra

g
e
 [

#
in

st
a
n
ce

s]

Hpp, Hpp-ce

Hflow

SPMaS

Rlazya

Cedalion
Gamer

DPMPlan

Dynamic-Gamer
NuCeLaR, SymBA-1, SymBA-2

Metis, MIPlan

RIDA

cGamer-bd

Hpp, Hpp-ce

Hflow

SPMaS

Rlazya

Gamer

Cedalion

NuCeLaR

DPMPlan
MIPlan

Dynamic-Gamer

SymBA-1, SymBA-2

Metis

RIDA

cGamer-bd

(a) IPC 2014 Optimal track

gpj Gpj gPj GPj gpJ GpJ gPJ GPJ
40

50

60

70

80

90

100

110

R
u
n
ti

m
e
 [

ip
c

ru
n
ti

m
e
 s

co
re

]

SIW

YAHSP3-mt

IBaCoP2

Madagascar-pc
Madagascar

BFS-f
Mercury

IBaCoP
Probe

YAHSP3

USE

Jasper

ArvandHerd

Cedalion

SIW

YAHSP3-mt

IBaCoP2

Madagascar-pc
Madagascar

BFS-f, IBaCoP
Mercury

Probe

YAHSP3

USE

Jasper

ArvandHerd

Cedalion

(b) IPC 2014 Agile track

Figure 1: Mean number of instances solved (instance coverage) and IPC score, respectively, using the planners and benchmark
instance sets from the IPC 2014 Optimal 1(a) and Agile 1(b) tracks. We present results for each of the 8 software configurations.

piler version. For example, extreme variation can be ob-
served in the performance of IBaCoP and IBaCoP2, to the
extent of causing changes in competition ranking for IBa-
CoP. The performance of other Agile track planners, in par-
ticular Use and Jasper, are affected by a combination of
GCC and Python versions. The other planners exhibit only
minor performance variation.

Figures 1(a) and 1(b) show how the competition ranks are
affected by the eight considered software configurations. It
is easy to observe that the ranks are significantly influenced
and many of the planners face changes in rank. Moreover,
these results provide a valuable example of the impact of
other sources of variation on the reproducibility of com-
petition results: almost all of the considered planners were
ranked differently in IPC 2014 official results.

Intuitively, one would expect the competing planners to
achieve their best performance either on the base configura-
tion (gpj) or on the newer configuration (GPJ). With regard
to the former, the underlying hypothesis is that the planners’
code should have been somehow “tuned” – for the sake of
competition performance – for the configuration used in IPC
2014; this appears plausible, since participants had access
to the competition cluster for testing their planners (Val-
lati et al. 2015a). On the other hand, it is also likely that
optimisations introduced in newer versions of compilers or
interpreters will be reflected in noticeable performance im-
provements of planning systems making use of them. Inter-
estingly, for planners that participated in the Agile track, we
observed a tendency for the base configuration to lead to
the best performance (but still for only 6 of 14 competitors),
while none of the planners achieved their best performance
using the newer configuration. The situation is different for
the Optimal track planners; Table 2 indicates that, while no
planner achieves its best performance on the newer configu-
ration, the base configuration is rarely the one providing the
best results. Each planner is affected in a different way by

the considered 8 software configurations.

Conclusion
Our analysis shows that the software environment in which
a planner is run can substantially impact performance, and
that this effect varies significantly among planners. These
software environment changes can be as minor as the ver-
sion of the compiler used to create each planner executable.
Our analysis also indicates that running planners on soft-
ware configurations that are more recent than those used in
the competition can have surprisingly detrimental effects on
performance.

While our experimental observations do suggest that com-
petition performance results should be carefully interpreted,
we caution that these observations should not be misunder-
stood as invalidating or diminishing the utility of planner
competitions in general. Attempting to compensate for many
of the sources of performance variation discussed in this
paper would place a heavy burden on competition organis-
ers, both in terms of time and additional computational re-
sources. Allowing competitors the ability to customize their
own software configuration for the competition, as done in
the 2018 IPC using containers, could potentially reduce this
source of variation, but could also have the side effect of bi-
asing the competition results in favour of competitors with
the expert knowledge, computational resources and time to
finely tune their systems.

We see several possible avenues for future work: first, us-
ing the knowledge gained in this work, the study and de-
velopment of a competition measuring solver performance
across several distinct hardware and software environments;
second, a thorough analysis of additional sources of perfor-
mance variation not covered in (Bocchese et al. 2018), in-
cluding benchmark instance set selection and solver stochas-
ticity.

25

References
Bocchese, A. F.; Fawcett, C.; Vallati, M.; Gerevini, A. E.;
and Hoos, H. H. 2018. Performance robustness of AI
planners in the 2014 international planning competition. AI
Commun. 31(6):445–463.
Gerevini, A.; Haslum, P.; Long, D.; Saetti, A.; and Di-
mopoulos, Y. 2009. Deterministic planning in the fifth in-
ternational planning competition: PDDL3 and experimental
evaluation of the planners. Artif. Intell. 173(5-6):619–668.
Hoffmann, J., and Edelkamp, S. 2005. The determinis-
tic part of IPC-4: an overview. J. Artif. Intell. Res. (JAIR)
24:519–579.
Howe, A. E., and Dahlman, E. 2002. A critical assessment
of benchmark comparison in planning. J. Artif. Intell. Res.
(JAIR) 17:1–3.
Hurley, B., and O’Sullivan, B. 2015. Statistical regimes and
runtime prediction. In Proceedings of the Twenty-Fourth In-
ternational Joint Conference on Artificial Intelligence, IJ-
CAI, 318–324.
Hutter, F.; López-Ibáñez, M.; Fawcett, C.; Lindauer, M.;
Hoos, H. H.; Leyton-Brown, K.; and Stützle, T. 2014.
AClib: A benchmark library for algorithm configuration.
In Proceedings of the Eighth International Conference on
Learning and Intelligent Optimization (LION’14), 36–40.
Springer.
Linares López, C.; Celorrio, S. J.; and Olaya, A. G. 2015a.
The deterministic part of the seventh international planning
competition. Artif. Intell. 223:82–119.
Linares López, C.; Celorrio, S. J.; and Olaya, A. G. 2015b.
The deterministic part of the seventh international planning
competition. Artif. Intell. 223:82–119.
Long, D., and Fox, M. 2003. The 3rd international planning
competition: Results and analysis. J. Artif. Intell. Res.(JAIR)
20:1–59.
Vallati, M., and Serina, I. 2018. A general approach
for configuring PDDL problem models. In Proceedings of
the Twenty-Eighth International Conference on Automated
Planning and Scheduling, ICAPS, 431–436.
Vallati, M., and Vaquero, T. 2015. Towards a protocol for
benchmark selection in ipc. In The 4th Workshop of the In-
ternational Planning Competition.
Vallati, M.; Chrpa, L.; Grzes, M.; McCluskey, T. L.; Roberts,
M.; and Sanner, S. 2015a. The 2014 international planning
competition: Progress and trends. AI Magazine 36(3):90–98.
Vallati, M.; Hutter, F.; Chrpa, L.; and McCluskey, T. L.
2015b. On the effective configuration of planning domain
models. In Proceedings of the Twenty-Fourth International
Joint Conference on Artificial Intelligence, IJCAI, 1704–
1711.
Vallati, M.; Chrpa, L.; and McCluskey, T. L. 2018. What
you always wanted to know about the deterministic part of
the international planning competition (IPC) 2014 (but were
too afraid to ask). Knowledge Eng. Review 33:e3.

26

An Analysis of the Probabilistic Track of the IPC 2018

Florian Geißer
Australian National University, Australia

florian.geisser@anu.edu.au

David Speck
University of Freiburg, Germany

speckd@informatik.uni-freiburg.de

Thomas Keller
University of Basel, Switzerland

tho.keller@unibas.ch

Abstract

The International Planning Competition 2018 consisted of
several tracks on classical, temporal and probabilistic plan-
ning. In this paper, we focus on the discrete MDP track of the
probabilistic portion of the competition.
We discuss the changes to the input language RDDL, which
give rise to new challenges for planning systems, and ana-
lyze each of the eight competition domains separately and
highlight unique properties. We demonstrate flaws of the
used evaluation criterion, the IPC score, and discuss the need
for optimal upper bounds. An evaluation of the three top-
performers, including their post-competition versions, and a
brief analysis of their performance highlights the strengths
and weaknesses of the individual approaches.

Introduction
Since 1998, the International Planning Competition (IPC)
empirically evaluates state-of-the-art planning systems on
various benchmark problems to promote research and high-
light key challenges in AI planning. Initially, the competi-
tion focused on classical planning, but other, less restrictive
competition tracks have emerged in subsequent years. Vari-
ous tracks for reasoning under uncertainty have been added
in 2004, and the probabilistic planning track, which is the
focus of this paper, was organized for the sixth time in 2018.

Many different planning techniques have been ap-
plied by the participants over the years, ranging from
determinisation-based re-planning (Yoon, Fern, and Givan
2007) over reinforcement learning with policy gradient
methods (Buffet and Aberdeen 2007) and incremental pol-
icy refinement (Teichteil-Königsbuch, Kuter, and Infantes
2010) to Monte-Carlo tree search (Keller and Eyerich 2012;
Keller and Helmert 2013). Not only planning techniques,
but also benchmark problems have evolved over time: e.g.,
the dominance of determinisation-based approaches was an-
swered with a shift to probabilistically interesting problems
(Little and Thiébaux 2007), or the probabilistic PDDL di-
alect PPDDL (Younes and Littman 2004) was replaced by
RDDL (Sanner 2010).

The latest probabilistic track also introduced a few
changes. Providing challenging problems not only for the
competition but also for future years was one of the an-
nounced aims of the organizers, so twice as many instances
were created for each domain, scaling up to larger state and

action spaces, and the used subset of RDDL was extended
to support action preconditions, finite-domain, and interme-
diate variables to be able to model more realistic planning
tasks. Additionally, time and memory limits were increased
to allow offline approaches that compute an executable pol-
icy to compete with the predominant online approaches that
interleave planning for a single state and execution of the
last decision.

Five different planning systems participated in the compe-
tition. As up to two versions of each planning system could
be submitted, seven planner variants were evaluated in terms
of the IPC score in conjunction with the two PROST (Keller
and Eyerich 2012) versions that won IPC 2011 and 2014
as a baseline. Although each participant had a unique ap-
proach, no planner dominated in every domain and the final
results are very close – the winner, PROST-DD (Geißer and
Speck 2018), and the two runner-ups, SOGBOFA (Cui and
Khardon 2018) and Random Bandit (Fern, Issakkimuthu,
and Tadepalli 2018) are separated by roughly five points.

In the first part of this paper, we describe the changes of
IPC 2018 and analyse whether the competition lives up to
its claim and introduces benchmarks with the potential of
providing challenges for MDP research in upcoming years.
We analyse the competition domains and provide properties
that set them apart from other IPC domains. The second part
of our work focuses on the evaluation metric that was used
to determine the winner of the competition. We demonstrate
that the IPC score is flawed if optimal state values of a prob-
lem are unknown, and we hope to spark a discussion among
the planning community on this topic. The final part of the
paper analyses the performance of the planners on the IPC
2018 benchmarks. We compare the results of bugfixed ver-
sions of the competition’s top-performers and give insight
into their strengths and weaknesses.

Input Language of the IPC 2018
As in the competitions in 2011 and 2014, the domains and
instances of IPC 2018 were modeled in RDDL (Sanner
2010). In RDDL, both states and actions are described com-
pactly by disjunct sets of parameterized variables and MDPs
are specified as a dynamic Bayesian net with intermediate
layers. There were some minor tweaks to the input language
that are of no interest to this paper. The major changes on ac-
tion preconditions and the introduction of finite-domain and

27

intermediate variables have an impact on the competition re-
sults and are discussed in the following.

Action preconditions. All RDDL domains from pre-
vious competitions come with a state-action-
constraints section that contains a finite set of formu-
las P in first-order logic over the set of state- and action
variables. Formulas containing at least one action variable
form a constraint on the set of applicable actions a in a state
s: if s, a 6|= p for at least one p ∈ P , a is not applicable
in s. Formulas without action variables, on the other hand,
were introduced to provide invariants to a planning system
and could be ignored by a planner. As the semantics of state-
action constraints were never formally specified, it was un-
clear if an action is inapplicable in a state if its application
can lead to a state where an invariant is violated. This can-
not be checked efficiently by a planner as the number of
outcomes can be prohibitively large. In previous competi-
tions, this was irrelevant as all state-action constraints were
static. For IPC 2018, state-action constraints were hence re-
placed by an action-preconditions section that con-
tains formulas that have to be considered by each planner
and checked on the current state before an action is applied,
and an invariants section that may be ignored.

In previous competitions, the number A ∈ N provided
in the max-nondef-actions specification of RDDL in-
stances has also been used to describe the applicability of
actions. As it is possible to translate this for a given set
of action variables {a1, . . . , an} to the action precondition∑n

i=1 ai ≤ A, the max-nondef-actions entry was re-
moved for simplicity of notation. A side effect of dynamic
action preconditions is that action variables carry signifi-
cantly more parameters at IPC 2018 than in previous compe-
titions to be able to “connect” action preconditions and tran-
sitions functions (conditional probability functions or CPFs
in RDDL). In turn, this leads to a higher average number of
ground action variables in the IPC 2018 instances and, due
to the exponential relationship between action variables and
actions, to a significantly higher number of actions if action
grounding is performed naively. While the set of actions that
is applicable in at least one state (i.e., the actions that need
to be grounded) is significantly smaller in most instances, it
is in general not tractable to compute this set exactly, as de-
termining if a given action is legal in at least one reachable
state is at least as hard as the bounded plan existence prob-
lem in classical planning. Previously, a small value forA has
helped to keep the number of ground actions small even if
the grounding procedure is simple. This safety net has been
removed along with the max-nondef-actions section,
and new techniques need to be developed for the challenge
of grounding RDDL actions. To make grounding simpler,
the IPC 2018 domains guarantee that an action a with true
action variables A is inapplicable in all reachable states if
there is another action a′ with true action variables A′ ⊆ A
that is inapplicable in all reachable states.

Intermediate variables. A RDDL concept that has not
been considered at IPC 2011 and 2014 are intermediate

variables, which are typically used to determine the out-
come of multiple interdependent stochastic effects. To illus-
trate the concept, assume that there is a 50% chance that
two variables v1 and v2 are both true in the next state, and
both are false otherwise. Modelling this with CPFs v′i =
Bernoulli(0.5) for i ∈ {1, 2}, where Bernoulli is a RDDL
keyword representing a Bernoulli distribution, would result
in a model where all four possible value combinations come
up with a probability of 25%. This does not reflect the de-
sired transition dynamics. An intermediate variable v with
CPF v = Bernoulli(0.5) and CPFs for v1 and v2 of the form
v′1 = v and v′2 = v lead to the described model, though.

Some of the IPC 2018 domains are modelled with in-
termediate variables, but planners were allowed to choose
between a domain version with or a compilation without
this feature. The compilation is performed by replacing in-
termediate variables with state variables and adding artifi-
cial intermediate decision steps where only a dummy action
proceed-interm-level can be applied. There are fur-
ther details to this compilation, e.g., variables are introduced
to remember which action was executed and to represent the
current level, and the horizon is increased according to the
levels of the intermediate variables. However, these are not
relevant for this paper and hence omitted.

Finite-domain variables. Finite-domain variables can be
modelled in RDDL as enum-valued variables, a feature that
has not been used in previous competitions. IPC 2018 made
this feature available to planners that support it, but also pro-
vided a compilation of finite-domain variables into binary
variables. In the classical planning setting, such a compila-
tion can be performed by replacing each finite-domain vari-
able v with domain dom(v) = {x1, . . . , xn} with binary
variables v-is-xi for i ∈ {1, . . . , n}. In the probabilistic
setting, it is possible to do the same replacement, but the
blowup is significantly larger. To illustrate this, consider a
finite-domain variable v of type enum type which is de-
fined over the values x1, x2 and x3, and assume v takes each
value with uniform probability (modelled with the RDDL
keyword Discrete). Due to the implicit dependency be-
tween the three values, we have to make sure that exactly
one value becomes true in the next state, and a translation to

v-is-x′i = Bernoulli(0.3);

for i ∈ {1, 2, 3} is hence not correct. Instead, we have to
sample these values consecutively, each time conditioned on
the variables already sampled. As state variables are sampled
at the same time, intermediate variables of the form

v-is-x1 = Bernoulli(0.3);
v-is-x2 = ¬v-is-x1 · Bernoulli(0.5);
v-is-x3 = ¬v-is-x1 · ¬v-is-x2;

are used in the compilation to model the consecutive sam-
pling (in increasing index order) properly. In this form,
• v-is-x1 becomes true with probability 1

3

• the Bernoulli(0.5) case of v-is-x2 becomes relevant in the
2
3 of the cases when v-is-x1 did not become true, resulting
in a probability of 2

3 · 12 = 1
3 and

28

• v-is-x3 becomes true if neither of the former became true
and hence also with probability 1

3 .

If the term inside the Bernoulli statement cannot be simpli-
fied as much as here, these terms quickly grow very large.

Competition Domains
In the following, we briefly introduce the domains that were
used at IPC 2018 and highlight properties that make the do-
mains particularly challenging. We base the presented infor-
mation on the following sources1: 1) the output of a modified
version of the PROST parser, which was enhanced with ex-
pert knowledge in some domains; 2) a random walk planner
that computes averages over all states that are encountered
in 200 runs; 3) and from computations by hand. In general,
each domain consists of 20 instances, where the instances
increase in size (in terms of states and actions), although
not monotonically. While this has also been the case at IPC
2014, the largest instances of IPC 2018 (except for PUSH
YOUR LUCK) are several orders of magnitude larger than
the smallest ones.

ACADEMIC ADVISING is the only domain of IPC 2018
that has appeared in a previous competition, and it is equiv-
alent to its predecessor apart from some minor changes that
became necessary due to altered competition rules. How-
ever, neither of the 20 instances has been used before. In
ACADEMIC ADVISING, a student takes courses at a given
cost, aiming to complete a predefined subset of courses. The
probability to pass a course increases with the number of
previously passed prerequisites.

Prior to IPC 2018, ACADEMIC ADVISING has already
been the domain with the largest number of applicable ac-
tions. However, if we compare the largest instances, that
number grew from 466 in 2014 to more than 1011 in 2018,
and the median over the instances increased from 43 to 1862,
which poses a real challenge to the competitors.

CHROMATIC DICE is an MDP variant of the popular dice
game Yahtzee, where up to five dice are rolled up to three
times and show both values and colors (determined by in-
dependent stochastic processes). After rolling, the planner
has to select a category and receives a reward depending on
the faces of the dice and the selected category. At the end of
the interaction, the planner may receive various bonuses if it
performed well in certain category sections.

CHROMATIC DICE is special because it has by far the
largest reward formula among all competition domains,
consisting of formulas over almost 10000 state variables
(most occur multiple times, but almost all state variables
are among them at least once) and 24 (different) action vari-
ables. For a near-optimal policy, the boni become very im-
portant, and the planner has to plan ahead exceptionally far.

1Zenodo link for complete dataset used in this paper: http:
//doi.org/10.5281/zenodo.3235174

COOPERATIVE RECON is a significantly altered variant
of the IPC 2011 domain RECON. In the 2018 version, the
planner controls one or more planetary rovers that examine
objects of interest in order to take a picture of detected life.

In most instances, there are several rovers, and collabora-
tion between them is a key challenge. Rovers carry different
equipment and have to share tasks among them to succeed,
and they are also able to support other rovers in their tasks
for a higher probability of success. This makes COOPERA-
TIVE RECON special because the mutual application of two
action fluents can be more valuable than the sum of its parts.

EARTH OBSERVATION is based on the domain by Hertle
et al. (2014) where the planner controls a satellite orbiting
Earth that has to take pictures of the landscape below, taking
into account the current weather forecast (the presence of
clouds when a picture is taken leads to poorer image quality
and hence results in a lower reward).

While the branching factor induced by actions is very low
in this domain – there are only 4 actions to move the camera
and take a picture – the branching factor due to uncertainty
is immense. The weather can change the current cloud cover
drastically, and the number of successor states of a given
state-action pair is tremendous, comparable only with the
SYSADMIN domain of IPC 2011.

MANUFACTURER is a domain where the agent manages
a manufacturing company that buys goods to use them in
the production of other goods. The domain is modular in
the sense that more and more options become available the
more challenging the instance is. In the smallest instances,
the agent only buys, produces and sells goods. More com-
plex instances allow the construction of additional factories,
hiring staff to influence the price or contracting a manager
who enables the execution of more efficient actions.

All modules have in common that the agent has to accept
an immediate cost for an increased long-term reward. This
is already true for the basic buy-produce-sell cycle, and the
horizon until the investment pays off gets larger and larger
with more challenging instances. Additionally, this is one of
the domains with the largest number of applicable actions
and relevant preconditions (more than 106 in both cases).

PUSH YOUR LUCK is a single-player game where the
main challenge lies in determining the optimal moment to
stop a repeated stochastic process. The player rolls one or
more dice repeatedly until they select to cash-out, yielding
a reward that corresponds to the product of all rolled values.
However, if the player plays too risky and a number comes
up a second time, all rolled values are reset.

The instances of PUSH YOUR LUCK are among the small-
est of IPC 2018. However, better play is rewarded dispropor-
tionately due to the exponential growth of the reward in the
case of success and the total reset in the fail case.

RED-FINNED BLUE-EYE are a species of fish that are en-
demic to seven artesian springs in the Edgbaston Reserve in

29

Central Queensland, Australia. The species is critically en-
dangered due to competition by the invasive Gambusia. This
domain is inspired from the work of Nicol et al. (2017). A
planner has to make sure that red-finned blue-eye do not be-
come extinct, either by removing or poisoning Gambusia or
by translocating red-finned blue-eyes. The domain is proba-
bilistically interesting as the springs get connected only in
the rain season depending on the (probabilistically deter-
mined) amount of rain.

RED-FINNED BLUE-EYE is challenging because it has the
largest median number of actions (2680) and action precon-
ditions (almost 10000), and more than 106 actions in the
hardest instances. The planning horizon of up to 120 and
a median of 90 is also the largest, which is particularly rel-
evant because extinction of red-finned blue-eye leads to a
disproportionately high penalty.

WILDLIFE PRESERVE is inspired from work of Nguyen
et al. (2013) and Fang, Stone, and Tambe (2015) on rangers
that protect a wildlife reserve from poachers by sending
rangers to specific areas. Poachers attack parts of the reserve
depending on their preferences and an expectation where
rangers will likely show up. This expectation is computed by
exploiting the assumption typically taken in Stackelberg Se-
curity Games that the defenders’ (i.e., rangers) mixed strat-
egy is fully observed by the attacker and memorized by
poachers for a predefined number of steps.

In each step, the planner obtains a reward for each area
that has not been attacked undefended, and a penalty for
each area that has. The challenge is to predict where poach-
ers will attack with high probability and to lure poachers into
attacking an area where they are caught. Determinisation-
based policies are informative in instances where the mem-
ory of poachers is short, but the quality decreases quickly
when poachers remember more of the rangers’ decisions.

Participants
We briefly introduce the competition participants and the un-
derlying techniques they use. More details can be found in
the planner abstracts that can be found on the competition
website2.

PROST (Keller and Eyerich 2012) is the winner of the
two previous IPCs in 2011 and 2014 and participated non-
competitively to serve as a baseline. PROST 2011 and PROST
2014 differ mostly in the used search algorithm: the for-
mer is based on the popular UCT algorithm (Kocsis and
Szepesvári 2006), while the latter applies the UCT? algo-
rithm of Keller and Helmert (2013). Both baselines use an
iterative deepening search (IDS) on the (most-likely) deter-
minised task to initialize action-values of search nodes that
are added to the search tree.

The versions that were used for IPC 2018 are not exactly
the same planners that competed in the previous competi-
tions: bugfixes provided over the last few years were incor-
porated and a simple linear time distribution of the remain-

2ipc2018-probabilistic.bitbucket.io

ing time was used for each step. Additionally, the parser was
updated to exploit the guarantee on action preconditions de-
scribed before: the implementation starts to check potential
applicability of an action with actions where only one action
variable is true, and it iteratively adds more variables until a
precondition is violated independently from the state.

PROST-DD is based on PROST 2014 and applies the
UCT? algorithm. The planner differs from the baseline in
the underlying action-value initializer function, the recom-
mendation function used to select the action applied in
each step, and does not use the baseline parser implementa-
tion. Instead, the PROST-DD parser performs resolution- and
backtracking-based search in a similar fashion to the DPLL
algorithm (Davis, Logemann, and Loveland 1962). Addi-
tionally, the performance of the evaluation of action pre-
conditions was improved. As recommendation function the
planner uses the most played arm recommendation (Bubeck,
Munos, and Stoltz 2009), which favors the action which was
selected the most in the root node of the search (the baseline
planners favor the action with the best expected outcome).

For the heuristic function, the planner symbolically rep-
resents a deterministic version of the planning task as Al-
gebraic Decision Diagrams (Bahar et al. 1993). It computes
step-wise estimates in a similar fashion to symbolic value
iteration (Hoey et al. 1999) and symbolic backward search
(Speck, Geißer, and Mattmüller 2018). If the symbolic com-
putation is not able to compute the estimates for a number of
steps that is equal to the problem horizon, the planner per-
forms iterative deepening search instead. Two versions of
PROST-DD participated in the competition, which differ in
the determinisation that is used in the heuristic: outcomes
with probability smaller than 0.5 are pruned in one version,
and smaller than 0.1 in the other.

Random Bandit is built upon the PROST framework and
is based on the ε-greedy algorithm for multi-armed bandit
problems, which estimates state values by simulating the
greedy action with probability 1 − ε and a random action
otherwise. The parameter ε is set to 0.5. This decision in the
root node is followed by a random walk whose simulation
depth is initially determined as the minimum of 7 and an
estimate that is based on the time required for IDS on the
most-likely determinised task.

Conformant SOGBOFA is based on the work by Cui and
Khardon (2016) and Cui, Marinescu, and Khardon (2018). It
symbolically represents the state value function of the cur-
rent state as an abstract syntax tree and searches for the best
action by calculating gradients on this symbolic representa-
tion by means of automatic differentiation. One property of
this representation is that computations are performed on the
lifted action representation, which allows the planner to deal
with large action spaces. Therefore, the planner does not ex-
plicitly ground actions. Two different versions of the SOG-
BOFA system participated in the competition: SOGBOFA-F
and SOGBOFA-B. They differ in the way fractional values
in the rollout policy are treated.

30

A2C-Plan While all previous planning systems perform
planning online, A2C-Plan is an offline planner working in
two phases: in the training phase, a deep neural network is
trained, using an actor-critic algorithm (Konda and Tsitsik-
lis 1999) which combines learning of a policy network and
updating its parameters via gradient updates. The planner
is built upon the PROST framework and therefore uses the
baseline parser implementation.

Imitation-Net is another offline planner based on neural
networks. It follows a supervised learning approach which
generates training data by following a greedy one-step pol-
icy based on random sampling. Based on this training data,
a policy network (Issakkimuthu, Fern, and Tadepalli 2018)
is trained using stochastic gradient descent, which is used to
select the best action in each step. Similar to A2C-Plan, the
planner is built upon the PROST framework.

On Evaluation Metrics
The evaluation of the planner performance was in princi-
ple the same as in the previous competitions: planners per-
formed a sequence of interactions (runs) with rddlsim (San-
ner 2010) that simulate the execution of the planner’s policy,
and the average cumulative reward over those runs is used to
estimate planner performance. However, some details were
changed in comparison to previous competitions: the num-
ber of runs was increased from 30 to 75 for higher statis-
tical significance of the averages; the number of instances
per domain was doubled from 10 to 20 for better scaling be-
tween small and large instances; the horizon was instance
dependent to add an additional challenge with short or large
horizons; memory was doubled from 2GB to 4GB to reflect
modern hardware; and the average deliberation time per step
was raised from approximately 1 second to 2.5 seconds, re-
sulting in a total deliberation time between approx. 1 hour
for the instances with the smallest horizon of 20 and more
than 6 hours for the instances with the largest horizon of
120, an amount of time that allows offline planners to come
up with a policy that is competitive with online planning.
Furthermore, planners had to announce prior to each run if
the round contributes to the evaluation to ensure that an op-
timal policy also maximizes the average cumulative reward
over the executions of the policy (Keller and Geißer 2015).

IPC Score. The quality of each planner is measured in
terms of the IPC score with an artificial minimum policy
that is set to the maximum of a random policy and (if possi-
ble) a policy that only executes no-op actions. The IPC score
is a normalized value between 0 and 1, where 0 is assigned
to a planner that did not simulate 75 runs successfully or
did not outperform the minimum policy, 1 is assigned to the
best planner in the competition (if there is a planner with 75
valid runs that performed better than the min policy) and a
value that is linearly interpolated between these extremes is
assigned to each of the other planners. In the following, we
argue that without having access to an optimal upper bound,
i.e., the average cumulative reward of an optimal policy, a
planner evaluation based on the IPC score is flawed. We

Planner A B Min. Opt.

Instance 1 5.00 1.00 0 100
Instance 2 1.00 2.00 0 2

IPC Score w/o Opt. 1.50 1.20 0 -
IPC Score w. Opt. 0.55 1.01 0 3

Table 1: A hypothetical competition result, where the IPC
score is evaluated with and without consideration of optimal
upper bounds.

want to emphasize that the aim of this discourse is not to
question which planner is the winner of the competition, but
to spark a discussion among the community on the under-
lying evaluation metric, and to motivate further research on
upper bounds for the benchmark sets used in planning.

In principle, the problem is that without an optimal upper
bound the IPC score is not a stable metric, as the introduc-
tion of a new participant may change the results of the scores
of all other participants if the new participant performs best
in any instance. A consequence is that introducing a new par-
ticipant may change the ranking between the current partic-
ipants. Even worse: after introducing optimal upper bounds
on the rewards the winner might change.

Table 1 shows an example where the normalization with
optimal rewards changes the outcome of a hypothetical com-
petition. Here, without considering optimal expected re-
ward, the performance of planner A appears to be better than
the performance of planner B. More precisely, A is five times
better than B in instance 1, while B is only twice as good as
A in instance 2. According to the IPC score, planner A is the
winner of the competition. After introducing upper bounds
on the average cumulative reward, it turns out that planner
B performs optimally in the second instance and in the first
instance both planners perform poorly in comparison to the
optimal policy. Now, according to the IPC score, planner B
is the winner of the competition. Note that the order can also
change with the introduction of a new planner who performs
better in instance 1 than planner A: submitting similar plan-
ner configurations to the competition might be detrimental
for the planner performance. With optimal upper bounds, the
order of two planners can never change when a new planner
is introduced, since the IPC values of these two planners do
not change.

In the absence of optimal expected reward values, one op-
tion is to rank the planners in order of performance on each
instance, instead of accumulating the relative average re-
wards. Such a ranking system is closely related to the field of
social choice theory. Each instance induces a ranking which
can be interpreted as an independent preference relation. In
other words, each instance represents a voter and each plan-
ner a possible candidate. There are several election methods
for determining a winner in such a ranking system. Each
fulfill different criteria, such as independence from irrele-
vant alternatives, independence of clone alternatives, or the
majority criterion. Yet, it is a well-known game theoretical
result that no voting system can fulfill even a small number

31

of particularly important criteria (Osborne and Rubinstein
1994). Therefore, before any voting system can be applied,
it is important to define the criteria one wants to meet.

While such a ranking system ignores the relative perfor-
mance of the planners, the discussion shows that even for
arguably simpler measures the final evaluation depends on
the underlying evaluation criteria one wants to meet and
guaranteeing multiple criteria might even be impossible. We
also did not address the probabilistic aspect of the problem,
where we have to consider variance on the possible rewards.
Designing a satisfactory system is not only out of the scope
of this paper, but also requires the input of the IPC commu-
nity and a theoretical analysis and discussion of this topic.

Analysis of Planner Performance
One should keep in mind that the aim of the planning com-
petition is not necessarily to elect the best planning system,
but to promote research and highlight current challenges in
planning. Thus, we now take a closer look at the competi-
tion results and discuss the strengths and weaknesses of the
different systems. While the IPC score might not be the best
metric to determine the best planning system, it still gives
some insight into the planner performance on individual do-
mains. In the following we will put our focus on the online
planning systems, as both offline planners performed worse
than the online planners in almost3 all domains (total IPC
score of 28.6 for Imitation Net and 26.6 for A2C-Plan), and
leave a study of these systems for future work.

We begin our analysis by having a look at the official
competition results, depicted in Table 2. Since the baseline
planners PROST 2011 and 2014 were only provided to com-
pare the current participants with the winners of the previ-
ous competitions, the official winner was PROST-DD. The
differences between PROST-DD, SOGBOFA and Random
Bandit are minor, though. Furthermore, all submitted plan-
ners contained more or less severe bugs at the time of the
competition, which affected their performance on some of
the domains. Since the goal of our analysis is to shed light
on the current state of the art in probabilistic planning and
exhibit potential future work, we performed an additional
evaluation within the same competition setup, but used an
updated version of the planners if available. IPC scores with
an updated version of PROST-DD and SOGBOFA (Cui,
Keller, and Khardon 2019) are depicted in Table 3. Note that
the scores are computed without considering A2C-Plan and
Imitation-Net results.

It is apparent that the bugfixes for both planners were
quite significant on some of the domains and both PROST-
DD and SOGBOFA significantly outperform the baseline
planners in the bugfixed versions. Furthermore, PROST,
PROST-DD and SOGBOFA each dominate all other plan-
ners in at least one domain with respect to the IPC score. As
a consequence, we further focus on a brief analysis of only
these three planners, look into possible reasons for their per-
formance, and highlight possible future research to provide
additional insight.

3The only domain where Imitation-Net showed competitive
performance was WILDLIFE PRESERVE.

SOGBOFA is not only the planner which differs architec-
turally and algorithmitically the most from the otherwise
PROST-based planners, the most recent version also sig-
nificantly outperforms its competitors. The most prominent
feature of SOGBOFA is the support of large action spaces
(no grounding process is involved), thus one reason for the
strong performance might be that the planner is simply able
to at least do something on the larger domains. To see this,
we compare the number of instances where each planner
completed all 75 runs, depicted in Table 4. Indeed, there are
17 instances where SOGBOFA was the only planner able
to complete all 75 runs. Note that none of the other plan-
ners uniquely completed 75 runs on any instance (consid-
ering only a single configuration per planner). However, re-
call that the IPC score is only affected if the planner out-
performs the min-policy. This was only the case in 5 out of
the 17 instances (1 COOPERATIVE RECON, 3 RED-FINNED
BLUE-EYE, 1 MANUFACTURER), which indicates that the
planner did not only perform well because it was able to
handle many instances where the other planners failed.

The advantage of SOGBOFA in instances with large ac-
tion spaces is further highlighted by its performance in RED-
FINNED BLUE-EYE and the second half of the COOPERA-
TIVE RECON instances. Both domains have a large action
space, and although the other planners are able to outper-
form the min-policy in these domains, SOGBOFA has a sig-
nificantly higher average reward. The third domain where
SOGBOFA shines is the MANUFACTURER domain, yet the
applicable action space of this domain is quite low (only
a couple of actions are applicable in each step). As this is
a domain where the SOGBOFA algorithm outperforms the
THTS-based algorithms independently from the size of the
problem, we see this domain as a candidate for future re-
search on both algorithms. We also conjecture that for these
three domains the relative performance indicated by the IPC
score would still hold, even if an upper bound on these prob-
lems would be provided.

The only domain where SOGBOFA performed signifi-
cantly worse than every other competitor is PUSH YOUR
LUCK. Interestingly, this is the domain with the overall
smallest problem size, both in terms of applicable actions
and state-space size. This allows us to compute the optimal
reward for some of the instances and compare it to the plan-
ner results, depicted in Figure 1. While THTS-based plan-
ners often reach the optimal expected reward, this does not
hold for SOGBOFA, which might be attributed to the opti-
mality guarantees of UCT?, whereas the automatic differen-
tiation algorithm does not provide such guarantees.

PROST-DD showed the best performance in ACADEMIC
ADVISING and WILDLIFE PRESERVE. In the following we
will focus on a comparison between the PROST-DD planner
and the baseline, as both planners share the underlying algo-
rithm but differ in initialization, recommendation function,
and the grounding process. We will focus on the initializa-
tion and the grounding process, and refer to Keller (2015)
for a comparison of the behaviour of the different recom-
mendation functions.

32

PROST PROST-DD Random SOGBOFA
2011 2014 0.1 0.5 Bandit

ACADEMIC ADVISING (20) 3.2 3.3 5.8 6.6 0.7 4.1
CHROMATIC DICE (20) 12.8 10.1 7.6 7.5 17.1 19.4
COOPERATIVE RECON (20) 9.0 10.7 10.3 12.0 1.5 6.9
EARTH OBSERVATION (20) 18.7 19.9 6.5 5.3 12.8 7.4
MANUFACTURER (20) 7.1 2.7 3.3 2.8 4.1 0
PUSH YOUR LUCK (20) 6.3 14.2 15.0 12.7 13.1 1.4
RED-FINNED BLUE-EYE (20) 6.9 6.0 5.9 5.4 5.6 18.3
WILDLIFE PRESERVE (20) 3.9 7.9 14.3 14.3 10.8 4.8

Sum (160) 67.9 74.7 68.8 66.5 65.6 62.3

Table 2: Official IPC scores of the top performers of the International Planning Competition 2018.

PROST PROST-DD Random SOGBOFA
2011 2014 0.1 0.5 Bandit

ACADEMIC ADVISING (20) 4.06 3.33 6.84 5.61 0.81 4.86
CHROMATIC DICE (20) 12.91 10.04 9.82 10.49 16.97 19.2
COOPERATIVE RECON (20) 6.19 6.85 7.82 8.06 1.33 15.11
EARTH OBSERVATION (20) 18.76 19.73 17.24 16.77 12.74 11.52
MANUFACTURER (20) 4.05 2.08 3.08 4.72 1.14 10.34
PUSH YOUR LUCK (20) 6.57 14.61 14.99 15.22 13.22 2.32
RED-FINNED BLUE-EYE (20) 6.41 7.32 5.9 4.92 5.49 18.97
WILDLIFE PRESERVE (20) 3.99 7.98 15.87 14.99 10.78 8.68

Sum (160) 62.94 71.94 81.56 80.87 62.48 91.0

Table 3: IPC scores of the IPC 2018 top performers, based on updated planner versions.

PROST PROST-DD Random SOGBOFA
2011 2014 0.1 Bandit

ACADEMIC ADVISING (20) 11 12 14 11 20
CHROMATIC DICE (20) 20 20 20 20 20
COOPERATIVE RECON (20) 13 15 17 17 20
EARTH OBSERVATION (20) 20 20 20 20 20
MANUFACTURER (20) 10 11 11 11 16
PUSH YOUR LUCK (20) 9 17 20 20 20
RED-FINNED BLUE-EYE (20) 11 15 15 17 20
WILDLIFE PRESERVE (20) 4 9 16 16 10

Sum (160) 98 119 133 132 146

Table 4: Number of instances for each planner where all 75 runs were completed in time.

33

Figure 1: Average Reward in PUSH YOUR LUCK.

Figure 2: Average reward on instances where the DD heuris-
tic was fully constructed.

Figure 3: Parsing times in seconds.

As a first step, we evaluate the impact of the decision di-
agram based initialization. Note that in instances where the
decision diagrams are not constructed, both planners rely on
the same initialization (IDS). Figure 2 plots the average re-
ward of PROST-DD and of PROST 2014 for each instance
where both planners finished all 75 runs and where the de-
cision diagram data structure was completely built up4. In
general, the heuristic improves the average reward if con-
structed, which is also the reason for the stronger perfor-
mance in ACADEMIC ADVISING. The varying performance
in PUSH YOUR LUCK is a result of both heuristics being
very uninformative: in instances where a dice has more than
6 faces the probability for each face to appear becomes 0
in the determinisation. It is worth to note that for instances
where the heuristic was not constructed, PROST-DD wastes
up to 12.5% of the search time.

Next, we analyse the impact of the parser difference. Both
parsers generate the same grounded instance, but differ in
execution time. Figure 3 depicts the parsing time in sec-
onds per instance. Clearly, the advantage of PROST-DD in
WILDLIFE PRESERVE is due to the timeout of the baseline
parser in half of the instances. On the other hand, in some
instances of RED-FINNED BLUE-EYE and ACADEMIC AD-
VISING the PROST-DD parser times out while the baseline
parser is able to parse the instance. Due to the poor perfor-
mance of the baseline on these instances this does not influ-
ence the final score, though.

PROST. We conclude our brief planner analysis with a few
words on the performance of the UCT? search algorithm,
which is the core of both PROST 2014 and PROST-DD.
The two domains where this approach significantly outper-
formed SOGBOFA are EARTH OBSERVATION and PUSH
YOUR LUCK. For PUSH YOUR LUCK, we have already seen
that part of the reason is the optimality guarantee given by
the Bellman backups of UCT?, which allows to compute the
optimal expected reward for many of the instances (this also
holds for WILDLIFE PRESERVE). It would certainly be in-
teresting to see how close the EARTH OBSERVATION results
are to the optimal values. Additionally, EARTH OBSERVA-
TION is the domain with the least number of actions: only 4
actions are applicable in every state, which apparently favors
sampling-based techniques.

Conclusion
To keep the conclusion brief, we emphasize the importance
of having access to (near-) optimal rewards for the computa-
tion of IPC scores. Our analysis indicates that the benchmark
set of IPC 2018 provides a challenge for the current state of
the art in probabilistic planning and gives insight on possible
future research. Future work on the PROST planner should
be concerned with how to efficiently deal with large state
and action spaces. For the SOGBOFA system, an interesting
question is if it is possible to provide optimality guarantees.
Why offline planners were unable to meet the performance
of online systems remains an open question.

4We removed data points for WILDLIFE PRESERVE, as both
planners share the average reward in 8 out of 9 instances.

34

Acknowledgments. Florian Geißer was supported by
ARC project DP180103446, “On-line planning for con-
strained autonomous agents in an uncertain world”. David
Speck was supported by the German National Science Foun-
dation (DFG) as part of the project EPSDAC (MA 7790/1-
1). Thomas Keller received funding for this work from
the European Research Council (ERC) under the European
Union’s Horizon 2020 research and innovation programme
(grant agreement no. 817639).

References
Bahar, R. I.; Frohm, E. A.; Gaona, C. M.; Hachtel, G. D.;
Macii, E.; Pardo, A.; and Somenzi, F. 1993. Algebraic deci-
sion diagrams and their applications. In Proc. ICCAD 1993,
188–191.
Bubeck, S.; Munos, R.; and Stoltz, G. 2009. Pure explo-
ration in multi-armed bandits problems. In ALT, volume
5809 of LNCS, 23–37.
Buffet, O., and Aberdeen, D. 2007. FF + FPG: Guiding a
policy-gradient planner. In Proc. ICAPS 2007, 42–48.
Cui, H., and Khardon, R. 2016. Online symbolic gradient-
based optimization for factored action MDPs. In Proc. IJ-
CAI 2016, 3075–3081.
Cui, H., and Khardon, R. 2018. The SOGBOFA system
in IPC 2018: Lifted BP for conformant approximation of
stochastic planning. In IPPC-6 planner abstracts.
Cui, H.; Keller, T.; and Khardon, R. 2019. Stochastic plan-
ning with lifted symbolic trajectory optimization. In Proc.
ICAPS 2019.
Cui, H.; Marinescu, R.; and Khardon, R. 2018. From
stochastic planning to marginal MAP. In Proc. NeurIPS
2018, 3085–3095.
Davis, M.; Logemann, G.; and Loveland, D. W. 1962. A
machine program for theorem-proving. Communications of
the ACM 5:394–397.
Fang, F.; Stone, P.; and Tambe, M. 2015. When security
games go green: Designing defender strategies to prevent
poaching and illegal fishing. In Proc. IJCAI 2015, 2589–
2595.
Fern, A.; Issakkimuthu, M.; and Tadepalli, P. 2018.
Random-bandit: An online planner. In IPPC-6 planner ab-
stracts.
Geißer, F., and Speck, D. 2018. Prost-DD – utilizing sym-
bolic classical planning in THTS. In IPPC-6 planner ab-
stracts.
Hertle, A.; Dornhege, C.; Keller, T.; Mattmüller, R.; Ortlieb,
M.; and Nebel, B. 2014. An experimental comparison of
classical, FOND and probabilistic planning. In Proc. KI
2014, 297–308.
Hoey, J.; St-Aubin, R.; Hu, A.; and Boutilier, C. 1999.
SPUDD: Stochastic planning using decision diagrams. In
Proc. UAI 1999, 279–288.
Issakkimuthu, M.; Fern, A.; and Tadepalli, P. 2018. Training
deep reactive policies for probabilistic planning problems.
In Proc. ICAPS 2018, 422–430.

Keller, T., and Eyerich, P. 2012. PROST: Probabilistic plan-
ning based on UCT. In Proc. ICAPS 2012, 119–127.
Keller, T., and Geißer, F. 2015. Better be lucky than good:
Exceeding expectations in MDP evaluation. In Proc. AAAI
2015, 3540–3547.
Keller, T., and Helmert, M. 2013. Trial-based heuristic tree
search for finite horizon MDPs. In Proc. ICAPS 2013, 135–
143.
Keller, T. 2015. Anytime Optimal MDP Planning with Trial-
based Heuristic Tree Search. Ph.D. Dissertation, University
of Freiburg.
Kocsis, L., and Szepesvári, C. 2006. Bandit based Monte-
Carlo planning. In Proc. ECML 2006, 282–293.
Konda, V. R., and Tsitsiklis, J. N. 1999. Actor-critic algo-
rithms. In Proc. NIPS 1999, 1008–1014.
Little, I., and Thiébaux, S. 2007. Probabilistic planning vs
replanning. In ICAPS 2007 Workshop on the International
Planning Competition: Past, Present and Future.
Nguyen, T. H.; Yang, R.; Azaria, A.; Kraus, S.; and Tambe,
M. 2013. Analyzing the effectiveness of adversary modeling
in security games. In Proc. AAAI 2013, 718–724.
Nicol, S.; Sabbadin, R.; Peyrard, N.; and Chadès, I. 2017.
Finding the best management policy to eradicate invasive
species from spatial ecological networks with simultaneous
actions. Journal of Applied Ecology 54(6):1989–1999.
Osborne, M. J., and Rubinstein, A. 1994. A course in game
theory. MIT press.
Sanner, S. 2010. Relational dynamic influence diagram lan-
guage (RDDL): Language description.
Speck, D.; Geißer, F.; and Mattmüller, R. 2018. Symbolic
planning with edge-valued multi-valued decision diagrams.
In Proc. ICAPS 2018.
Teichteil-Königsbuch, F.; Kuter, U.; and Infantes, G. 2010.
Incremental plan aggregation for generating policies in
MDPs. In Proc. AAMAS 2010, 1231–1238.
Yoon, S. W.; Fern, A.; and Givan, R. 2007. FF-Replan: A
baseline for probabilistic planning. In Proc. ICAPS 2007,
352–360.
Younes, H. L. S., and Littman, M. L. 2004. PPDDL1.0: An
extension to PDDL for expressing planning domains with
probabilistic effects. Technical Report CMU-CS-04-167,
Carnegie Mellon University, School of Computer Science.

35

Benchmarks Old and New: How to compare domain independence for
cost-optimal classical planning?

Ionut Moraru and Stefan Edelkamp
Informatics Department, Kings College London

Strand Campus, Bush House, 30 Aldwych, London, WC2B 4BG
ionut.moraru@kcl.ac.uk and stefan.edelkamp@kcl.ac.uk

Abstract
Domain independence is one of the main features of auto-
mated planning. Planners, in the context of cost-optimal clas-
sical planning, are developed with the intent of solving any
type of problem that can be formulated in PDDL. We then
compare planners by the number of problem instances they
solve on a set of benchmarks, one point for each problem
solved. However, does solving the most problems automati-
cally result in having the best domain-independent planner?
In this paper, we compare the best performing, non-portfolio
planners from the cost-optimal classical track of the Inter-
national Planning Competition (IPC) 2018 on the complete
set of benchmarks from the previous two competitions (2011
and 2014) and on a subset of the competitions from before
2011. Results show that, as the number of problems for each
domain varies, current way of comparing planners (total cov-
erage) can be biased towards the planners that perform the
best in the domains with the most instances, but once we nor-
malize those results, we can get a better picture for which
technique is the most domain independent.

1 Introduction
Marvin Minsky classified Artificial Intelligence into five ar-
eas (1961), one of them being planning. Planning is the dis-
cipline that has the task of coming up with a sequence of
actions that, starting from an initial state, will achieve a goal.

A technique that has appeared in the 80’s and which has
been giving really good results is the creation of solver soft-
ware for resolving well-defined mathematical models, i.e.
Constraint Satisfaction, Linear Programming, etc. (Geffner
2014). They are a general type of software, created for com-
puting the solution of any problem specified in its input
modeling language. In the field of AI Planning, this type of
solvers are called planners, most of them using as an input
PDDL (McDermott 1998; Fox and Long 2003).

Domain-independence is one of the qualities that planning
as an area of research strives to achieve. What this means is
that, as long as the problem is specified properly in PDDL,
a planner should be able to give a valid plan as an output
(Howey, Long, and Fox 2004). This is an extremely am-
bitious goal, especially when taking into consideration the
complexity of a planning task (Bäckström and Nebel 1995;
Bylander 1994). Nonetheless, current planners are able to
solve a large variety of problems from very different do-
mains (from solving the Rubik’s cube and Solitaire games,

to Logistics and path-finding problems just as an example)
which cannot be described as anything but incredible.

The current way of comparing planners in the setting
of domain-independent classical planning is by seeing how
many problems each planner can solve. Each problem
validly solved gives towards the planner one point. The plan-
ner with the most points can be considered the best on the
tested benchmarks. While this way has its values, having a
planner that solves the most problems is a feat that should
be celebrated, in our view this does not capture the complete
picture of domain-independence.

In this paper, we will be arguing that classical planners
should be compared in more ways than just how many prob-
lems they can solve. We will be taking the four best per-
forming, non-portfolio, cost-optimal planners from the 2018
International Planning Competition and compare them on a
larger set of problems. We have seen that, because of the dif-
ferent number of problems for each domain, some domains
are more important than others when comparing just the to-
tal coverage over the benchmark set. We argue for the in-
troduction of a normalized domain coverage metric, which
would alleviate this issue and would be more representative
for comparing planners in domain-independent planning.

2 International Planning Competition
The International Planning Competition (IPC) has been a
great driver for progress of research and has brought forth
many novel techniques and planning technologies since it’s
inception in 1998. Organized together with the International
Conference of Automated Planning and Scheduling, it has
build an identity synonymous with state-of-the-art for plan-
ning in any of its forms (in 2018 we had Classical, Proba-
bilistic and Temporal tracks).

At the beginning, events were held every two years, as
the planning research in the modern sense was in developing
fast, but recently, as the benchmark sets available were larger
and more planners were broadly available for inspection, ad-
vances have slowed down. Competitions are now organized
every 3-4 years, giving time for researchers to advance the
field and implement any new idea.

Importance
IPC have brought a lot of benefits for the subject as a whole,
first and foremost with PDDL, the high-level modeling lan-

36

guage that has now become an informal standard input for
most planners. PDDL was used from the first edition, bring-
ing all the new versions and new features for one of the
subsequent editions. As all the domains and problems are
formulated using this modeling language, almost all mod-
ern planners are built now to support one of the versions of
PDDL and more recently RDDL for Probabilistic Planning
(Sanner 2010).

Continuing on the topic of benchmarks, each edition pub-
lished either completely new or reinterpretations of do-
mains with new problems, increasing number and diversity
of available benchmarks for the planning community. This
gives planner developers a more complete way of evaluating
their systems.

Finally, competitions in any field bring together any co-
munity and it manages to evolve a field. Comparing in a
closed environment a vast number of planners, each ap-
proaching problems in a different way, has the benefit of
putting head-to-head each method without bias. As the
benchmarks are not know prior to the planner submis-
sion, developers of said systems need to focus on creating
domain-independent planners, suited for any possible do-
main.

Planning Evolution
After each IPC, certain techniques have risen as the state-of-
the-art. In the past, heuristic search was most of the time the
best approach, and certain heuristics were highly success-
ful (Helmert and Domshlak 2009). Symbolic search has also
had success with SymBA∗, a symbolic bidirectional planner
(Torralba et al. 2014).

Each winner of the competition has shown the planning
community which combination of technique and domain
works especially well. Most the best performing planners
have been awarded more attention in the following years,
bringing forth their ideas in the community. Also, each well
performing planner in the competition has made the orga-
nizer of the following competition to make their benchmark
set harder for those techniques. This has made the commu-
nity now to have a very diverse set of problems on which we
can see how well each planner performs.

Portfolio planning is a technique that tries to combine
find the best planner for the domain/problem that it has to
solve. Work done by Sievers et al. (2019) has shown how
grounded problems can be classified as to give the better
suited planner the problem to solve. Following this work,
portfolio planners are aiming to find the planners best suited
for a type of planning task. This is a different approach to
domain-independent planning, but has shown good results
when looking at the results from the 2018 IPC.

3 Measuring Cost-Optimal Planning
In this section we will be discussing different ways of com-
paring planners, and see how they differ from each other. We
have tested five planners, Complementary 1 and 2, Planning-
PDBs, Scorpion and Symbolic-Bidirectional on a 69 do-
mains, all the benchmarks from the previous three compe-
titions and a subset of the domains from before 2011.

Coverage
As stated in the first section, the current way of comparing
cost-optimal classical planning is by measuring the coverage
of a planner (i.e. how many problems a planner can solve on
a set of problems). Each problem solved is counted as a point
towards that planner and at the end we compare the tally of
each planner, the one with the most being the winner.

This metric is used both in competitions and in published
papers when measuring the performance of a new method.
However, this metric can become domain dependant if the
number of problem instances is not uniform over all the do-
mains. In our pre-2011 set of problems, made out of 31 do-
mains, we can see that some domains are a lot more impor-
tant than others when using this approach (seen in figure 1).

Figure 1: Size of domains from our pre-2011 benchmark

The benchmarks from 2011 and 2018, the domains were
kept at a uniform size of 20 instances each. In that case,
there is no need to normalize the results, but when using
becnhmark sets like 2014 (most had 20 instances, with three
different) and the pre-2011 we used (from 5 to 202, with
most having 30 instances), the change in domain sizes re-
quires a change in the evaluation metric.

Problems
Solved Coverage Normalized

Coverage
Planning-PDBs 1122 54.17% 59.42%

Complementary1 1099 53.06% 57.60%
Complementary2 1164 56.15% 62.08%

Scorpion 1208 58.32% 60.11%
Sym-BiDir 1053 50.84% 55.46%

Table 1: Overall results as number of problems solved, coverage
and normalized coverage.

Normalized Domain Coverage
For cases like this, we normalize the domain coverage, and
then get the average for each planner. By doing this, we
first see how much of a domain a planner can solve, and
then by averaging we get a better metric for overall domain-
independent performance of a planner.

We can see the value of such a metric in table 1, where we
can see that, even though Scorpion solves the most probles

37

Pre 2011 Coverage Normalized
Coverage IPC11 Coverage

(also Normalized) IPC14 Coverage Normalized
Coverage IPC18 Coverage

(also Normalized)
Planning-PDBs 678 50.78% 55.88% 190 67.85% 131 51.17% 53.48% 123 61.5%

Complementary1 680 50.93% 55.95% 185 66.07% 111 43.35% 46.15% 123 61.5%
Complementary2 686 51.38% 56.95% 198 70.7% 155 60.54% 61.99% 124 62%

Scorpion 785 58.80% 60.20% 190 67.85% 118 46.09% 48.77% 104 52%
Sym-BiDir 647 48.45% 53.46% 174 62.14% 129 50.39% 52.97% 114 57%

Table 2: Results of the five planners on the pre-2011, IPC11, IPC14 and IPC 18 benchmarks. For each benchmark we have the number of
problems solved, coverage and normalized coverage (where needed).

out of the total of 2071 we tested on, the normalized cov-
erage is worse than the one of Complementary2 (62.08% to
60.11%).

Planning-PDBs Complementary2 SYM-BiDir

0

0.2

0.4

0.6

0.8

1

Complementary1 Scorpion

C
ov

er
ag

e

By looking at the boxplot of the normalized per-domain
coverage of each planner, we can see an even clearer pic-
ture. The only two planners to solve problems on all the
69 domains are Planning-PDBs and Complementary2. Also,
Planning-PDBs is a lot closer to Scorpion than what the
number of instances solved would imply (1208 to 1122).

Another way of measuring the perfocmance when hav-
ing a normalized coverage, would be by getting the me-
dian value for each planner. In our test cases, we find that
Complementary2 has the best with 65%, with Scorpion and
Planning-PDBs following (both have 60%). Complemen-
tary1 and Symbolic-Bidirectional finish the top with 55%
and 50%.

4 Future suggestion
We can see that having the same number of problem in-
stances for each domain is vital for evaluating domain in-
dependence. The organizers of IPC11 and IPC18 saw this
and had an uniform number of problems. But in the future,
by using a normalized domain coverage, future organizers
can break from this constraint. Some domains would need
a more granularity to differentiate the planners (domains
where most planners get the same coverage). While orga-
nizing the competition and seeing this, organizers can add
more instances for those domains.

Also, each IPC has contributed with new domains and
problems that have been added by the community for eval-
uating their planners and subsequently adding them to their
results sections in conference and journal publications. From
just a glance at the problems we evaluated on, we can iden-
tify that from the current number of available domains there
are more instances per domain from before IPC11, with an
average of 30, and since 2011 having an average of 20. This
will make in any evaluation section the domains from before
2011 of a more importance and not have a fair comparison
of the domain-independence of a planner.

5 Conclusion
In this short paper, we propose that we should compare plan-
ners not only by the number of problems solve, but also by
normalized pre-domain coverage as to evaluate the domain
independence of a planner.

We do not want to subtract any value from the previous
method. Solving more problems will always be a great indi-
cator to the performance of the planner. However, due to the
nature of our current set of problems, we identify that the
variance in number of instances per domain is an issue and
could lead to planner developers focusing their attention to
solving the domains with the most instances.

We do not touch on any other metric of evaluating a cer-
tain technique in cost-optimal planning. There are many
other ways that we can use to show an even more complete
picture of a planner, but that is for future work.

References
[1995] Bäckström, C., and Nebel, B. 1995. Complex-
ity results for sas+ planning. Computational Intelligence
11(4):625–655.

[1994] Bylander, T. 1994. The computational complexity
of propositional strips planning. Artificial Intelligence 69(1-
2):165–204.

[2003] Fox, M., and Long, D. 2003. Pddl2. 1: An extension
to pddl for expressing temporal planning domains. Journal
of artificial intelligence research 20:61–124.

[2014] Geffner, H. 2014. Artificial intelligence: From pro-
grams to solvers. AI Communications 27(1):45–51.

[2009] Helmert, M., and Domshlak, C. 2009. Landmarks,
critical paths and abstractions: what’s the difference any-
way? In ICAPS, 162–169.

[2004] Howey, R.; Long, D.; and Fox, M. 2004. Val: Au-
tomatic plan validation, continuous effects and mixed initia-

38

tive planning using pddl. In 16th IEEE International Con-
ference on Tools with Artificial Intelligence, 294–301. IEEE.

[1998] McDermott, D. 1998. The 1998 ai planning systems
competition. In AI Magazine, 35–55.

[1961] Minsky, M. 1961. Steps toward artificial intelligence.
Proceedings of the IRE 49(1):8–30.

[2010] Sanner, S. 2010. Relational dynamic influence dia-
gram language (rddl): Language description. Unpublished
ms. Australian National University 32.

[2019] Sievers, S.; Katz, M.; Sohrabi, S.; Samulowitz, H.;
and Ferber, P. 2019. Deep learning for cost-optimal plan-
ning: Task-dependent planner selection.

[2014] Torralba, A.; Alcázar, V.; Borrajo, D.; Kissmann, P.;
and Edelkamp, S. 2014. Symba: A symbolic bidirectional a
planner. In International Planning Competition, 105–108.

39

Planner Metrics Should Satisfy Independence of Irrelevant Alternatives
(Position Paper)

Jendrik Seipp
University of Basel
Basel, Switzerland

jendrik.seipp@unibas.ch

Abstract

We argue that planner evaluation metrics should satisfy the
independence of irrelevant alternatives criterion, i.e., the de-
cision whether planner A is ranked higher or lower than plan-
ner B should be independent of planner C. We show that three
metrics used in classical planning competitions do not neces-
sarily satisfy this criterion and highlight alternative metrics
that do so.

Introduction
Arrow’s impossibility theorem is an important result from
social choice theory (Arrow 1950). One of the fairness cri-
teria it suggests is independence of irrelevant alternatives
(IIA). In the setting of planning competitions, IIA translates
to the requirement that the decision whether planner A is
ranked higher or lower than planner B must depend only on
the performance of planners A and B and not on another
planner C. We believe that IIA is a critical requirement for
planner evaluation metrics.

In the following, we show three planner evaluation met-
rics that do not satisfy IIA and give alternative metrics that
do satisfy it.

IPC Satisficing Track
In the satisficing track of the International Planning Compe-
tition (IPC) planners are given 30 minutes to find plans. The
time for finding plans is ignored, but cheaper plans are pre-
ferred. More precisely, the track uses the following metric
(which we call sat) to evaluate a planner P on task π: P gets
a score of 0 if it fails to solve π within the resource limits
and a score of Cost∗/Cost if it solves π, where Cost is the
cost of the cheapest plan that P finds for π and Cost∗ is the
cost of a reference plan, i.e., a cheapest known plan for π.
The total score for a planner is the sum of its scores over all
tasks.

It is easy to see that sat satisfies IIA if Cost∗ is always the
cost of an optimal plan for π. However, if we take solutions
for π found by the competing planners into account when
computing Cost∗(π), sat does not satisfy IIA anymore.

We show this claim with the small example in Table 1.
The leftmost table shows the cost of the reference plan R
and the cost of the plans that planners A, B and C find for

Cost R A B C

π1 2 5 4 5
π2 6 4 5 1

sat A B

π1 2/5 2/4
π2 4/4 4/5
∑

1.4 1.3

sat A B C

π1 2/5 2/4 2/5
π2 1/4 1/5 1/1
∑

0.65 0.7 1.4

Table 1: Example showing that the evaluation metric of the
IPC sequential satisficing track does not satisfy indepen-
dence of irrelevant alternatives if the reference plans (R) are
suboptimal.

two tasks π1 and π2. If only A and B participate in the com-
petition,A achieves a higher sat score thanB (middle table).
However, if C enters the competition as well, B is ranked
higher than A (rightmost table).

To mitigate this problem, it is important to use domain-
specific solvers to find reference plans of high quality.

IPC Agile Track
IPC 2014 introduced the agile track (Vallati, Chrpa, and Mc-
Cluskey 2014). It ignores solution costs and evaluates plan-
ners solely by how fast they are able to find a solution. The
first agile competition used the following evaluation metric,
which we call agl2014: for each task π in the benchmark set
that a planner P solves in under five minutes, P gets a score
of 1/(1 + log10(T/T

∗)), where T is the time P needs for
solving π and T ∗ is the minimum runtime of any participat-
ing planner. As in the satisficing track, the total score for a
planner is the sum of its scores over all tasks.

Clearly, agl2014 does not satisfy IIA, which is the reason
the agile track used a different evaluation metric in 2018.
The 2018 metric, which we call agl2018, evaluates each plan-
ner on its own. If T is the time in seconds a planner P needs
to solve task π,1 P gets the score agl2018(P, π), which is de-
fined as

agl2018(P, π) =

0 if T > 300

1 if T < 1

1− log(T)
log(300) if 1 ≤ T ≤ 300

1We define T to be ∞ if the planner exceeds the memory limit.

40

It is easy to see that agl2018 indeed satisfies IIA and is
therefore preferable to agl2014 in our opinion.

Sparkle Planning Challenge
In 2019, the Sparkle Planning Challenge will be held for
the first time. Its “primary goal [...] is to analyse the con-
tribution of each planner to the real state of the art”.2 Con-
sequently, the challenge measures the marginal contribution
of each participating planner to a portfolio selector, i.e., an
algorithm that chooses a single planner from the set of all
participating planners online for a given task. In essence, the
Sparkle evaluation metric, which we call sparkle, evaluates
a planner P by the penalized average runtime the portfolio
selector achieves when it can select from all competing plan-
ners except P.

The following example shows that sparkle does not sat-
ify IIA. Assume planners A and B enter the Sparkle Plan-
ning Challenge and the benchmark set consists of 100 tasks.
Planner A solves a single task π within the time and mem-
ory limits while planner B solves the other 99 tasks but fails
to solve π. Clearly, B wins the competition. Now imagine
that planner C also participates in the challenge. Planner C
solves the same tasks as B and has almost the same run-
times. Under sparkle, B and C contribute almost nothing to
the portfolio (since withoutB the selector can still choose C
and vice versa) and planner A wins the challenge.

We believe there is no reason for penalizing planners B
and C for performing similarly. In fact, we consider sparkle
to be quite problematic, since a scenario similar to the one in
the example above is quite likely to come up in competitions
and we see mainly two reasons for why it might.

First, the evaluation metric is easily gameable. If a team
wants to win the challenge, it just needs to guess which other
planners might be participating and submit similar planners
in addition to the “real” planner. By the competition rules,
a team of three can submit one real planner and 6 “fake”
planners. Having the leader board available online before
the submission deadline and the IPC 2018 planners readily
available makes the metric easy to exploit.

Second, and we think this reason is even more important
than the first one, the evaluation metric penalizes collabo-
ration. It favors developing closed-source planning systems
over developing planning systems openly and allowing oth-
ers to build on the system. This is the case, since all plan-
ners that share the same base planning system are likely
to perform well on similar tasks and therefore receive low
marginal contribution scores. Openly developed planning
systems have a disadvantage in the IPC as well. However,
under IPC metrics a planner that builds on an open planning
system might score slightly higher than the system, but un-
der the Sparkle Challenge metric both would get a very low
score.

An evaluation metric that satisfies IIA does not suffer
from these problems. In order to let sparkle satisfy IIA, we
only need to change it slightly. Instead of evaluating a plan-
ner with respect to all participating planners, we can evaluate
it with respect to a fixed set of baseline planners. We believe

2http://ada.liacs.nl/events/sparkle-planning-19/

that this set of baseline planners should be accumulated over
time. A reasonable first set of baseline planners could be the
set of all planners from the last IPC agile track. Subsequent
challenges should add planners from later agile tracks and/or
Sparkle planning challenges.

Acknowledgments
We thank the anonymous reviewers for their helpful com-
ments. We have received funding for this work from the
European Research Council (ERC) under the European
Union’s Horizon 2020 research and innovation programme
(grant agreement no. 817639).

References
Arrow, K. J. 1950. A difficulty in the concept of social
welfare. Journal of Political Economy 58(4):328–346.
Vallati, M.; Chrpa, L.; and McCluskey, T. L., eds. 2014. The
Eighth International Planning Competition: Description of
Participant Planners of the Deterministic Track.

41

Democratizing Usage of Planning Systems by Facilitating Research
in Algorithm Selection for Planning (Discussion Topic)

Michael Katz
IBM Research

Yorktown Heights, NY, USA
michael.katz1@ibm.om

Silvan Sievers
University of Basel
Basel, Switzerland

silvan.sievers@unibas.ch

Planning research has produced a large number of tools for various formalisms. As planning is a computationally challenging
task, it is important to come up with a variety of ideas and approaches to tackle the various sources of planning tasks’ com-
plexity. However, as a by-product, it is unclear even to an experienced planning researcher what tool will work well on a new
planning task. The challenge is even harder for a layman. Most planning tools are not easily accessible and those that are might
have inadequate performance on some tasks. The problem was partially addressed by the most recent International Planning
Competition, with the competing planners being made publicly available in Singularity containers, allowing for easily building
and running the planners. This, however, does not solve the problem of choosing the right planner for a given task. An impatient
user might forgo the option of using domain-independent planners altogether as a result of an inadequate performance of one
randomly chosen planner.

Online algorithm selection using machine learning techniques was shown to be able to produce planners that show good
performance on previously unseen domains. For optimal planning, previous success stories were mostly exploiting the fact that
most tasks, if solved, are solved quickly. Thus, being able to accurately predict planner performance opens new perspectives for
better exploiting various existing planners in practice. The research in this field does, however, currently require a rather deep
familiarity with the field of planning.

In order to allow researchers from outside of the planning community to tackle the problem of planner performance predic-
tion, we should alleviate the dependence on special knowledge in planning. One step towards achieving this goal is to provide
data consumable by machine learning tools and complying with their assumptions made. The data consists of data points that
each represents a planning task. Labels of each data point could represent performance of some planner on that task and features
of the task, to help the user determining which features allow which planners to perform well on the task.

The most important assumption about data in machine learning is independent and identical distribution. Such an assumption
is unrealistic when planning domains are created manually. Another assumption is that the data is representative of the entire
population. In domain-independent planning, where the population consists of all tasks representable in the language of choice
(e.g., PDDL), creating planning domains manually cannot produce representable data. For both assumptions to be satisfied, it
is required to produce data automatically, and in a way that will cover a variety of possible planning tasks.

We propose a new track at IPC to help achieving the mentioned goals. The track will provide an easy access to existing
planners, as well as to the data – a variety of hand-crafted, as well as automatically generated planning tasks, with additional
information on the performance of these planners on the existing tasks. If providing this information seems to be unrealistic
(e.g., due to computational load, as all planners would need to be run under the same conditions), an alternative could be to
provide the instructions of how to obtain the performance information by running the planners (provided as containers as in
the most recent IPC). Furthermore, instead of only providing a fixed set of benchmarks, one could also provide generators to
automatically generate more data.

Participants in this track would submit domain-independent planners, possibly building on the provided planners, which
would be evaluated on new domains like in the classical track of previous IPCs. In some sense, this new track would be similar
to the learning track of previous IPCs, but with planners being provided alongside benchmarks, and with the goal of creating
domain-independent rather than domain-dependent planners. The uniqueness of this track should be in alleviating the need for
special knowledge in planning. The goal is to both achieve better exposure and to ease the use of planning tools outside of the
planning community.

42

The Role of IPC in Setting Standards for Experimental Evaluation
in Planning Research (Discussion Topic)

Michael Katz
IBM Research

Yorktown Heights, NY, USA
michael.katz1@ibm.om

Silvan Sievers
University of Basel
Basel, Switzerland

silvan.sievers@unibas.ch

Designing an experiment, specifically choosing a baseline for comparison as well as the benchmark set, that adequately
evaluates the performance of a new suggested technique is a challenging task. Arguably, planner performance in a competition
may affect the choice of a baseline. Further, the benchmark set choice may be biased towards the more recent domains, or,
sometimes, the other way around, the most recent domains might be ignored.

We observed that the collection of domains introduced in a competition often aims at fostering research into a specific
issue (e.g., general costs, conditional effects, large number of parameters) and thus the best performers in a competition, while
excelling on these domains, might exhibit worse performance on other domains. This can be problematic and a misleading
conclusion, given that researchers often seem to conclude from the latest IPC results what is the state of the art in planning.

We suggest to extend the experimental evaluation performed at future IPCs to include as many available domains as possible
and computationally feasible (e.g., possibly a diverse subset of domains from previous IPCs). This extension could be an
additional evaluation to keep the current setting that evaluates planners exclusively on new, unseen domains, which we still
deem important to avoid domain-dependent overfitting of planners.

Furthermore, we suggest to create various suites according to task features and present additional performance information
for existing relevant planners on each such suite. That might require to maintain such features, as well as label planning
tasks according to these features, preferably in an automated manner. Such information can help, among other, in identifying
the current state-of-the-art for specific fragments of planning, as well as the relevant benchmark set, making designing an
experiment easier, mitigating possible biases.

43

