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Abstract 
We present constraint integer program (CIP) formulations 
for NASA planning, scheduling and autonomy problems 
along with a benchmark path planning application. CIP 
combines constraint satisfaction (CS) with mixed integer 
programming (MIP) methods. Our focus is primarily on ex-
ploring the use of CIP for planning problems, where the 
solver must generate a set of actions (in addition to schedul-
ing them), particularly in the context of an autonomous sys-
tem, where the solver is embedded in real-time 
sense/plan/act execution cycle. We describe challenging 
NASA constraint optimization problems and explore trades 
between model variations, in order to spur discussion and to 
further improve our formulations and performance. We pre-
sent results from performance experiments showing high 
sensitivity to model and problem configuration changes.  

 Introduction  
We present constraint integer program (CIP) formulations 
for NASA planning, scheduling, and autonomy problems 
along with a benchmark path planning domain. CIP com-
bines constraint programming (CP), mixed integer pro-
gramming (MIP) and linear programming (LP) methods.  
     We are particularly interested in exploring how CIP 
may be used for planning applications, where the planner 
must generate the set of actions to perform in addition to 
scheduling them. We are also interested in using CIP as the 
planning component which is embedded in a real-time 
sense/plan/act execution cycle.  

This paper is organized as follows: We first introduce 
the Rover domain, and then present CIP formulations for 
three scenarios from a simulated autonomous space habitat 
with integrated power and life support systems, identifying 
the planning and execution context where appropriate. 

Solving Constraint Integer Programs (SCIP). We im-
plemented the models presented below using SCIP 
(Achterberg 2009, Heinz and Beck 2011). SCIP is a hybrid 
solver that combines LP, MIP and CP into a unified Con-
straint Integer Program (CIP) system (https://scip.zib.de). 
SCIP’s “under-the-hood” behavior involves tight integra-
tion between LP, MIP, and CP methods. When SCIP 
solves a problem, it automatically combines methods from 
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these paradigms which share data and search state. For 
example, variable domain constraints from MIP may be 
shared with CP. This integration is mostly behind the 
scenes. For users who want to get under the hood, SCIP 
provides heuristic and search control options to manage the 
solving process details, and even to build custom constraint 
handler plug-ins. 

Rover: Path planning in grid with obstacles  
  𝑂"    Start 

     
𝑂#   𝑂$  𝑂%  

      
Goal  𝑂&   

Figure 1. Rover grid with 5 obstacles  

To facilitate discussion, we begin with a classical plan-
ning benchmark domain known as Tileworld (Pollock and 
Ringuette 1990, Levinson 1995) which involves path plan-
ning and execution in a grid world. We present a variant of 
Tileworld called Rover with moving obstacles. The Rover 
domain is a simple pedagogical scenario that has been use-
ful to develop our initial CIP formulations for planning 
problems, which we then applied to the actual NASA prob-
lems described in this paper. We also use this domain for 
performance experiments to understand the effects of mod-
el changes and scaling complexity.  
 Problem: Find an optimal sequence of moves, N, S, E, 
W to go from start position to goal position without step-
ping into a cell blocked by obstacle 𝑂'.  
 Inputs define the x and y dimensions of the grid, the 
starting and goal positions for the rover, and the maximum 
execution time (max # of moves). These inputs are: 
• xMax = grid x-dimension size 
• yMax = grid y-dimension size 
• tMax  = the maximum execution time. Assuming each 

move takes one time unit, tMax = the maximum num-
ber of rover moves.  

• Starting position (𝑠*, 𝑠,) 
• Goal position     .g0,𝑔,2.	 
Let T = {0, … , 𝑡𝑀𝑎𝑥} be the set of all execution times in 
the plan window.  



Rover position variables and constraints: 
	𝑥= = Rover x-position at time t,  0 ≤ 	𝑥= ≤ 𝑥𝑀𝑎𝑥, ∀𝑡 ∈ 𝑇 
	𝑦= = Rover y-position at time t,  0 ≤ 	𝑦= ≤ 𝑦𝑀𝑎𝑥, ∀𝑡 ∈ 𝑇	 
 
Move constraints (1) define the move choices at each time 
step. They are disjunction constraints which encode the 5 
choices for moving: West, East, South, North, or no move. 
They also enforce the constraint that rover can move only 
one step at a time (no diagonal steps). ∀𝑡 ∈ 𝑇: 
((𝑔* < 𝑥=) ∧ (𝑥=G# = 𝑥= − 1) ∧ (𝑦=G# = 𝑦=))				∨ 
((𝑥= < 𝑔*) ∧ (𝑥=G# = 𝑥= + 1) ∧ (𝑦=G# = 	𝑦=))			∨          (1) 
((𝑔, < 𝑦=) ∧ (𝑦=G# = 𝑦= − 1) ∧ (𝑥=G# =	𝑥=)) 			∨  
((𝑦= < 𝑔,) ∧ (𝑦=G# = 𝑦= + 1) ∧ (𝑥=G# =	𝑥=)) 			∨  
((𝑥= = 𝑔*) ∧ .𝑦= = 𝑔,) ∧ (𝑦=G# = 𝑦=2 ∧ (𝑥=G# =	𝑥=))			 
 
Constraints (1) say: If goal is to on left (west) of rover, 
then decrement x and no change to y-position. If goal is on 
right (east) of rover, then increment x and no change to y-
position. If goal is below (south of) rover, then decrement 
y and no change to x-position. If goal is above (north of) 
rover, then increment y and no change to x position. If rov-
er is at the goal then there is no move.  

Move constraints (1) assume there are no cul-de-sacs or 
blind alleys because the rover will never step in the oppo-
site direction from the goal. We can easily remove this 
assumption by removing all terms containing 𝑔*	or	𝑔, (the 
terms in (1) that compare rover position to goal position). 
 
Disjunction constraints: We implement (1) using SCIP’s 
disjunction constraint handler which ensures at least one of 
the disjuncts must be true in any feasible solution. Model-
ing disjunction is a key benefit of CIP compared to MIP. 
We find it more natural to model planning choices and 
mutually exclusive state descriptions with disjunction 
compared to use of slack variables or related methods re-
quired for strict MIP. All of the models in this paper use 
SCIP’s disjunction constraint in some way. 
 
Goal distance variables and constraints: 
Rover x and y goal distances at time t,  ∀𝑡 ∈ 𝑇: 
𝑑𝑥=  = x-distance from goal at time t, 0 ≤ 	𝑑𝑥= ≤ 𝑥𝑀𝑎𝑥 
𝑑𝑦= = y-distance from goal at time t, 0 ≤ 	𝑑𝑦= ≤ 𝑦𝑀𝑎𝑥 

Constraints (2) and (3) are disjunction constraints which 
bind the 𝑑𝑥=	&	𝑑𝑦=	variables to the absolute value of the 
goal distance at each time point.  
∀𝑡 ∈ 𝑇:		(𝑥= + 𝑑𝑥= = 𝑔*)	∨ (𝑥= − 𝑑𝑥= = 𝑔*)	                (2) 
																.𝑦= + 𝑑𝑦= = 𝑔,2	∨ .𝑦= − 𝑑𝑦= = 𝑔,2		              (3) 
 
Moving obstacles: We now extend the model to include 
obstacles which must be avoided. Obstacles may be mov-
ing if we are given their trajectories. The trajectories are 
vectors of integers rather than decision variables, so there 
is no additional computational complexity for moving vs. 
stationary obstacles. Let O be a set of N moving obstacles 

with known trajectories.  ∀𝑜Q ∈ 𝑂:	𝑜Q=* 		= x position of	𝑜Q at 
time t and 𝑜Q=

,
	
	= y	position	of	𝑜Q at time t.  

Blocked position indicator  𝑏Q=	is a binary variable in-
dicating a plan where the rover is in the same position as 
an obstacle, so those solutions can be rejected.  	∀𝑡 ∈
𝑇, ∀𝑜Q=:  𝑏Q= ∈ {0,1}, 𝑏Q= = 1⟺ (𝑥= = 𝑜Q=* )	∧ (𝑦= = 𝑜Q=

,)	 
𝑏Q=	is true if and only if the rover’s x and y positions equal 
x and y positions of obstacle 𝑜Q at the same time t.  

Blocked position tracking constraints enforce seman-
tics for the blocked position variable 𝑏Q=	indicating when 
rover and obstacle 𝑜Q are in the same position at time t. 
Constraints (4) include 5 disjuncts: IF rover x & y equal 
object 𝑜Q x & y at time t, THEN 𝑏Q= = 1, ELSE (in all other 
cases) 𝑏Q== 0.      ∀𝑡 ∈ 𝑇, ∀𝑖 ∈ {1,… , 𝑁}: 
((𝑥= = 𝑜Q=* ) 	∧ (𝑦= = 𝑜Q=

,) ∧ (𝑏Q= = 1)) 	∨ 
 ((𝑥= < 𝑜Q=* )	∧ (𝑏Q= = 0)) ∨                                               (4) 
 ((𝑜Q=* < 𝑥=)	∧ (𝑏Q= = 0)) ∨ 
 ((𝑦= < 𝑜Q=

,) 	∧ (𝑏Q= = 0)) ∨ 
 ((𝑜Q=

, < 𝑦=)	∧ (𝑏Q= = 0)) 
 

No blocked positions constraints reject any plan where 
the rover steps into a position blocked by an obstacle.  
∑ ∑ 	=^_*

=
`
Q 𝑏Q= 	= 0                                                            (5) 

 
Objective: 
Minimize  ∑ 	=^_*

= 𝑑𝑥= + 𝑑𝑦= 
The objective is to minimize the sum of the x and y dis-

tances from the goal (Manhattan distance) for all times.  
This model is very minimal and does not even include 

decision variables representing each move or indicating 
when the goal is reached.  The sequence of moves can be 
inferred from a solution’s 𝑥=	and	𝑦= assignments. It is an 
indirect encoding of the model since the rover moves are 
not explicitly modeled.  

The model presented above is version 2. The first ver-
sion was complex and much slower. For comparison, we 
describe key parts of version 1 below. Version 1 is a direct 
encoding where x and y positions and moves are modeled 
with separate constraints, and each move is explicitly mod-
eled with decision variables. It also tracked and rewarded 
progress towards subgoals (being aligned with the goal in 
either the x or y axis). It handles x and y positions and 
moves independently with constraints (6, 7, 8) below: 
((𝑔* < 𝑥=) ∧ (𝑥=G# = 𝑥= − 1) ∧ (𝑑*= = 1) ∧ (𝑚*= = 1)) 	∨ 
((𝑥= < 𝑔*) ∧ (𝑥=G# = 𝑥= + 1) ∧ (𝑑*= = 1) ∧ (𝑚*= = 2)) 	∨ 
((𝑥= = 𝑔*) ∧ (𝑥=G# = 𝑥=	)	∧ (𝑑*= = 0) ∧ (𝑚*= = 3))    (6) 
  
((𝑔, < 𝑦=) ∧ (𝑦=G# = 𝑦= − 1) ∧ (𝑑,= = 1) ∧ (𝑚,= = 4)) ∨ 
((𝑦= < 𝑔,) ∧ (𝑦=G# = 𝑥= + 1) ∧ (𝑑,= = 1) ∧ (𝑚,= = 5)) ∨ 
((𝑦= = 𝑔,) ∧ (𝑦=G# = 𝑦=	)	∧ (𝑑,= = 0) ∧ (𝑚,= = 6))	   (7) 
where 𝑑*=	&	𝑑,=	are x & y distances moved at time t.  
𝑚*=	&	𝑚,= are the x & y move directions at t (1=East, 
2=West, 3= no x-move.  
Constraints (6) say: If goal is on left of rover, then decre-



ment x, if goal is on right, then increment x, and if rover’s 
x position is same as goal x-position, then no move in x 
direction. Constraints (7) are the same, for y-positions.    

Constraints (8) ensure that at any time the rover moves 
only in the x or the y direction, but not both (no diagonals). 
∀𝑡: 𝑑*= + 𝑑,= ≤ 1                                                           (8) 
Model version 1 scaled so poorly that we tried the minimal 
approach of version 2, resulting in major improvements 
shown in figure 2: 
 
Rover experiments  
Test V D Size 

 
T O 1st Sol Bst 

sol 
Opt 
sol 

Sol 
time 

1 1 ↗ 6x6 13 0 45 526 --- --- 
2 2 ↗ 6x6 13 0 20 20 --- --- 
          

3 1 ↙  6x6 13 0 0.1 0.1  0.1 180 
4 2 ↙ 6x6 13 0 --- --- 0.1 3.4 
          

5 1 ↗ 6x6 10 2 --- --- --- --- 
6 1 ↙ 6x6 10 2 20 192 --- --- 
          

7 2 ↗ 6x6 13 5 562 562 --- --- 
8 2 ↙ 6x6 13 5 --- --- 0.28 1.4 
9 2 ↘ 6x6 13 5 21 21 --- --- 
10 2 ↖ 6x6 13 5 158 158 --- --- 

 Figure 2. Subset of Rover Experiment Results  

Performance experiments for the rover domain involve 
varying the initial and goal positions, varying the grid size 
(not shown), and varying the number and positions of ob-
stacles, and max number of moves. Figure 2 shows a sub-
set of our experiment results for the rover. We chose this 
subset to highlight the differences between model version 1 
(V1) and version 2 (V2), and to demonstrate the directional 
asymmetries we observe. In model V1 the x and y move 
choices were modeled using separate constraints.  Model 
V2 is the very minimal model with “unified” move choice 
constraints to handle x and y movements together. 

The columns in Table 2 are: V = the model version. D = 
direction. In tests 1 and 2, the rover starts in the lower left 
corner (0,0) and the goal is the upper right corner indicated 
by the ↗ arrow.  Tests 3 and 4 are the opposite, starting in 
the upper right and goal in the lower left, indicated by the 
↙ arrow.  We observed significant performance asymmetries 
based on which direction the rover goes. Size indicates the 
width and height of the grid (e.g., 6 x 6). T is the maximum 
number of moves in a solution (max execution time). O 
shows number of the obstacles (if any). 1st sol shows the 
time when the first solution was found. Bst sol shows the 
time when the best solution (lowest objective) was found. 
Opt sol shows the time when the optimal solution was 
found. Sol time shows when the SCIP solver converged on 
a solution and could verify that a previously found solution 
was in fact optimal. All times are in seconds. All tests had 
a maximum time limit of 10 minutes, after which SCIP 
returned any solutions it found up to that point. 

 The solver struggled when rover had to move to upper 
right (the “hard” direction). It is unclear why these asym-
metries exist but they are extremely reproducible even after 
changing from V1 to version V2. 

 Tests 1 and 2 compare V1 vs. V2 without any obstacles. 
V2 solves it in 20 seconds compared to 526 seconds for 
V1. However, neither problem converged because it was 
the “hard” direction. Tests 3 and 4 are the same except in 
the “easy” direction, where both version 1 and 2 solved the 
problem in 0.1 seconds, but it took 180 seconds for V1 to 
prove optimality compared to 3.4 seconds for V2. Tests 5 
and 6 both use version 1 with 2 obstacles, but in opposite 
directions. Test 5, the hard direction, produced no solution. 
Test 6, the easy direction, found a first answer in 20 sec-
onds and the best solution at 192 seconds before timing out 
without converging. V1 could not solve any problems with 
more than 2 obstacles. Tests 7-10 all use V2, with 5 obsta-
cles, but the direction is varied to test all 4 diagonals.  

Even with V2, we see performance asymmetries favor-
ing the direction from upper right to lower left. Test 8 
shows the best performance is when both x and y must 
decrease to reach goal. Increasing y appears costlier than 
increasing x (test 7 vs test 9).  We also found high sensitiv-
ity to SCIP heuristics. SCIP includes 7 different node se-
lector heuristics to control selection of the next search 
node.  We tried every one of the options and found that 
only depth-first search (DFS) produced any solutions be-
fore timing out at 10 minutes with no solutions. By default, 
DFS is the last heuristic SCIP chooses, so we had to over-
ride the default settings to tell SCIP to prefer DFS. 

Autonomous space habitat 
NASA has demonstrated autonomy software to control a 
simulated space habitat, similar to the International Space 
Station (Aaseng et al. 2018). The demo involved manage-
ment of the habitat’s power and life-support systems while 
a power distribution system fault occurs, reducing availa-
ble power and energy. The habitat includes various instru-
ments (power loads) like heaters, fans, and oxygen, CO2, 
and methane processing. Each load has different power 
demands, and some may have multiple power modes (off, 
low, high) with different demands depending on the mode.  

Operational constraints must be satisfied. For example, 
two loads may need to stay synchronized so they are either 
both on or both off, or possibly they cannot be on at the 
same time. For example, only one heater may be on at any 
time. There are also periodic duty cycle constraints requir-
ing loads to remain on (or off) for a given period of time 
within a larger repeating period. For example, a load must 
be ON for 15 minutes then off for 5 minutes.  
     An autonomous power control (APC) system provides 
low-level reactive “autonomy” for the power distribution 
so that if a fault occurs it can immediately safe the system 
by shutting off the lowest priority loads. APC ensures only 



that the power system, at the lowest level, will not exceed 
power or energy constraints. It does not understand opera-
tional constraints (duty cycles and coordinated load re-
quirements), and does not understand how to balance 
spacecraft-wide mission priorities and constraints involv-
ing other systems such as life support and avionics.  

The Vehicle System Manager (VSM) maintains a higher-
level view compared to APC. VSM has the job of produc-
ing the mission-level plan which maintains that system 
level perspective by integrating life support systems, sci-
ence experiments and power management. We have im-
plemented the VSM planner using SCIP. 
     Every 5 minutes, APC tells VSM how much power is 
available for the next 2 hours, then VSM produces a “pow-
er plan” covering the next 2 hours. The plan specifies the 
priority for each load and when the load should be turned 
on or off based on these spacecraft-wide constraints. The 
planner considers power demand for each load at each time 
to ensure that power demand never exceeds capacity and 
that the cumulative energy consumed during the entire 2-
hour plan window never exceeds the total available energy. 

When a fault occurs, APC will immediately safe the sys-
tem by shedding the low-priority loads (using the load pri-
orities set by the VSM planner) and then report the new 
state to VSM, including the type of fault (which compo-
nents failed), the new (reduced) power availability, and a 
list of loads which were shed while safing the system. 
VSM then generates a new power plan to rebalance the 
load priorities and schedule based on the new situation.  
     We approach this as a job scheduling problem. Each 
load is a job to be scheduled on a single machine with a 
given power capacity. Multiple jobs can be scheduled at 
the same time on the single machine but the total power 
and energy demands cannot exceed the machine capacity.  

In the nominal case, the objective is for all loads to ful-
fill their duty cycles and meet operational constraints. Af-
ter a fault occurs, the planner must decide which loads to 
shed so that the new (reduced) energy and power availabil-
ity constraints are not violated. Fault recover may involve 
adding actions too. If a load is turned off too long for fault 
recovery, then an additional load may need to be turned on 
to compensate, which may require turning something else 
off.  Parts of this model were informed by our rover exper-
iments. For example, maintaining a temperature setpoint is 
similar to the minimizing the rover’s distance to the goal. 
We’ve extracted and simplified 3 scenarios from the habi-
tat model which are explained below in isolation, although 
they are parts of a larger system.  

 
Scenario 1 - Surviving a temporary power loss 
Given Inputs: 
maxTime = plan horizon                          
𝑡 ∈ {0,… ,𝑚𝑎𝑥𝑇𝑖𝑚𝑒} = time index.      
maxPriority = maximum (largest) load priority 
minEnergy = minimum energy available limit (minimum 
battery charge level) 

𝑝=		= maximum power available (capacity) at time t	 
L = Set of all loads.   
Each load 𝑙'	 ∈ 𝐿	includes the following properties: 
𝑙'
qrQ

	  = load 𝑙'	 	priority,   1 ≤ 	𝑙'
qrQ

	 ≤ 𝑚𝑎𝑥𝑃𝑟𝑖𝑜𝑟𝑖𝑡𝑦 
𝑙'uvr^_*  = load 𝑙'	 	 max 	duration (the nominal duration, 
unless load must be shed). 
𝑙'uyu  = load 𝑙'	 	power demand 
𝑙'
yQ'z{{    = minimum time load 𝑙'	may be off between two 

iterations (default is 0). 
𝑙'
,y_*z{{   = max time load 𝑙'	may be off (default maxTime) 
𝑠𝑦𝑛𝑐ℎ𝑟𝑜𝑛𝑖𝑧𝑒𝑑(𝑙'	 , 𝑙y) means loads 𝑙'	 	𝑎𝑛𝑑	𝑙ymust start 
and end at the same time 

Load iteration notation: 𝑙'Q=  the ith iteration of 𝑙'	 	 (e.g., 
the 3rd time heater-2 is turned on).  𝑙'Q are “jobs” to be 
scheduled. We use the term “job” interchangeably with 
“load iteration” in this paper. 

 
Start time and duration variables: 

𝑙'�
�=_r=

	
 =  Start time for ith iteration of load n   

𝑙'�
uvr

	
  = Duration for ith iteration of load n:   

 0 ≤ 𝑙'�
uvr ≤ 𝑙'uvr^_*   

For VSM, maxTime = 24, representing 24 quanta, each 
of 5 minute duration. Each time t represents a 5 minute 
quantum of real-time. We have 15 loads with maximum 
priority (lowest priority) = 15. Highest priority = 1. 

 
Synchronization constraints:  The Sabatier (SAB) and 

the Plasma Pyrolysis Assembly (PPA) are two loads which 
must be synchronized so that they are either both on or 
both off at any time. SAB removes carbon dioxide from 
the air using hydrogen and a catalyst, and produces me-
thane as a byproduct. The PPA is used to recover hydrogen 
from methane byproduct.  We model the requirement that 
SAB and PPA either must both be on or must both be off at 
the same time with synchronization constraint (9): 
𝑠𝑦𝑛𝑐ℎ𝑟𝑜𝑛𝑖𝑧𝑒𝑑(𝑙'	 , 𝑙y) 	⟺	
																.𝑙'�

�=_r= = 	 𝑙y�
�=_r=2	⋀ 	 (𝑙'�

uvr = 	 𝑙y�
uvr)                  (9) 

                                                
isActive binary variables indicate if a given job is active 
at time t:  𝑙'�

Q���=Q��� = 1	 ⟺ 𝑙'Q	is	on	at	time	𝑡	                               
∀𝑙'� , ∀𝑡:  	                                                                       (10) 
((.0 ≤ 𝑙'�

�=_r= ≤ 𝑡2⋀.𝑡 ≤ 𝑙'�
�=_r= +	 𝑙'�

uvr2⋀ 	(𝑙'�
Q���=Q��� = 1))			⋁	                                                                       

																													(.0 ≤ 𝑙'�
�=_r= + 𝑙'�

uvr < 𝑡2⋀ 	(𝑙'�
Q���=Q��� = 0))				⋁	  

																																																(.𝑡 < 𝑙'�
�=_r=2		⋀ 	(𝑙'�

Q���=Q��� = 0))	)						   
Constraints (10) say: If job starts before or at t, and ends at 
or after t, then job is active, otherwise job is not active.  
 
Power and energy variables track resource usage:  
𝑑=	 =	total power demand at time t.  
𝑑=	 = ∑ 𝑙'uyu∀���			

		𝑙'�
Q���=Q���  ,  ∀𝑡                                  (11) 

∀𝑡:		𝑒= 	 = available energy at time t.     



Initial energy 𝑒� = ∑ 𝑝=y_*�Qy�
=��    

∀𝑡:		𝑒=G# 	= 𝑒= −		𝑑=                                                       (12) 
Power	demand	never	exceeds	available	power:	 
∀𝑡:	𝑑= ≤ 𝑝=                                                                     (13) 
Available energy always exceeds minimum energy limit:                                                                            
∀𝑡:		minEnergy	 < 𝑒=                                                     (14) 
                                   
isShed binary variables and constraints indicate if load 
iteration 𝑙'Qwas shed (truncated). If 𝑙'Q duration is shorter 
than the load’s maximum duration, then isShed is true. 
𝑙'�
Q����u = 1	 ⟺		𝑙'�

uvr 	< 𝑙'uvr^_*	            
∀𝑙'�:		(	(.𝑙'�

uvr < 𝑙'uvr^_*2	⋀ 	�𝑙'�	
Q����u = 1�)		⋁ 	         (15)       

														(.𝑙'�
uvr = 𝑙'uvr^_*2	⋀ 	�𝑙'�	

Q����u = 0�)	)                       
                                 

Separation constraints for duty cycles and periodic 
loads specify the distance between successive load itera-
tions. Periodic duty cycles require that a load must remain 
on for some duration, then off for some duration, within a 
larger repeating period.  A load is periodic if 𝑙'

yQ'z{{ =
	𝑙'
y_*z{{. For example, the Potable Water Dispenser 

(PWD) must be on for 15 minutes then off for 5 minutes. 
Constraints (16) enforce this periodic separation: 
𝑙'���
�=_r=

	
= 𝑙'�	

�=_r= +	 𝑙'	
uvr^_* + 𝑙'

y_*z{{                              (16)  
                                                                                                

Separation for non-periodic loads 
𝑙'
yQ'z{{ + 1 ≤ 𝑙'���

�=_r=
	
−	 𝑙'�	

�=_r= − 𝑙'�	
uvr ≤ 𝑙'

y_*z{{           (17)                                                                                                             
One is added to the lower bound because this constrains 

the 𝑙'�
�=_r=lower bound for the next time after the load’s off 

period.  This ensures successor start time is not the same as 
predecessor end time (iterations must start and end at dif-
ferent times).   Note that (16) constrains the “start-to-start” 
distance between the predecessor start and the successor 
start.  In contrast, (17) constrains the “end-to-start” dis-
tance between the predecessor end and the successor start.    

We tried using (17) for both periodic and non-periodic 
constraints (not using 16 at all). This had the appeal of 
using a single constraint instead of two, but it turned out to 
be a performance killer, probably because (17) includes 
𝑙'�
uvr  decision variables whereas (16) doesn’t.  

Backup jobs held in reserve. The exact # of load itera-
tions required for an optimal solution is not known at mod-
el creation time (when we generate the SCIP variables and 
constraints). Depending on how many loads are shed, more 
jobs may be required. In nominal cases only one iteration 
of EXP is required because it typically remains on. How-
ever, fault recovery may require that we shed the first EXP 
job and then we need a new EXP iteration to schedule after 
fault recovery. To address this, we create “benchwarmer” 
jobs which are only scheduled if necessary to restart a load 
after it’s been shed. 

These benchwarmer jobs introduce several complica-
tions to the model. In particular, we must ensure that the 
reserve jobs are “inert”, meaning their assigned start and 

duration times don’t affect the objective function unless 
they are called into action. The separation constraints en-
sure that the reserve jobs are sequenced after the nominal 
jobs. We also want backup jobs to start at the plan horizon 
and also have a duration of 0 (so backup job durations 
don’t affect the objective), but unlike the “nominal” jobs, 
which are penalized for being shed, we don’t want the pe-
nalize the backup jobs if their duration is 0. Another com-
plication is preventing premature shedding (stopping a job 
early) and starting a benchwarmer immediately to follow 
it. For example, if 𝐸𝑋𝑃	should remain on for 10 ticks, we 
prefer a plan where 𝐸𝑋𝑃#remains on for the duration and 
𝐸𝑋𝑃"  never starts, compared to shedding 𝐸𝑋𝑃#after 5 ticks 
and then starting 𝐸𝑋𝑃"to complete the remaining 5 ticks. 
We are considering an alternative approach where 
benchwarmers are created on-demand, only after a prior 
job is shed, rather creating them in advance as part of the 
initial model. 

 
Objective: We maximize the durations of higher priori-

ty jobs and minimize the # of higher priority loads which 
are shed.  We prefer to complete earlier load iterations and 
shed later ones. This is because we want to avoid prema-
ture shedding and want to keep the benchwarmers out of 
action until required as described above. We prefer to 
complete the first iteration if possible, and shed the second 
iteration, rather than cutting the first iteration short then 
starting the second iteration earlier prematurely. Thus, we 
want to favor scheduling the earliest iterations of the high-
est priority loads.  

We define a load’s weight:  𝑙'	
� = 10(y_*�rQG#) ��

¡¢�
	  . This 

is the weighting factor for all load iterations 𝑙'�	
	 	of load 𝑙'	

	 . 
We then define the job weight  𝑙'�	

� = 𝑙𝑛	
𝑤 + 1000/𝑖. 

This scheme produces weights for the objective function 
such that each higher priority load has weights that are an 
order of magnitude higher the next lowest priority load, 
and earlier jobs are weighted higher than later jobs.  Sam-
ple job weights for our example are shown in figure 3: 
 
 
 
 
 
 
 
 
 
 
 

Figure 3. Job weights 𝑙'�	
� used in objective function 

Objective Function: 
Minimize: ∑ −	𝑙𝑛𝑖	

𝑤 		𝑙'�
uvr

	
+ 𝑙𝑛𝑖	

𝑤 		𝑙'�
Q����u

	
∀���

 
This objective includes a reward for longer job durations 

sab0: 1000000000000 
sab1:  500000000000 
ppa0:  100000000000 
ppa1:   50000000000 
pwd0:     100000000 
pwd1:      50000000 
pwd2:      33333333 
exp0:      10000000 
exp1:       5000000 
exp2:       3333333 
exp3:       2500000 



and a penalty for shedding jobs. The rewards and penalties 
are proportional to the job weight.  

Figure 4. VSM planner solution 

Figure 4 shows a sample VSM solution. Each row repre-
sents a time, t. The columns SAB, PPA, PWD, EXP repre-
sent the power demand (watts) from each load at time t if 
the load is scheduled to be on at t (entry is blank if load is 
off). The avail column is available power, demand is the 
total power demand from all loads, and energy is remain-
ing energy. Loads are shown in decreasing priority from 
the left: SAB is highest priority and EXP is lowest (first to 
be shed). These priorities reflect overall system-wide prior-
ities: First protect human life, then protect overall mission, 
then protect science, then protect individual subsystems. 
SAB, PPA and PWD are all life support systems which are 
higher priority than EXP, which is a freezer containing 
science specimens (to preserve the specimens, it shouldn’t 
be off for more than 30 minutes). Notice PWD’s duty cycle 
periodicity, which is on for 3 ticks then off for 1. Also note 
that SAB and PPA are synchronized in their duty cycles. 

Figure 4 illustrates a reduced power scenario.  Available 
power (avail) decreases from 500 to 400 watts, from t = 7 
through t = 16 (highlighted by the box). This forces the 
planner to shed EXP which has a max-separation constraint 
that it may not be off for more than 6 time units (30 
minutes). This forces the planner to turn EXP back on at t 
= 11, but then turn it off again for another 5 time units, so 
that EXP is never off too long.  

Originally this solution took 1033 seconds (17.2 mins) 
to find. We then changed the start time and duration deci-
sion variables from integer to continuous and it took 1/3 of 
the time, solving this same problem in only 330 seconds 
(5.5 mins). SCIP’s solution process involves first relaxing 
the integral constraints, then solving the LP, then reintro-
ducing the integral constraints. Since our start times and 

durations are integral seconds, it seemed natural to model 
them as integers, but clearly SCIP incurs significant over-
head in relaxing then reintroducing the integral constraints.  

Continuous replanning: The plan window rolls for-
ward. Every 5 minutes, the plan window’s lower and upper 
bounds both increase by five minutes (a “quantum”). The 
plan is updated to reflect the new time bounds.  Model 
variables and constraints from the past may be discarded 
and new ones for the future may be created to cover the 
new quantum extension.  Load iterations are created as 
necessary on each quantum update.  

Plan Execution causes decision variables to be fixed to 
their actual execution times. As the plan is executed, VMS 
sends start and stop commands to each load at the sched-
uled times. Past start and stop times are now known, so 
those start and end times are fixed to the actual time when 
those commands were sent.  

From an execution perspective, if a fault forces VSM to 
stop a job earlier than planned, VSM simply sends com-
mands to the loads to turn off.  From the planning perspec-
tive, it’s more indirect. We only model job start times and 
durations (not stop times), so we cannot set the stop time 
directly. Instead we shorten (and fix) the duration of the 
current SAB and PPA iterations as follows:  
𝑆𝐴𝐵	Q	uvr = 𝑓𝑎𝑢𝑙𝑡𝑇𝑖𝑚𝑒 − 𝑆𝐴𝐵Q	

�=_r=                            (18) 
𝑃𝑃𝐴Q	

uvr = 𝑓𝑎𝑢𝑙𝑡𝑇𝑖𝑚𝑒 − 𝑃𝑃𝐴Q�=_r=                             (19) 
where faultTime is the time when the fault starts. 

If a power fault causes us to lose a battery, APC informs 
VSM about the reduced energy capacity. VSM determines 
it must shut down the lowest priority load, EXP (a science 
experiment freezer), but not for more than 30 minutes. This 
is modeled by separation constraint (17)  and can be rewrit-
ten as:  𝐸𝑋𝑃	Q�=_r= + 𝐸𝑋𝑃Quvr ≤ 𝐸𝑋𝑃	QG#	

�=_r= 	≤ 	30, where 
𝐸𝑋𝑃QG#	 is the next EXP iteration after faultTime and  
𝐸𝑋𝑃Q	is the iteration that was shut stopped at faultTime.   

 
Scenario 2 - Contingent Action Planning: This sec-
ond scenario involves planning (adding actions to the plan) 
rather than scheduling times for a given set of actions. In 
this scenario, fault recovery involves conditionally adding 
a new load to the plan, compared to prior scenario where 
we were strictly shedding loads.   This is currently imple-
mented as a standalone SCIP model but some version will 
eventually be integrated into the larger VSM application.  

In this scenario, we have the SAB and PPA loads as be-
fore. The loads SAB and PPA should both remain on until 
a fault occurs.  A fault occurs when the PPA collects too 
much residue to perform correctly. The only option is to 
turn off the PPA to perform a cleaning action which at-
tempts to fix the problem. The duration of the cleaning 
action depends on how much residue has collected. Since 
SAB and PPA are synchronized, we must also turn off 
SAB while the PPA is off for cleaning. However, if SAB is 
turned off too long, then it will cool down so much that an 
extra action “reheat” must be added to the plan to reheat 

 t  SAB  PPA   PWD    EXP  avail   demand   energy  
-------------------------------------------------- 
 0: 100  100  22.75   200   500    422.75  10500.00 
 1: 100  100  22.75   200   500    422.75  10077.25 
 2: 100  100  22.75   200   500    422.75   9654.50 
 3: 100  100          200   500    400.00   9231.75 
 4: 100  100  22.75   200   500    422.75   8831.75 
 5: 100  100  22.75   200   500    422.75   8409.00 
 6: 100  100  22.75   200   500    422.75   7986.25 
 7: 100  100          200   400    400.00   7563.50 
 8: 100  100  22.75         400    222.75   7163.50 
 9: 100  100  22.75         400    222.75   6940.75 
10: 100  100  22.75         400    222.75   6718.00 
11: 100  100          200   400    400.00   6495.25 
12: 100  100  22.75         400    222.75   6095.25 
13: 100  100  22.75         400    222.75   5872.50 
14: 100  100  22.75         400    222.75   5649.75 
15: 100  100                400    200.00   5427.00 
16: 100  100  22.75         400    222.75   5227.00 
17: 100  100  22.75   200   500    422.75   5004.25 
18: 100  100  22.75   200   500    422.75   4581.50 
19: 100  100          200   500    400.00   4158.75 
20:           22.75   200   500    222.75   3758.75 
21:           22.75   200   500    222.75   3536.00 
22:           22.75   200   500    222.75   3313.25 
 

 

 



the SAB after cleaning has resolved the problem and be-
fore turning both SAB and PPA back on.   

In other words, depending on how long SAB remains 
off, we may have to add an additional recovery action to 
the plan (to reheat the SAB before turning it back on). Spe-
cifically, if SAB remains off for 4 time units or less, then 
we don’t need the contingent reheat action, but if it re-
mains off more than 4 time units (because the cleaning 
action is taking a long time), then we must add the reheat 
action to the plan.  The model for this contingent action 
behavior is below. For brevity, we omit the PPA variables 
and constraints to illustrate the concept using SAB only. 
Since PPA and SAB are synchronized (constraint 9) they 
have nearly identical specifications.   

In this simplified model we define 5 jobs: 
𝑆𝐴𝐵#  = first iteration of SAB load (before fault). 
𝑆𝐴𝐵"  = second iteration of SAB (after fault is resolved) 
c = clean the PPA (fault recovery action) 
r = reheat the SAB if necessary (contingent action) 
f = fault “job”  (exogenous activity triggered by sensors) 
 
Variables: 
𝑆𝐴𝐵#�, 𝑆𝐴𝐵#u,𝑆𝐴𝐵#� =  start, duration, end times for 𝑆𝐴𝐵#   
𝑆𝐴𝐵"�, 𝑆𝐴𝐵"u,𝑆𝐴𝐵"� = start, duration, end times for 𝑆𝐴𝐵"   
𝑐�, 𝑐u, 𝑐� = start, duration, end times for c   
𝑟�, 𝑟u, 𝑟�	= start, duration, end times for r  
𝑓�, 𝑓u, 𝑓�	= start, duration, end times for f 
Duration constraints: 
𝑆𝐴𝐵#� = 		𝑆𝐴𝐵#� + 		𝑆𝐴𝐵#u                                               (21) 
𝑆𝐴𝐵"� = 		𝑆𝐴𝐵"� + 		𝑆𝐴𝐵"u                                               (22) 
𝑐� = 𝑐� + 𝑐u                                                                    (23) 
𝑟� = 𝑟� + 𝑟u                                                                   (24) 
𝑓� = 𝑓� + 𝑓u                                                                 (25) 
Sequence constraints: 
𝑆𝐴𝐵"	 	starts	after	𝑆𝐴𝐵#	 ends:  					𝑆𝐴𝐵#� ≤ 𝑆𝐴𝐵"�            (26) 
𝑆𝐴𝐵#	 	ends when fault starts:          	𝑆𝐴𝐵#� = 𝑓�             (27)         
𝑐𝑙𝑒𝑎𝑛𝑖𝑛𝑔	starts when fault starts:  	𝑐� = 𝑓�                   (28) 
𝑐𝑙𝑒𝑎𝑛𝑖𝑛𝑔	ends when fault ends:  			𝑐� = 𝑓�                    (29) 

The fault f is an exogenous activity, which is triggered 
by a PPA sensor. The fault is modeled as a “job” with start, 
duration and end times, just like other jobs, except the start 
time and duration are determined during execution by a 
sensor which measures the PPA residue buildup. When a 
sensor/state estimator tells VSM the fault has begun, then 
VSM fixes 𝑓� to the current execution time, and when re-
ceives a message the fault has been repaired, then it fixes 
𝑓�  to the time when fault is fixed. Before 𝑓�	is fixed to an 
actual value, the planner maximizes 𝑓� (expressed in the 
objective function). If the fault never happens, this job 
should start at the end of (outside) the plan horizon.   
 
Conditional temporal network constraint: 
(((𝑐u ≤ 4) ∧ (𝑆𝐴𝐵"� = 𝑐�)	)     ∨                                   (30) 
		((4 < 𝑐u) ∧ (𝑟� = 	 𝑐�) 	∧ (𝑆𝐴𝐵"� = 	 𝑟�))) 
 

Constraint (30) says: If the cleaning duration is less than 
or equal to 4 tine units, then 𝑆𝐴𝐵"starts when the cleaning 
ends, otherwise the contingent reheat action starts when 
cleaning ends, and 𝑆𝐴𝐵"starts after the reheat action ends. 
If cleaning takes too long, then the topology of the tem-
poral constraint network is modified by splicing the con-
tingent reheat action into place in between cleaning and 
restarting SAB. Constraints (30) define a conditional tem-
poral network, where the network topology and distance 
constraints are conditional on the length of the cleaning 
operation. This approach is related work in constraint net-
works (Allen 1991) and constraint-based planning systems 
(Muscettola et al. 2002).  
 
Objective: Minimize:  −𝑆𝐴𝐵#u − 	𝑆𝐴𝐵"u	−	𝑐� −	𝑟� − 𝑓� 

An optimal solution has the longest durations for 
𝑆𝐴𝐵#	and	𝑆𝐴𝐵" , and the latest start times for 𝑆𝐴𝐵" , 
𝑐, 𝑟	and	𝑓.	 If the fault never occurs then 𝑆𝐴𝐵",	c, r and f 
never start (their start times are outside the plan horizon).   

 
Scenario 3 - Thermostat with multi-mode heaters: 
In this final scenario, we maintain a temperature setpoint 
using 2 heater loads. Like the scenario in the prior section, 
this has been implemented as a standalone problem but a 
version of it will be integrated into the larger VMS model.  

This scenario was designed to model loads with variable 
power demands. Each heater may be in three different 
modes: Off, Low-power, or High-power.  Only one heater 
may be on at any time. The objective is to minimize the 
difference between temperature and a setpoint, and to min-
imize the power consumption.  
     This model leverages methods developed for the Rover. 
Here the current temperature corresponds to the rover’s 
current position, and the setpoint to the rover’s goal posi-
tion. We are minimizing the temperature difference be-
tween the current temperature and the setpoint, using simi-
lar variables and constraints as the Rover used to minimize 
distance from the goal.  
    There are two heaters, H1 and H2, represented by 
integer decision variables with range [0,2], representing 3 
power levels (0 = off, 1 = low power, 2 = high pow-
er).  High power demands more power and produces more 
heat output.  The low and high power levels each have as-
sociated demand (power consumption) and output (repre-
senting temp increase, in this simplified example).  
• H1 = 0:  Heater1 is off (no power is consumed and no 

heat output is produced) 
• H1 = 1:  Heater1 is on low power:  Demand  = 1 unit 

of power consumed, and  output = 2 temp units (in-
creases temp by 2). 

• H1 = 2:  Heater1 is on high power:  Demand  = 2 units 
of power consumed, and  output = 4 temp units (in-
creases temp by 4). 

The model includes ambient cooling. Temperature de-
creases by 1 unit each tick (if no heater is on, then the temp 



decreases by 1 each tick. If heater is on, then its output is 
added to this ambient decrease). 
 
Given Inputs:  
maxTime = the plan length (each step takes one time unit) 
maxTemp = maximum temperature 
𝑠=   = vector of set point temperatures for each time t 
𝑐=	= vector of maximum power capacity for each time t 
𝑎=	= vector of ambient cooling rate at each time t. Ambient 
conditions cause temperature to decrease by this amount on 
each time step.  
𝑡𝑚𝑝�  = initial temperature  
Variables:  
𝑡𝑚𝑝= = the	temperature	at	time	t, ∀	𝑡 < 𝑚𝑎𝑥𝑇𝑖𝑚𝑒  
𝑝=			   = available power at time t, ∀	𝑡 < 𝑚𝑎𝑥𝑇𝑖𝑚𝑒 
𝑒=						= available energy at time t, ∀	𝑡 < 𝑚𝑎𝑥𝑇𝑖𝑚𝑒 
𝑑== absolute value of the difference between current tem-
perature 𝑡𝑚𝑝=	and set point s at time t.  
𝑑= ∈ {0,… ,𝑚𝑎𝑥𝑇𝑒𝑚𝑝), ∀	𝑡 < 𝑚𝑎𝑥𝑇𝑖𝑚𝑒. 
𝐻1=		y	 ∈ {0,1,2} = H1	power	mode	at	time	t 
𝐻2=		y	 ∈ {0,1,2} = H2	power	mode	at	time	t 
𝐻1=		u 	= H1 power demand at time t      
𝐻2=		u 	= H2 power demand at time t 
𝐻1=		® 	 	=	heat output produced by H1 at time t 
𝐻2=		® 	 	=	heat output produced by H2 at time t 

We noticed performance differences between equivalent 
models, where both models produce feasible results using 
different constraints. We evolved three different model 
versions of heater constraints, with very different perfor-
mance results (described at the end of this section). 
 
Model Version 1: Each heater is modeled separately:  
Heater state power demand and output constraints: ∀𝑡: 
(.(𝐻1=		y	 = 02	∧ .𝐻1=		u 	 = 0	2 	∧ .𝐻1=		® 	 	= 	0)2		∨		    (31) 
		.(𝐻1=		y	 = 12	∧ .𝐻1=		u 	 = 1	2 	∧ .𝐻1=		® 	 	= 	2)2		∨		         
			.(𝐻1=		y	 = 22 ∧ .𝐻1=		u 	 = 2	2 	∧ .𝐻1=		® 	 	= 	4)2) 
 
(.(𝐻2=		y	 = 02	∧ .𝐻2=		u 	 = 0	2 	∧ .𝐻2=		® 	 	= 	0)2	∨       (32)   
		.(𝐻2=		y	 = 12	∧ .𝐻2=		u 	 = 1	2 	∧ .𝐻2=		® 	 	= 	2)2	∨		   
		.(𝐻2=		y	 = 22	∧ .𝐻2=		u 	 = 2	2 	∧ .𝐻2=		® 	 	= 	4)2)  
Constraints (31,32) are disjunctions of each heater’s three 
possible states: (mode is off, demand = 0, output = 0) or 
(mode is low, demand = 1, output = 2) or (mode is high, 
demand = 2, output = 4).  

One-Heater constraints ensure that at most one heater 
is on at any time:  .𝐻1=		y	 = 02 	∨ 	.𝐻2=		y	 = 02,			∀𝑡	   (33) 
 
Model Version 2: In this version we replace the previous 
one-heater constraint (33) with constraint (34) below, 
which ensures one heater at a time based on temperature 
and setpoint variables.  
.(𝑠= ≤ 𝑡𝑚𝑝=)	∧ (𝐻1=		y	 = 02							∧ .𝐻2=		y	 = 0)2 		∨    (34) 
.(𝑡𝑚𝑝= < 𝑠=) ∧ (1 ≤ 𝐻1=		y	 ≤ 22	∧ .𝐻2=		y	 = 0)2	∨       

.(𝑡𝑚𝑝= < 𝑠=)	∧ (1 ≤ 𝐻2=		y	 ≤ 22 	∧ .𝐻1=		y	 = 0)2 
Constraints (34) describe three possible states:  
(setpoint ≤ temperature, and both heaters are off), or  
(temperature < setpoint, and H1 is on, and H2 is off), or 
(temperature < setpoint, and H2 is on, and H1 is off). This 
was an intermediate step towards model version 3.  
 
Model Version 3: Unified constraints. This final version 
replaces all prior constraints with a single disjunction con-
straint describing 5 operating states. Each disjunct fully 
specifies the state vector for each heater including mode, 
power demand and output. This was motivated by perfor-
mance improvements we saw after making similar changes 
to the Rover model. In this version, all previous thermostat 
constraints (31-34) are replaced with (35) shown below: 
.(𝑠= ≤ 𝑡𝑚𝑝=) ∧ (𝐻1=		y	 = 02 ∧ .𝐻1=		u 	 = 02 ∧ .𝐻1=		® 	 = 02	    (35) 
					∧ (𝐻2=y = 0)	∧ (𝐻2=		u 	 = 		0)	∧ (𝐻2=		® 	 = 		0))		                ∨ 
.(𝑡𝑚𝑝= < 𝑠=)	∧ (𝐻1=		y	 = 12	∧ .𝐻1=		u 	 = 		12 ∧ .𝐻1=		® 	 = 	22  
					∧ (𝐻2=y = 0)	∧ (𝐻2=		u 	 = 		0)	∧ (𝐻2=		® 	 = 		0))	                 ∨ 
.(𝑡𝑚𝑝= < 𝑠=)	∧ (𝐻1=		y	 = 22	∧ .𝐻1=		u 	 = 		22 ∧ .𝐻1=		® 	 = 42 
					∧ (𝐻2=y = 0)	∧ (𝐻2=		u 	 = 		0)	∧ (𝐻2=		® 	 = 		0))		                ∨ 
.(𝑡𝑚𝑝= < 𝑠=)	∧ (𝐻2=		y	 = 12	∧ .𝐻2=		u 	 = 		12 ∧ .𝐻2=		® 	 = 	22 
					∧ (𝐻1=y = 0)	∧ (𝐻1=		u 	 = 		0)	∧ (𝐻1=		® 	 = 		0))		                ∨ 
.(𝑡𝑚𝑝= < 𝑠=)	∧ (𝐻2=		y	 = 22	∧ .𝐻2=		u 	 = 		22 ∧ .𝐻2=		® 	 = 	42 
					∧ (𝐻1=y = 0)	∧ (𝐻1=		u 	 = 		0)	∧ (𝐻1=		® 	 = 		0))	 
	 
Constraints (35) are a disjunction of these 5 possible states: 
(setpoint ≤ temperature, and H1 & H2 are both off) or 
(temperature < setpoint, and H1 is low  and H2 is off) or  
(temperature < setpoint, and H1 is high and H2 is off) or 
(temperature < setpoint, and H2 is low  and H1 is off) or  
(temperature < setpoint, and H2 is high and H1 is off).  
 
Temperature difference constraints bind 𝑑=to the abso-
lute value of temp difference from setpoint at each time. 
These constraints are based on the rover goal distance con-
straints (2) and (3).          ∀𝑡: 
(𝑡𝑚𝑝= + 𝑑= = 𝑠=) 	∨ 	(𝑡𝑚𝑝= − 𝑑= = 	 𝑠=)	, 0 ≤ 𝑑=          (36) 
Temperature change constraints:    
∀𝑡:	𝑡𝑚𝑝=G#	 = 𝑡𝑚𝑝= + 	𝐻1=		® 	 + 	𝐻2=		

®
	 − 𝑎=                  (37) 

Available power constraints: 
∀𝑡: 𝑝=G# = 𝑐= − 	𝐻1=		u 	 − 	𝐻2=		

u
		                                     (38) 

Available energy constraints:  
Initial energy	𝑒� = ∑ 𝑎=y_*�Qy�

=�� . 
∀𝑡:		𝑒=G# 	= 𝑒= − 	𝐻1=		u 	 − 	𝐻2=		

u
		                                   (39) 

 
	 Objective:  The	objective	is	to	minimize	the	sum	of	the	
temperature	 differences	 from	 setpoint	 for	 all	 times,	
similar	to	the	rover	minimizing	goal	distance,	while	also	
minimizing	power	demand:			Min:		∑ 𝑑= + 𝐻1𝑡		

𝑑
	∀= + 𝐻2𝑡		

𝑑
	.  

 
Reactive execution proceeds through a sense/plan/act 

cycle. At each execution time t, the actual current tempera-
ture is read from sensors and the variable 𝑡𝑚𝑝= is fixed to 



the sensed temperature reading for t = the current execu-
tion time step.  All future temperatures (𝑡𝑚𝑝=G#…)	are pre-
dicted by the planner using the above constraints, but the 
first 𝑡𝑚𝑝= in each execution cycle comes from the sensor. 
After fixing 𝑡𝑚𝑝= to the sensed value, SCIP is called to re-
solve the problem.  
 
Model Version maxTime 1st sol Opt sol Solve time 
1 6 4.05 6.92 32.07 
2 6 --- 11.99 39.48 
3 6 0.86 1.46 4.56 
     

1 8 60.57 100.6 632.37 
2 8 --- 140.33 491.5 
3 8 --- 1.4 30.85 
     

1 10 411.49 --- --- 
2 10 897.92 --- --- 
3 10 --- 12.23 222.72 

Figure 5. Thermostat Results 

Thermostat results are shown in Figure 5. For each model 
version, we compare the times required to find a first solu-
tion, the time until finding the optimal solution, and the 
“Solve time”, which is time when the solver converged to 
prove optimality and returns before reaching the 30-minute 
solver time limit. All times are in seconds.  

Note the differences between 1st sol, opt sol, and solve 
time. We compared three different problem sizes: 6, 8 and 
10 (maxTimes), representing increasing difficulty. Most 
notable is how well version 3 performs, which mirrors the 
performance improvement we saw when we made similar 
model changes to the rover. Version 3 strongly outper-
forms the others in every metric. It’s the only version to 
find an optimal solution for the largest problem (maxTime 
= 10). The other two versions timed out after 30 minutes 
on this largest problem without converging. Version 2 only 
outperforms version 1 in one case: a faster solve time for 
the middle-sized problem (maxTime = 8).  

Conclusion and future work 
We presented CIP formulations for three NASA scenar-

ios from an autonomous space habitat project, focusing on 
the use of CIP for planning and execution scenarios where 
the set of actions to be scheduled is not known in advance 
and execution-time faults require reactive replanning.  
 Our overall conclusion is that it is possible to model 
dynamic planning and execution problems using SCIP. In 
particular the disjunction constraint is a natural way to 
model action choices and action outcomes as disjunctive 
states, which bind binary indicator variables to state de-
scriptions. Such planner choices would be much harder to 
model with pure LP or MIP.  

Performance within a real-time context is a key chal-
lenge. We demonstrated initial performance results show-

ing solution times are very sensitive to model changes and 
problem configuration. Initial results show we can signifi-
cantly improve performance by unifying some constraints 
(but not necessarily all of them).  We also discovered sig-
nificant performance improvement when we changed VSM 
decision variables from integer to continuous.  

We will continue experiments to explore how formula-
tion variations affect performance, and to better understand 
SCIP’s search heuristics and parameters. We will try to 
identify the cause of the tenacious directional performance 
asymmetry we observed in the Rover experiments. We 
have not yet tested changing all integer variables to contin-
uous with all models presented above, but intend to do so. 
We are updating and integrating the VSM subproblems 
described above into a single model, and extending the 
model to support a new set of loads and fault scenarios, 
and integration with new habitat subsystem simulators. 
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