
A Capacitated Vehicle Routing and Scheduling Problem for Passengers: A
Modelling and Solution Approach

Sergio Ferrer, Miguel A. Salido, Giancarlo Nicolò, Federico Barber and Adriana Giret
{serfers2, msalido, giani1,fbarber, agiret}@dsic.upv.es

Universitat Politècnica de València
Spain

Abstract

In main cities, many of our daily transport requirements are
executed by service provider’s that must optimize their re-
sources in order to provide the services. Some examples of
such services are transportation of school children, courier
services, bus tour, etc. In these services, delivery or timely
arrival are very important and desirable features that require
scheduling and routing of vehicles. One of the most studied
combinatorial optimization problems is the Vehicle Routing
Problem (VRP) due to its directly application to many real-
world cases. This paper describes a novel version of the VRP,
named Capacitated Vehicle Routing and Scheduling Prob-
lem for Passengers (CVRSPP). The aim of this problem is
to schedule a set of buses to different services satisfying a set
of constraints. This problem models a real case of the actual
discretionary transport industry for groups of passengers, in
which every group can hire a bus to travel from one city to
any other. The travelers have some requirements that must be
satisfied by the transport company and the solution must sat-
isfy the needs from the transport company. When all these
constraints are considered, the proposed problem (CVRSPP)
can be considered a Capacitated with Fixed Service Time,
Maximum Waiting Time and No Depots VRP problem. To
this end, a formal mathematical model is proposed and two
metaheuristics are developed to solve real-life instances. The
empirical results show that the proposed techniques are more
competitive than other adapted approaches for solving the
VRP.

Introduction
The Vehicle Routing and Scheduling Problem (VRSP) is a
well-known problem studied in the literature. The interest
and relevance of the VRSP comes from its directly applica-
tion in real-world environments where the problem is solved
by many industries in order to provide their services or to
schedule their resources to optimize the associated costs to
the logistic needs (Uchoa et al. 2017). The VRP is a com-
plex combinatorial optimization problem that can be seen
as a combination of 2 problems: the Travelling Salesperson
Problem (TSP) and the Bin Packing Problem (BPP) which
are well known NP-hard problems (Tavares et al. 2003;
Korf 2002).

The basic version of the VRP (Dantzig and Ramser 1959)
consists of delivering a set of packages to a set of customers

distributed on a map taking into account that all delivery ve-
hicles start and finish their service at one single depot, min-
imizing the cost of the routes and the size of the required
fleet. This first approach of the VRP makes some assump-
tions in order to simplify the problem, such as: having one
single depot, a homogeneous fleet of vehicles, infinite load
for each vehicle, etc.

Due to the high applicability of this problem to multiple
contexts, the VRP basic assumptions make it difficult to di-
rectly apply it to real life problems, so several variants of
the basic version have been proposed. They try to adapt the
formalization of the problem to the real needs of the applica-
tion environment by removing the basic assumptions or by
adding new ones. Some of the most studied versions of the
VRP are:

• Capacitated Vehicle Routing Problem (CVRP)(Gen-
dreau, Laporte, and Potvin 2002a). In this version all ve-
hicles have a maximum capacity that cannot be exceeded
and the whole fleet is considered to be uniform, so the
maximum capacity is the same for all vehicles. A more
complex version of this approach, but also more realistic,
can be formalized. In the Multi-Capacity VRP (MCVRP)
version (Baldacci, Battarra, and Vigo 2008), every single
vehicle has associated a maximum-capacity, that might
vary among vehicles.

• Multiple Depot Vehicle Routing Problem (MDVRP)
(Lahyani, Coelho, and Renaud 2018). This version mod-
els the case in which a delivery company has different
depots spread across the map. If the costumers are orig-
inally clustered on depots, the problem could be solved
by solving multiple VRPs independently, but when de-
pots and customers are not related, the problem must be
modeled as MDVRP. Solving a MDVRP requires to as-
sign each customer to a depot and then sort them in order
to minimize the cost of the travel time and the size of the
fleet.

• Vehicle Routing and Scheduling Problem with Time
Windows (VRPTW)(Solomon 1987; El-Sherbeny 2010).
In this generalization of the VRP each costumer i is asso-
ciated with a time-window [ai, bi]. Delivery to the cus-
tomer i must be made before bi, the time-window upper
bound. The vehicle can arrive to the customer address i
before ai, the time-window lower bound, but in order to

service the client, it must have to wait until ai. In some
contexts, the VRPTW also has a time window [a0, b0] for
the depot. Vehicles cannot leave the depot before a0 and
must be back before b0.
Many techniques of different nature can be found in lit-

erature to solve VRP and its several versions. It is well-
known that exact algorithms can only solve small instances
of the problem (Laporte 1992; Dinh, Fukasawa, and Luedtke
) and they become unviable quickly as the problem grows.
Given the intrinsic difficulty of this problem, approximation
methods seem to be the most promising for practical size
problems. In (Rey et al. 2018), the authors propose a new
hybrid approach based on Ant Colony Optimization (ACO)
combined with Route First-Cluster Second methods and Lo-
cal Search procedures to produce high quality solutions for
the VRP. Furthermore, the implementation can be executed
on multicore CPUs and GPUs using the computing power
of modern GPUs programming technologies. It outperforms
current ACO-based VRP solvers and proves to be competi-
tive with other high performing metaheuristic solvers.

In (Wei et al. 2018), the VRP with two-dimensional load-
ing constraints (2L-CVRP) is studied (Iori 2005). It designs
a set of min-cost routes that start and finish their paths in the
depot in order to serve all customers with two-dimensional
rectangular weighted items. The paper proposes a Simu-
lated Annealing algorithm with a special mechanism that
allows to cooling and raising the temperature repeatedly in
order to solve four different versions of 2L-CRVP. The re-
sults outperform all existing algorithms on the four versions
and reach or improve the best-known solutions for most in-
stances.

In (Yi and Bortfeldt 2018), the capacitated vehicle rout-
ing problem with three-dimensional loading constraints (3L-
CVRP) (Gendreau et al. 2006) is solved. The authors com-
bine existing state-of-the-art approaches in a high-level
framework that stepwise solves the problem. In the first step,
a Genetic Algorithm (GA) (Moura and Oliveira 2009) is pro-
posed for solving the container loading problem to find good
placements for the packages inside the vehicles. Finally, in
the second step, the routing problem is solved by means of a
hybrid algorithm which combines a Tabu Search with a Tree
Search Algorithm (Bortfeldt 2012). The results show that us-
ing the proposed high-level system, the computational effort
can be significantly reduced.

In this paper, a new version of the VRSP to transport
groups of passengers is proposed. In state-of-the-art ap-
proaches, the majority of VRP works are focused on pack-
age delivery scenarios. Some applications on passengers
bus transportation can be found in (Bowerman, Hall, and
Calamai 1995; Özkan Ünsal and Yiǧit 2018; Miranda et al.
2018). Nevertheless, they are normally focused on optimiz-
ing regular or school routes with a cyclic behavior (the same
route and/or schedule every day). The problem we are deal-
ing with in this paper does not have cyclic behavior since it
is focused on on-demand discretionary routes for transport-
ing groups of passengers instead of groups of packages. We
propose and compare several techniques in order to study
which of them are better for this new context for VRP.

It is also interesting to distinguish between routing prob-

lems and scheduling problems. If the customers being ser-
viced have no time restrictions and there are no precedence
relationships, then the problem is a pure routing problem.
However, if there is a specified time for the service to take
place, then a scheduling problem exists. Otherwise, we are
dealing with a combined routing and scheduling problem
(Haksever et al. 2000). In our case, both time and precedence
constraints are in place, which define a combined routing
and scheduling problem. In (Beck, Prosser, and Selensky
2003), the authors propose a mapping for any VRP to get
an equivalent Job Shop Scheduling problem (JSP). Follow-
ing that approach the services and vehicles from VRP are
respectively treated as jobs and machines in JSP.

Problem proposal
In this section, a new version of the VRP is proposed. The
main objective of the proposed version is to schedule a set
of trips/jobs in a set of vehicles/machines trying to mini-
mize the total traveled distance. Through out this paper, the
trips definition and features are from a real company case
that tries to optimize passenger transportation at a national
level. Passengers transportation entails a set of constraints
that change the nature of the pure VRP and compels us to
consider new features: Capacitated with Fixed Service Time,
Maximum Waiting Time and No Depots:
• Capacitated: if a group of N passengers needs to travel

from one city to another, the assigned vehicle (machine)
for this service (job) must have, at least,N available seats.
As in the classical version of the CVRP, the selected ve-
hicle may exceed the needs of the service. Henceforth, it
is assumed that, for each group of passengers of size K,
there is always one vehicle with size greater or equal to
K. Furthermore, group partitioning is not allowed , i.e. a
given group cannot simultaneously travel in multiple ve-
hicles.

• Fixed Service Time (FST): if a group of passengers trav-
els from city A to city B, the service time (time needed
to travel from A to B) is fixed and no pre-emption is al-
lowed. Notice that this is not the conventional Time Win-
dow (TW) in VRPTW. TW is defined as a temporal slot
in which a package must be delivered to a customer, but
within the TW the vehicle may do different deliveries to
multiple customers and it has freedom to decide when to
service the customer associated with the TW. Due to the
time constraint added by this feature, the VRP is trans-
formed into a VRSP as concluded in (Haksever et al.
2000).

• No Depots (ND): a group of passengers may hire a bus
from any city of the network. All cities are supposed to
have available buses, so the concept of depot, which is
a requirement for delivery industry, is not required for
passengers transportation industry. Also notice that this
is not the Multiple Depot (MD) approach from MDVRP.
The main difference between MD and ND is that, in MD
approaches, depots are normally supposed to be a small
subset of the whole set of cities but in ND every single
city can indistinctly be a depot or not and it can change
its condition depending on the needs of the problem. This

approach forces to consider that each vehicle has its own
depot corresponding to its native city.

• Maximum Waiting Time (MWT): all vehicles must re-
turn to their native/origin cities, i.e. the vehicles first de-
parting city, but they can perform more services until re-
turning to their hometown. To wait in a non-native city
until the next service starts is allowed but it implies ex-
tra costs (subsistence and accommodation allowance for
the vehicle driver, taxes for parking fees on public roads,
etc.). Thus, MWT is the maximum time that the vehicles
are allowed to wait between services instead of returning
to their native city.
If all these features are considered, the classical VRP is

transformed into the new proposed version of the problem:
Capacitated Vehicle Routing and Scheduling Problem for
Passengers (CVRSPP).

Problem specification
An instance of the proposed problem is the combination of
four elements: a graph G = (V,E,C), representing the
map, a specification of the customers demand D, a maxi-
mum waiting time MWT and a set B of available vehicles.
Each element is formalized as follows:
• G = (V,E,C) where

– V = {v1, v2, . . . , vm} is the set of vertices of the
graph, each one representing a city, where m = |V |
is the total number of cities.

– E = {(vi, vj) | i 6= j; vi, vj ∈ V } is a set of edges
of the graph. An edge between 2 cities means that it is
possible to travel between them.

– C = {cvi,vj = [ti,j , di,j], ∀(i, j) ∈ E} is the set of
costs associated to the edges in E. Notice that each
edge has two different associated costs:
∗ ti,j : is the time needed for traveling from vi to vj .
∗ di,j : is the distance between cities vi and vj .

• D = {d1, d2, . . . , dN} is the set of N requested services.
Each service di = [pi, qi, ri, si] is composed of four pa-
rameters:
– pi ∈ V : is the departure city for service i.
– qi ∈ V : is the arrival city for service i.
– ri: is the departure time for service i. Service i must

start at ri in pi and must end at ri + tpiqi in qi. Delays
are not allowed.

– si: is the size (number of passengers) of service i.
• MWT : is the global parameter for the whole instance

indicating the Maximum Waiting Time allowed between
services.

• B = {b1, b2, . . . , ba}: is the set of available vehicles. A
vehicle bi can transport a maximum of ci passengers. The
number of total available buses is a = |B|.
In many environments, where this problem can be ap-
plied, the set B is not taken into account. For example,
let’s suppose a travel agency that wants to hire buses for
the transportation of its customers to different airports
from multiple cities during a large period of time. In this

context, the agency can hire as many buses as it needs
from multiple bus companies around the country. Hence-
forth this approach will be used, which, in practice, only
implies that consider B as an infinite set, or at least, a
large enough set to assign one different vehicle to each
service.
An instantiation of the problem is a tuple s =

[x1, x2, . . . , xN] | xi ∈ B where xi is the vehicle/machine
assigned to service/job i. Notice that, in the proposed prob-
lem, the departure and arrival time is fixed, so the objective
is not to sort the services/jobs, but how to schedule them in
vehicles/machines in order to save resources. Thus, a com-
plete solution is an assignment of machines to all jobs. Jobs
assigned to the same machine are sorted by their departure
time. An instantiation s is a solution S if the following con-
straints are satisfied:

1. All services/jobs assigned to the same vehicle/machine
must be compatible. Two services/jobs are compatible if
they satisfy the following constraints:
• They do not overlap in time, and also there is enough

time for traveling from the arrival city of the first ser-
vice to the departure city of the second service (eq. 1).

rj > ri+tpiqi+tqipj ∀i, j ∈ D | xi = xj ∧ rj ≥ ri
(1)

• The waiting time between two services is less or equal
to MWT (eq. 2).

rj − (ri + tpiqi + tqipj
) ≤MWT

∀i, j ∈ D | xi = xj ∧ rj > ri
(2)

2. The capacity of the vehicle is not exceeded (eq. 3).

cxi ≥ si ∀xi ∈ s (3)

The cost of a solution S = [x1, x2, . . . , xM] | xi ∈
B can be measured in terms of multiple factors, such as:
the size of the fleet needed or the total unused kilometers
(unused kilometers are the kilometers that the vehicles need
for traveling between jobs without passengers). The size of
the fleet can be defined as:

|F | : F = {xi ∈ S} (4)

To formally define unused kilometers, some auxiliary def-
initions are provided:
• SVv = {i | xi ∈ S ∧ xi = v}: is the set of services

assigned to vehicle v.
• SBj = {i ∈ {1, N} | ri + tpiqi < rj ∧ xi = xj}:
SBj : is the set of services assigned to the same vehicle
than service j but scheduled before it.

• JPj = argmax
i∈SBj

ri is the job that immediately precede

job j.
Using these definitions, the total unused kilometers (UK)
traveled by all the vehicles of a given solution can be for-
mally defined as:

UK =
∑
v∈F

(
∑

j∈SVv

dq
JPj

pj
) + dqyvpzv

(5)

where:

Figure 1: Solution example

• yv = argmax
i : xi∈s ∧ xi=v

ri: is the last service assigned to ve-

hicle v.
• zv = argmin

i : xi∈s ∧ xi=v
ri: is the first service assigned to ve-

hicle v.
• dqyvpzv

: is the distance between the last visited city by ve-
hicle v and the first one. This distance must be added to
the evaluation since returning to its own depot is manda-
tory for every vehicle.

The objective of the search process could be to minimize
both factors |F | and UK in a multi-objective way in or-
der to minimize both, the needed fleet and the total unused
kilometers traveled by the vehicles. To minimize |F | can be
very helpful in companies that have a small or medium fleet.
However in this work, we will focus on minimizing only
UK since the real world case under investigation does not
have any constraint on the number of available vehicles be-
cause we can hire any number of needed vehicles all around
the country.

Solving Techniques
In order to solve the proposed problem we have designed
and tested different techniques. In this section, two differ-
ent metaheuristics for solving the proposed problem are pre-
sented.

Solution representation
All the proposed techniques will use the same represen-
tation of an instantiation. Let’s suppose a problem with 6
services that can be carried out by 3 vehicles as is shown
in figure 1. This instantiation could be expressed unam-
biguously in the terms described in the previous section as
s = [2, 1, 3, 2, 2, 1]. This representation is formally use-
ful because of its simplicity but it has some computational
problems: for example, the computational cost to determine
whether an instantiation s is feasible or not is high.

In order to find a computationally affordable represen-
tation, a procedure based on push forward proposed in
(Solomon 1987) have been developed. With this new proce-
dure, an instantiation s takes the form of a list containing all
the services IDs in any order. Feasibility of a solution is not
compromised by the selected order for the services, that is,
all possible permutations of the services represent a feasible
solution, which also means that every possible instantiation
s is also a solution S . Using the proposed procedure, the
instantiation showed in figure 1 could be represented as:

s = [2, 6, 1, 5, 4, 3]

Algorithm 1: Compatibility checking
input : Pair of jobs=(s1,s2)
output: True if s1 and s2 are compatible. False

otherwise.

1 Function compatibles(s1,s2):
2 condition 1 = rs2 ≥ rs1 + tps1qs1 + tqs1ps2

//(eq. 1) ;
3 condition 2 =

rj − (ri + tpiqi + tqipj
) ≤MWT //(eq.2) ;

4 return condition 1 ∧ condition 2 ;

Notice that there is no separator to indicate when the next
service is assigned to a new vehicle. This is because, if a
separator exists, some combinations could be unfeasible. So,
given a list of services IDs in any order (a solution, by def-
inition), it is necessary to carry out a technique to build a
schedule and then evaluate it. Thus, 2 different modifica-
tions of the push forward technique have been developed:
Light Evaluation (LE) and Heavy Evaluation (HE).

Light Evaluation (LE) Let’s suppose a solution S =
[9, 2, 1, 3, 5, 7, 4, 10, 6, 11, 8, 12] for an instance problem of
12 jobs (see fig. 2). LE technique divides, by a Greedy Algo-
rithm, the whole set of services in multiple subsets, each one
corresponding to a different vehicle. This Algorithm (alg. 2)
checks, for each used vehicle (line 4), if the job could fit the
last position in that vehicle (line 6) and add it in that posi-
tion (line 7). If the job does not fit any available vehicle (line
10), a new vehicle is added and the job is introduced on it
(line 11). Figure 2 better depicts the positions that LE checks
in order to introduce a new service into the current vehicle.
Gray squares are the tested position. If a service does not fits
any gray square according to the constraints (lines 2 and 3
from alg. 1), then a new vehicle is added with the service
inside itself (line 11).

Algorithm 2: LE algorithm
input : A list of services IDs: solution S
output: A division of the services IDs in subsets,

each one corresponding to a vehicle.

1 vehicles = [] ;
2 for s ∈ S do
3 introduced = False ;
4 for b ∈ vehicles do
5 last position = Length(b) - 1 ;
6 if compatibles(b[last position], s) then
7 b.append(s) ;
8 introduced = True ;
9 break;

10 if ¬introduced then
11 vehicles.append([s]) ;
12 return vehicles;

Heavy Evaluation (HE) LE is a fast way to build a feasi-
ble schedule from any solution s because it only checks one

Figure 2: LE checked positions

Algorithm 3: HE algorithm
input : A list of services IDs: solution S
output: A division of the services IDs in subsets,

each one corresponding to a vehicle.

1 vehicles = [] ;
2 for s ∈ S do
3 introduced = False ;
4 for b ∈ vehicles do
5 for s1 ∈ b do
6 if compatibles(s1, s) then
7 b.append(s, position(s1)) ;
8 introduced = True ;
9 break;

10 if introduced then
11 break;
12 if ¬introduced then
13 vehicles.append([s]) ;
14 return vehicles;

single position for each available vehicle. This procedure
can be modified to check all positions in the vehicle. This
variation will probably find better solutions but the compu-
tational cost is higher. This alternative is presented as Heavy
Evaluation. A comparison between these 2 procedures will
be carried out in the evaluation section. Algorithm 3 shows
the HE procedure and figure 3 shows the positions (gray
squares) that HE checks for introducing a new service into
the current vehicle.

GRASP
Greedy Randomized Adaptive Search Procedure (GRASP)
is a metaheuristic commonly used to solve combinatorial op-
timization problems. The GRASP metaheuristic proposes a
constructive phase, where a solution is found in a random-
ized greedy way and a local search phase where the solu-
tion is improved. The first phase is executed until a timeout
is reached and the process returns the best solution found.
Afterwards the second phase tries to improve the solution.
Two variants of the GRASP algorithm have been imple-
mented: GRASP with local search after the constructive pro-
cess (GRASP after) and GRASP with local search during the
constructive process (GRASP during). Algorithm 4 shows
the GRASP procedure. Line 4 is used only in ”GRASP dur-

Figure 3: HE checked positions

Algorithm 4: GRASP algorithm
input : A list S of sorted services and a timeout T
output: A division of the services IDs in subsets,

each one corresponding to a vehicle.

1 best eval = inf;
2 while ¬timeout do
3 sched = constructive phase(S);
4 sched = local search(sched) //GRASP

DURING;
5 if evaluation(sched) < best eval then
6 best eval = evaluation(sched);
7 best = sched;
8 best = local search(best) //GRASP AFTER;
9 return best ;

ing” version and line 8 is used only in ”GRASP after” ver-
sion. Evaluation in line 5 is carried out in terms of UK (see
eq. 5)

GRASP constructive phase works as follows:
1. Services are introduced, sorted by their ri (input).
2. A process looks for a subset of compatible services (lines

7-8) and schedule them in the same vehicle (line 10).
Scheduled services are removed from the list (line 11) and
the process continues with the remaining services (line 7).
The probability of linking two services (line 9) i, j is in-
versely proportional to the distance that separates them:

1−
dqipj

max dqwpz∀w, z ∈ [1, d]
(6)

3. The process continues until the list of services remains
empty (line 3). Algorithm 5 shows the GRASP construc-
tive phase procedure.
Local search phase is executed after the constructive

phase or after the timeout assigned to the constructive phase,
depending on the GRASP version that is being executed.
The algorithm that implements the local search phase is a
simple process that iteratively tries to swap the position of
two services, to analyze if the new solution improves the
previous one, according to eq. 5. This procedure is proposed
in alg. 6. Swap function in line 4 is a simple script that swaps
the position in the schedule of the 2 services passed as pa-
rameters. All possible pair of jobs are checked for swapping
(lines 1-2) in a O(n2) algorithm and the GRASP process

Algorithm 5: GRASP constructive phase
input : A list S of sorted services
output: A division of the services IDs in subsets,

each one corresponding to a vehicle.

1 vehicles = [] ;
2 max distance = max dqwpz

∀w, z ∈ [1, d] ;
3 for s ∈ S do
4 last = s ;
5 new vehicle = [s] ;
6 S.remove(s) ;
7 for s2 ∈ S do
8 if compatibles(last, s2) then
9 if random() ≤ 1− dlastis2j

max distance then
10 new vehicle.append(s2) ;
11 S.remove(s2) ;
12 last = s2 ;
13 vehicles.append(new vehicle) ;

14 Function compatibles(s1,s2):
15 condition 0 = s1 6= s2 ;
16 condition 1 = rs2 ≥ rs1 + tps1qs1 + tqs1ps2

//(eq. 1 ;
17 condition 2 =

rj − (ri + tpiqi + tqipj
) ≤MWT //eq.2 ;

18 return condition 0 ∧ condition 1 ∧ condition 2

ends giving as output an improved solution or the original
one.

Simulated Annealing (SA)
Simulated Annealing (Gendreau, Laporte, and Potvin
2002b) is a metaheuristic that tries to emulate the behavior
of hot materials cooling down slowly until reaching regular
solid structures. It is supposed that the slower the material
cools, the more regular and perfect will be the solid structure
reached. An iteration of the SA consists on transforming a
current solution st into a new solution s′t by making random
minor changes on st. If s′t is better than st, then st+1 will be
s′t, otherwise s′t is accepted as st+1 with a probability that is
usually decreasing as execution progresses. Formally:

st+1 =

s′t if f(s′t) > f(st)
s′t with probability pt if f(s′t) ≤ f(st)
st otherwise

where:
• f(x) is the application of equation 5 to the solution x.
• pt is the probability to accept a solution that worsens the

current solution. This probability is normally defined as:

pt = exp

(
−f(st)− f(s

′
t)

θt

)
where θt is the current time-step of the algorithm exe-
cution. This time-step allows that, as the execution pro-
gresses, it is increasingly difficult to accept solutions that
worsen the current solution.

Algorithm 6: GRASP local search phase
input : A schedule SCH = list of services separated

in vehicles
output: An improved schedule, if found. Otherwise,

the input schedule

1 for s1 ∈ vehicles do
2 for s2 ∈ vehicles do
3 eval1 = evaluation(SCH);
4 SCH.swap(s1,s2);
5 eval2 = evaluation(SCH);
6 if eval2<eval1 then
7 break;
8 else
9 SCH.swap(s2,s1) //undo swap

10 return SCH;

The proposed SA (alg. 7) transforms a solution st into s′t
by swapping the position of two randomly selected services
(lines 8-14). Evaluation of a solution is carried out by us-
ing equation 5 after the LE or HE procedures (line 15). The
SA needs an initial solution to start its execution. In order
to build this initial solution, two different approaches have
been developed:

• The initial solution is the result of randomly shuffle all
services.

• The initial solution comes from sorting all services by
their departure time ri.

Evaluation
To evaluate the proposed techniques, it is necessary to cre-
ate some problem instances. Since the CVRSPP is a new
version of the problem, there is no benchmark available in
the literature to test different solving techniques. Thus, some
real data instances provided by a confidential collaborating
company have been analyzed to generate a new synthetic but
realistic benchmark. The collaborating company is a touris-
tic operator that works at a national level in Spain, hiring and
combining the services in a centralized way. We received
the whole set of services that the company carried out dur-
ing one complete year, and the created benchmark tries to
respect the nature of this real data.

An instance of the problem is composed of 2 parts: a map
and a set of services to be carried out by vehicles. The gen-
eration of maps and services are independent processes.

A map is actually the graph G = (V,E,C) defined in
the problem specification section. The map has been created
following the following steps:

1. A 2-dimensional Euclidean grid of size 100x100 is cre-
ated.

2. 50 points, each one representing a city, are randomly lo-
cated on the grid. Each city is a vertex of the graph.

3. Vertices are located in a Euclidean space, so there exists
an Euclidean distance between each pair of vertices. This
also means that you can travel from every city to any other

Algorithm 7: Simulated Annealing
input : A List S of services and initial temperature

K
output: A scheduled solution

1 best s = S ;
2 current s = S ;
3 current eval = evaluation(LE(current s)) // or HE ;
4 best eval = current eval ;
5 iterations = 0 ;
6 while T>1 do
7 iterations += 1 ;
8 pos1 = random.int(0, length(S)) ;
9 pos2 = random.int(0, length(S)) ;

10 new s = copy(current s);
11 //swap positions ;
12 aux = new s[pos1] ;
13 new s[pos1] = new s[pos2] ;
14 new s[pos2] = aux ;
15 new eval = evaluation(LE(new s)) // or HE ;
16 if new eval < current eval then
17 best s = new s ;
18 current s = new s ;
19 current eval = new eval ;
20 else
21 energy = exp

(
− current eval−new eval

iterations

)
;

22 if energy<random() then
23 current s = new s ;
24 current eval = new eval ;
25 T = T*0.99 ;
26 return best s ;

city in the map in a straight line. The edges of the graph
represent these straight lines.

4. Distances between two cities di,j in C are the Euclidean
distances in the grid. Assuming that distances are mea-
sured in kilometers and that vehicles travel at v km/h, the
times ti,j in C between cities are defined as:

ti,j =
di,j + random(−1, 1) ∗ 0.25 ∗ di,j

v

The random component can add or subtract up to 25% of
the real distance between cities (function random(a, b)
returns a float number ∈ [a,b]). This causes that, as hap-
pens in the real-world cases, smaller distances could need
more time to be traveled than bigger ones.
The set of services D = {[pi, qi, ri, si] | ∀i ∈ [1, d]} is

also generated in a randomized way, but in this case, some
features of the real-world have been emulated in order to
have more realistic instances:
• pi: In real-world instances, it has been observed that about

10% of cities on the map were chosen by 62% of the ser-
vices as departure cities. This commonly occurs with im-
portant cities of a country. In order to emulate this behav-
ior, 10% of the cities are randomly selected as important
cities and 62% of the pi in services are select from the set

of important cities while the 38% of the remaining pi are
randomly selected.

• qi: The important cities that are commonly selected by
passengers as departure cities are also selected as arrival
cities by the 32% of the services. Again, this situation is
emulated by assigning 32% of the services to qi from the
set of important cities. Again, the remaining services are
randomly assigned as arrival city.

• ri: The time horizon for each instance is set to 15 days. In
order to have a discrete quantization of the 15 days, they
are measured in ”number of quarter hours”. Accordingly,
the departure time (ri) for each service is randomly se-
lected in the interval [0, 1440] (1440 is the total number
of quarter hours in 15 days). For example, if a service i
has its ri = 136 means that its departure time is 10:00
AM of the second day.

• si: The most commonly vehicles used for passengers
transportation have one of the following sizes: 30, 54, 55
or 70 seats. In real-world cases, 70% of the services use
vehicles with 54 or 55 seats, so si is assigned respecting
this percentage. Remaining 30% is randomly assigned.

Different sizes of instances were generated by modifying
the parameter d (number of total services). 3 classes of in-
stances were built, depending on the size, with 50 instances
each class. Table 1 shows a description of the benchmark.

The proposed benchmark for the CVRSPP were solved
with 3 different techniques: GRASP and SA from the previ-
ous section and an adaptation of the Genetic Algorithm (GA)
proposed in (Baker and Ayechew 2003). The parametriza-
tion for this GA can be summarized as:

1. the representation of an individual is made according to
LE and HE techniques. Both versions will be compared.

2. the size of the population is fixed to 600 individuals.

3. 300 individuals are selected to be crossed.

4. each individual has 30% of mutation probability. Muta-
tion consists on swapping two randomly selected services.

5. crossover is carried out by 2-Point Crossover (Kora and
Yadlapalli 2017).

6. fitness of a solution is calculated in terms of unused kilo-
meters (UK) (eq. 5).

7. regarding the substitution method, all the new individuals
that are inserted into the population are ordered by fitness
and the best 600 individuals are selected.

All techniques have been executed with a 300 seconds
timeout or a convergence criterion. This criterion stops the
search if it performs 1000 iterations without improvement.

Class name Size Number of instances
I 250 250 services 50
I 500 500 services 50
I 1000 1000 services 50

Table 1: Benchmark

Unused Kilometres (eq.5)
Technique Variant I 250 I 500 I 1000

GA LE 128695,44 268615,94 547433,06
HE 80089,4 158643,53 304641,56

SA

LE 79879,88 170450,52 346754,82
HE 82983,04 163806,78 309075,5

LE+sort 65660,04 117246,74 196706,14
HE+sort 65961,04 117.022’32 196.462’4

GRASP After 48763,74 87410,34 148574,12
During 50839,06 93497,38 159622,9

Table 2: Unused kilometers for different techniques

Table 2 shows the unused kilometers reached for each
technique with all techniques and variations. The table
shows the arithmetic average of the 50 instances per class.
GRASP has no LE and HE versions because LE and HE are
procedures to build the schedule from a representation, but
GRASP has its own procedure (algorithm 5). The annealing
versions tagged with ”+sort” means that the initial solution
for the SA was created sorting the services by their ri while
SA versions without this tag were executed initializing the
solution randomly.

As shown in table 2 it is not easy to determinate which
of the HE or LE procedures are the best options for the pro-
posed problem because on each technique, they obtain dif-
ferent results: on GA the best results come from HE but with
SA the best results come from LE, depending on the instance
size. It is also interesting to point out that, in all techniques,
when the problem doubles its size; the evaluation function
(unused kilometers) has a similar behavior since it doubles
its value, approximately.

Table 3 shows the average execution time for solving each
instance size. It can be observed that SA and GRASP have
better behavior that GA in all instances. It is also observed
than GA exceeds the timeout (300 s.) in all its executions.
This is due to the fact that GA spends all the time evaluat-
ing the initial population (the process cannot be interrupted
during the initialization). When the initialization is finished,
the search process should start but the timeout has been ex-
ceeded, so the process finishes its execution returning the
best value in the initial population. The main problem of the
GA is that the search process needs, at least, a medium-size
population to find good solutions but this population has a
very high computational cost to be maintained (evaluated
and checked for feasibility). Notice that SA and GRASP
finish the execution by the convergence criterion without
reaching the timeout. Finally, GRASP maintains the best be-
havior minimizing the unused kilometers and converging in
low time. Particularly, depending on the location of the local
search in the GRASP algorithm, the best results are obtained
in unused kilometers or in execution time. In any case, a
GRASP algorithm is considered a competitive metaheuris-
tic for solving this class of problems.

Figure 4 shows the number of buses and the number of
unused kilometers for solving all instances of class I 1000.
It can be observed that most of the instances use between
175 and 210 buses to solve their problems. The number of

Execution time (s)
Technique Variant I 250 I 500 I 1000

GA LE 306,33 315,39 343,87
HE 356,5 523,5 647,57

SA

LE 5,23 15,38 45,38
HE 6,12 26,07 106,668

LE+sort 6,93 19,9 59,16
HE+sort 68,85 229,68 836,96

GRASP After 5,7 7,68 16,43
During 5,14 5,62 7,6

Table 3: Execution time for different techniques

unused kilometers was ranged between 142000 and 154000
kms for most instances. However there is no relationship be-
tween both parameters. Using more buses does not represent
a lower amount of unused kilometers. Similar results were
obtained for I 250 and I 500.

Figure 4: Unused kilometers vs Number of buses for I 1000

Conclusions and Future Work
This paper proposes a novel version of the VRP, named Ca-
pacitated Vehicle Routing and Scheduling Problem for Pas-
sengers (CVRSPP). The main objective of this problem is
to schedule a set of buses to different services satisfying a
set of constraints. When all these constraints are considered,
the proposed problem can be considered a Capacitated with
Fixed Service Time, Maximum Waiting Time and No De-
pots VRP problem. This problem models a real case of the
actual discretionary transport industry for groups of passen-
gers. The formal mathematical model has been presented
and two metaheuristics have been developed to solve this
problem. A benchmark for the proposed problem has been
developed and it will be available at the research group web-
page. The generated benchmark respects the nature of real-
world cases providing realistic instances. The results shows
that GRASP is a competitive technique compared with other
adapted approaches for solving the VRP. It is able to save
up to 30% of unused kilometers with respect the solutions

obtained by experts in real life instances.
As future work it is proposed to add more constraints to

the problem in order to make it more realistic. Such con-
straints are related with including a maximum driving time
per driver, including some special features in some buses and
services (fridge, access for the handicapped, TV, etc.). It is
also a future work to tackle the dynamic rescheduling of this
problem since, in real-world cases, vehicles are often dam-
aged during services, traffic jams can delay arrival times,
etc. These situations can transform a feasible solution into
a non-feasible solution that requires to solve these problems
in a dynamic way.

Acknowledgements
The paper has been partially supported by the Spanish re-
search project TIN2016-80856-R and TIN2015-65515-C4-
1-R.

References
Baker, B. M., and Ayechew, M. 2003. A genetic algorithm
for the vehicle routing problem. Computers and Operations
Research 30(5):787 – 800.
Baldacci, R.; Battarra, M.; and Vigo, D. 2008. Routing a
Heterogeneous Fleet of Vehicles. Boston, MA: Springer US.
3–27.
Beck, J. C.; Prosser, P.; and Selensky, E. 2003. Vehicle
routing and job shop scheduling: What’s the difference? In
ICAPS.
Bortfeldt, A. 2012. A hybrid algorithm for the capaci-
tated vehicle routing problem with three-dimensional load-
ing constraints. Comput. Oper. Res. 39(9):2248–2257.
Bowerman, R.; Hall, B.; and Calamai, P. 1995. A multi-
objective optimization approach to urban school bus routing:
Formulation and solution method. Transportation Research
Part A: Policy and Practice 29(2):107 – 123.
Dantzig, G. B., and Ramser, J. H. 1959. The truck dispatch-
ing problem. Management Science 6(1):80–91.
Dinh, T.; Fukasawa, R.; and Luedtke, J. Exact algorithms
for the chance-constrained vehicle routing problem. Mathe-
matical Programming 172(1):105–138.
El-Sherbeny, N. A. 2010. Vehicle routing with time
windows: An overview of exact, heuristic and metaheuris-
tic methods. Journal of King Saud University - Science
22(3):123 – 131.
Gendreau, M.; Iori, M.; Laporte, G.; and Martello, S. 2006.
A tabu search algorithm for a routing and container loading
problem. Transportation Science 40(3):342–350.
Gendreau, M.; Laporte, G.; and Potvin, J.-Y. 2002a. 6. Meta-
heuristics for the Capacitated VRP. 129–154.
Gendreau, M.; Laporte, G.; and Potvin, J.-Y. 2002b. 6. Meta-
heuristics for the Capacitated VRP. 129–154.
Haksever, C.; Render, B.; Russell, R. S.; and Murdick, R. G.
2000. Service Management and Operations (2nd Edition).
Iori, M. 2005. Metaheuristic algorithms for combinatorial
optimization problems. 4OR 3(2):163–166.

Kora, P., and Yadlapalli, P. 2017. Crossover operators in ge-
netic algorithms: A review. International Journal of Com-
puter Applications 162(10).
Korf, R. E. 2002. A new algorithm for optimal bin packing.
In Eighteenth National Conference on Artificial Intelligence,
731–736. Menlo Park, CA, USA: American Association for
Artificial Intelligence.
Lahyani, R.; Coelho, L. C.; and Renaud, J. 2018. Alterna-
tive formulations and improved bounds for the multi-depot
fleet size and mix vehicle routing problem. OR Spectrum
40(1):125–157.
Laporte, G. 1992. The vehicle routing problem: An
overview of exact and approximate algorithms. European
Journal of Operational Research 59(3):345 – 358.
Miranda, D. M.; de Camargo, R. S.; Conceio, S. V.; Porto,
M. F.; and Nunes, N. T. 2018. A multi-loading school bus
routing problem. Expert Systems with Applications 101:228
– 242.
Moura, A., and Oliveira, J. F. 2009. An integrated approach
to the vehicle routing and container loading problems. OR
Spectrum 31(4):775–800.
Özkan Ünsal, and Yiǧit, T. 2018. Using the genetic algo-
rithm for the optimization of dynamic school bus routing
problem. BRAIN. Broad Research in Artificial Intelligence
and Neuroscience 9(2):6–21.
Rey, A.; Prieto, M.; Gómez, J. I.; Tenllado, C.; and Hidalgo,
J. I. 2018. A cpu-gpu parallel ant colony optimization solver
for the vehicle routing problem. In Sim, K., and Kauf-
mann, P., eds., Applications of Evolutionary Computation,
653–667. Cham: Springer International Publishing.
Solomon, M. M. 1987. Algorithms for the vehicle rout-
ing and scheduling problems with time window constraints.
Oper. Res. 35(2):254–265.
Tavares, J.; Pereira, F. B.; Machado, P.; and Costa, E. 2003.
Crossover and diversity: A study about gvr. In In Proceed-
ings of the Analysis and Design of Representations and Op-
erators (ADoRo2003, 27–33.
Uchoa, E.; Pecin, D.; Pessoa, A.; Poggi, M.; Vidal, T.; and
Subramanian, A. 2017. New benchmark instances for the
capacitated vehicle routing problem. European Journal of
Operational Research 257(3):845 – 858.
Wei, L.; Zhang, Z.; Zhang, D.; and Leung, S. C. 2018. A
simulated annealing algorithm for the capacitated vehicle
routing problem with two-dimensional loading constraints.
European Journal of Operational Research 265(3):843 –
859.
Yi, J., and Bortfeldt, A. 2018. The capacitated vehicle rout-
ing problem with three-dimensional loading constraints and
split delivery—a case study. In Fink, A.; Fügenschuh, A.;
and Geiger, M. J., eds., Operations Research Proceedings
2016, 351–356. Cham: Springer International Publishing.

