
Towards Learning Efficient Maneuver Sets for Kinodynamic Motion Planning

Aravind Sivaramakrishnan, Zakary Littlefield and Kostas E. Bekris∗

Introduction
Planning for systems with dynamics is challenging as of-
ten there is no local planner available and the only primi-
tive to explore the state space is forward propagation of con-
trols. In this context, tree sampling-based planners (LaValle
and Kuffner 2001; Karaman and Frazzoli 2011; Webb and
van Den Berg 2013) have been developed, some of which
achieve asymptotic optimality by propagating random con-
trols during each iteration (Li, Littlefield, and Bekris 2016).
While desirable for the analysis, random controls result in
slow convergence to high quality trajectories in practice.

This short position statement first argues that if a kinody-
namic planner has access to local maneuvers that appropri-
ately balance an exploitation-exploration trade-off, the plan-
ner’s per iteration performance is significantly improved.
Exploitative maneuvers drive the system to the goal as fast
as possible given local obstacle and heuristic information.
Exploration maneuvers allow the system to move in a vari-
ety of different directions so as to deal with situations that
the heuristic does not provide good guidance. Generating
such maneuvers during planning can be achieved by curat-
ing a large sample of random controls. This is, however,
computationally very expensive. If such maneuvers can be
generated fast, the planner’s performance will also improve
as a function of computation time.

Towards objective, this short position statement argues
for the integration of modern machine learning frameworks
with state-of-the-art, informed and asymptotically optimal
kinodynamic planners (Littlefield and Bekris 2018). The
proposed approach involves using using neural networks to
infer local maneuvers for a robotic system with dynamics,
which properly balance the above exploitation-exploration
trade-off. In particular, a neural network architecture is pro-
posed, which is trained to reflect the choices of an online
curation process, given local obstacle and heuristic informa-
tion. The planner uses these maneuvers to efficiently explore
the underlying state space, while still maintaining desirable
properties. Preliminary indications in simulated environ-
ments and systems are promising but also point to certain
challenges that motivate further research in this direction.

∗The authors are with the Department of Computer Science,
Rutgers University, Piscataway, New Jersey, 08854, USA. Email:
{as2578,zwl2,kb572}@rutgers.edu

Problem Setup
Consider a robot with a state space X - divided into a
collision-free Xf and obstacle subset Xobs - and a control
space U, which respects dynamics of the form: ẋ = f(x, u),
where x ∈ X and u ∈ U. The process f can be an analyt-
ical ordinary differential equation or modeled via a physics
engine.

We will refer to a finite set of piecewise-constant controls
u, each of them propagated for a specified time duration t as
a maneuver set, or U . When a sequence of maneuvers are
executed one after the other, they define a plan. A plan of
length T induces a trajectory π ∈ Π where π : [0, T ]→ Xf .

Each trajectory has a cost C according to function cost :
Π → R+. The solution trajectory must minimize this cost.
A useful technique that aids in finding solutions very quickly
is the heuristic function, h(x), which provides guidance to-
wards the goal set XG. This function is assumed to be an
admissible and consistent estimate of the cost to go from
every state in Xf to the goal.

For kinodynamic planning problems, it has been shown
that propagating random controls at every state and ap-
propriately selecting which state is expanded can guaran-
tee asymptotic optimality (Li, Littlefield, and Bekris 2016;
Hauser and Zhou 2016), i.e., the cost C of the generated tra-
jectory π approaches the optimum cost C∗ with probability
1 as the number of iterations of the algorithm increase.

Motion planning with informed maneuvers
At a high-level, a sampling-based planner, such as RRT
(LaValle and Kuffner 2001), builds a tree structure of states
reachable from the start and follows a selection-propagation
process to expand the tree until it intersects Xf . During
each iteration, a tree node is selected and a control is prop-
agated from this state. Certain instances of this framework,
such as SST (Li, Littlefield, and Bekris 2016), identify the
conditions for asymptotic optimality (AO), which involves
propagating random controls. More recent variants, such as
DIRT (Littlefield and Bekris 2018), aim to computational
efficiency by using a heuristic, while maintaining the AO
property. The heuristic can be used to: a) promote selecting
nodes closer to the goal, b) prune nodes that cannot provide
a better solution than one already discovered and c) prior-
itize the propagation of maneuvers among random candi-
dates, which bring the system closer to the goal.



Figure 1: Maneuvers for a robot planning to reach XG

(green circle) behind an obstacle (black box). The exploita-
tive control (green) greedily takes the system towards XG.
The explorative controls (red) attempt to provide coverage.

One way that the DIRT algorithm allows to use the heuris-
tic, while maintaining AO, is that it employs a set of in-
formed maneuvers at each state, which are propagated first
when the corresponding node is selected, and then it re-
verts to propagating random controls from the correspond-
ing state. A key question in this context is how to gener-
ate the set of informed maneuvers so as to improve the ef-
ficiency of the planner relative to using just random con-
trols. A promising way is to compute maneuver sets at each
state is to balance exploitation and exploration. These ma-
neuver sets can either be computed online, as we do in this
work, or pre-computed motion primitives can be used. (Piv-
toraiko and Kelly 2011) On one hand, exploitation maneu-
vers should guide the system as much as possible towards
the goal given local heuristic information. On the other
hand, exploration maneuvers should drive the system in a
diverse set of states to discover alternative paths when the
heuristic guidance is incorrect.

This section describes a naive and computationally ex-
pensive process for generating such maneuvers during the
online operation of the planner. In particular, a sufficiently
large set of random controls are first propagated from the se-
lected state. This set of random controls is then curated to
form a curated maneuver set, as outlined in Fig 1.

In more detail, a set of trajectories are generated
by randomly sampling control sequences Ucand =
{υ0, υ1, · · · , υM} and forward simulating each control for a
specified duration from a given state to generate a trajectory
set Πcand = {π0, π1, · · · , πM}. To determine the exploita-
tive trajectory from the set Πcand, the one that gets closest to
the goal state without colliding with any obstacles is chosen:

arg min
πnew∈Πcand

h(πnew(T ))

The control that generated this exploitative trajectory, u0

is added to the curated maneuver set Û . The remainingN−1

exploratory controls u1, · · · , uN for the maneuver set Û are
added incrementally. The set of trajectories that result from
a given start state x using maneuver set Û is denoted by
Π̂. Among all the trajectories in Πcand, the trajectory that
maximizes a trajectory dispersion metric dπ(·, ·) from the
previously selected trajectories in Π̂ is added to Π̂:

arg max
πnew∈Πcand

min
π∈Π̂

dπ(πnew, π).

For generating the exploratory maneuvers, this work pro-
poses to employ a metric similar to the one considered by
Green and Kelly (Green and Kelly 2007). This previous ap-
proach uses a distance metric dπ(π1, π2) to determine how
similar two trajectories are to one another. The distance met-
ric between trajectories considered here is an approximation
of the area between two trajectories. Using this metric, it
is possible to find trajectories that are sufficiently dispersed
from one another to create a wide spanning set of trajecto-
ries. While the prior work (Green and Kelly 2007) aimed to
create a single set of trajectories offline that would solve a
wide variety of problems, the approach here is used to gen-
erate a set of controls that is tailored to each state of the
robot during planning that is selected for propagation. This
strategy provides good adaptability to the environment and
is appropriate for robots with high order dynamics where a
single offline maneuver set may not be expressive enough to
solve most motion planning queries.

Iteration Comp. Time Path Cost
Random 1471 0.2 50.47
Curated 686 12.15 48.13

Table 1: Statistics for finding the first solution path between
DIRT using random and curated maneuvers.

Table 1 studies the behavior of the DIRT planner with
randomly generated and curated maneuvers. Though the cu-
rated procedure is very effective in finding a high-quality so-
lution and can do so very fast in terms of a per iteration per-
formance, the computational cost of generating the curated
maneuver set online quickly becomes prohibitive. Hence, it
is desirable to develop an approach that achieves the same
objective as the curation but can generate the maneuvers
fast. The curated planner can be used to generate a dataset of
curated maneuvers for a robot in a simulated environment.
Then, data-driven machine learning techniques can be em-
ployed to learn how to generate maneuver sets online at a
similar computational cost to selecting random controls.

(a) Example olocal. The
light region represents Xf ,
while the dark region rep-
resents Xobs.

(b) Example hlocal. The
lighter regions are regions
of decreasing heuristic
magnitude.

Figure 2: Examples of olocal and hlocal. In both cases,
the project of the robot state xc in the workspace has been
marked with an ×.



Figure 3: Computation graph of Uk = f̂(x0, olocal, hlocal). For k = N,Uk = Û = {u0, · · · , uN}.

Learning promising maneuvers
The new objective is to learn a maneuver set Û =
{u0, u1, · · · , uN}, where u0 is the exploitative control, and
u1, · · · , uN are the exploratory ones. Any control uk ∈ U
must aid the planner in finding a collision-free trajectory π
from the currently selected state xc to the desired goal xG.

The input to the learning process is constructed as fol-
lows. First, a regular set of points Xlocal in the vicinity
of xc are collision checked to generate a binary 2D im-
age olocal(xc) indicating the presence of obstacles in the
workspace (currently the focus is on navigation challenges,
where the workspace projection has a major impact on the
collision properties of robot states). The heuristic h(x) is
also evaluated at each x ∈ Xlocal, resulting in a 2D matrix
hlocal(xc). Examples of olocal and hlocal are shown in Fig 2.

In addition to xc, providing hlocal as input to the model
helps bias the model to predict an exploitative control u0 that
takes the system closer to the goal. The olocal map is used as
input to discourage the model from generating controls that
may steer the robot in directions where obstacles are present.

Figure 3 highlights the proposed architecture. The non-
convex functions Fx, Fo, Fh, represented by multi-layered
neural networks, act on the initial state xc (or x0 in the
image), the local obstacle information olocal, and the local
heuristic gradient hlocal respectively, to produce the high-
level feature representations x∗0, o

∗
local and h∗local. An op-

erator M0(x∗0, o
∗
local, h

∗
local) then produces a feature vector

x0
f , from which the first exploitative control u0 is obtained

as u0 = F 0(x0
f ), where F 0 is also a non-convex function

represented as a multi-layered neural network.
Once the first exploitative control is obtained, the remain-

ing N exploratory controls are obtained as follows.

xkf = Mk(x0
f , Uk−1) (1)

uk = F k(xkf ) (2)

where for all k ≥ 1, Uk = {u0, u1, .., uk−1}, Mk is an
operator that acts on x0

f andUk−1 to produce a feature vector

xkf , and uk is obtained as above. In this work, F k is a multi-
layered neural network. For the exploitative control (k = 0),
Uk−1 is the empty set.

In the experiments, the functions F 0, · · · , FN are all
multi-layered perceptrons with one hidden layer activated
by the Rectified Linear Unit (ReLU) activation function and
one output layer. The operator Mk is chosen to be a simple
concatenation operator. The operators M1, · · · ,MN drop
the learned heuristic representation h∗local as it is not useful
in predicting explorative controls. Two types of networks
are considered in the experiments: FC and Conv, which use
fully connected layers and convolutional layers respectively
for the functions Fo and Fh.

Evaluation
The evaluation considers a treaded vehicle with dynamics
from the literature (Pentzer, Brennan, and Reichard 2014).
The state space is 5 dim., corresponding to SE(2) augmented
by the steering angle and the forward velocity state vari-
ables. The controls are 2 dim. and correspond to the ac-
celerations on the left and right treads.

For training, obstacles are randomly placed in a 2
dim. workspace so they cover one-third of the reachable
workspace. The DIRT planner (Littlefield and Bekris 2018)
is executed with the online curation procedure on multiple
problem instances in such workspaces. The Euclidean dis-
tance between two points in the workspace is used as the
heuristic function, and the duration of the solution trajectory
as the cost function. For each node xc the planner selects
to propagate, the training process stores the olocal and hlocal
maps, as well as a maneuver set Û of size 5 (1 exploitative
control and N = 4 exploratory controls). This maneuver
set is curated from a set of 1000 randomly sampled ma-
neuvers. Two environments are considered: a simple en-
vironment where the heuristic guides the robot effectively to
the goal (Greedy), and an adversarial environment where
acting greedily does not enable the robot to reach the goal
(Explore). These environments are illustrated in Fig 4.



Algorithm NumSolns FirstSolnIters FirstSolnCost FinalSolnIters FinalSolnCost
DIRT - Random 30 3446.67 59.64 23277.57 49.44
DIRT - FC (Exploit) 30 2246.67 56.54 17050.37 49.89
DIRT - FC (All) 30 620 47.58 16921.5 45.47
DIRT - Conv (Exploit) 30 3366.67 65.03 27774.67 48.38
DIRT - Conv (All) 30 2006.67 54.8 25671.07 48.16

Table 2: Solution statistics for Greedy. All values are averaged over NumSolns. Best values highlighted in bold.

Algorithm NumSolns FirstSolnIters FirstSolnCost FinalSolnIters FinalSolnCost
DIRT - Random 30 15666.67 163.60 33254.13 149.47
DIRT - FC (Exploit) 29 12000 155 31794.86 140.06
DIRT - FC (All) 30 18766.67 133.83 28119.66 130.92
DIRT - Conv (Exploit) 29 27666.67 182.16 39924.96 172.14
DIRT - Conv (All) 30 14066.67 143.71 28194.83 139.43

Table 3: Solution statistics for Explore. All values are averaged over NumSolns. Best values highlighted in bold.

(a) Greedy (b) Explore
Figure 4: Environments: The grey rectangle us the starting
pose of the robot (facing right) and the green circle is the
goal region. The robot must avoid the red obstacles.

Tables 2 and 3 compare the performance of DIRT (af-
ter 50k iterations) for the following maneuvers: a) random
(DIRT - Random), b) exploitative control predicted either
by a Fully Connected (DIRT - FC (Exploit)) or a Convo-
lutional network (DIRT - Conv (Exploit)), and c) both ex-
ploitative and explorative controls are predicted by the net-
works ((DIRT - FC (All), DIRT - Conv (All)). The following
metrics are measured: (a) success rate over 30 experiments
(NumSolns), (b) in how many iterations does the planner
find a solution (FirstSolnIters) and of what quality (FirstSol-
nCost), and (c) similar statistics for the final solution (Final-
SolnIters, FinalSolnCost).

DIRT - FC (All) obtains the highest quality solution. The
number of iterations required for the best solution is also
the lowest for DIRT - FC (All), while the iterations required
for the first solution is lower for DIRT - FC (Exploit) in the
Explore environment and DIRT - FC (All) in the Greedy
environment. Using only the exploitative control affects the
online performance of the planner in the Explore environ-
ment, where it is not able to find a solution in every run.

Discussion
There are indications that the learned maneuvers guide the
vehicle to the goal effectively but frequently result in col-
lisions, which partly degrades performance. An improved
learning process is necessary to increase the rate of collision-
free maneuvers. Furthermore, the current cost of network
inference is more expensive than returning a random con-

trol. This makes the fully connected network return the first
path in similar time to random maneuvers, while the convo-
lutional network takes significantly longer. No special pur-
pose hardware, however, was used for the current experi-
ments, such as GPUs, which can speed up network infer-
ence. The effectiveness of the exploration controls could be
further improved by considering not only the controls propa-
gated at the current state but also the tree nodes in the vicin-
ity of the propagation. As the proposed pipeline is scaled
to higher dimensional systems, more complex environments
and realistic sensing input, there are additional considera-
tions related to data efficiency and uncertainty that must be
mitigated.

References
Green, C. J., and Kelly, A. 2007. Toward optimal sampling
in the space of paths. In ISRR, 281–292.
Hauser, K., and Zhou, Y. 2016. Asymptotically optimal
planning by feasible kinodynamic planning in a state–cost
space. IEEE Transactions on Robotics 32(6):1431–1443.
Karaman, S., and Frazzoli, E. 2011. Sampling-based Algo-
rithms for Optimal Motion Planning. IJRR 30(7):846–894.
LaValle, S. M., and Kuffner, J. J. 2001. Randomized Kino-
dynamic Planning. IJRR 20(5):378–400.
Li, Y.; Littlefield, Z.; and Bekris, K. E. 2016. Asymptoti-
cally optimal sampling-based kinodynamic planning. IJRR
35(5):528–564.
Littlefield, Z., and Bekris, K. E. 2018. Efficient and
asymptotically optimal kinodynamic motion planning via
dominance-informed regions. In IROS.
Pentzer, J.; Brennan, S.; and Reichard, K. 2014. Model-
based prediction of skid-steer robot kinematics using online
estimation of track instantaneous centers of rotation. Journal
of Field Robotics 31(3):455–476.
Pivtoraiko, M., and Kelly, A. 2011. Kinodynamic motion
planning with state lattice motion primitives. In IROS, 2172–
2179. IEEE.
Webb, D., and van Den Berg, J. 2013. Kinodynamic RRT*:
Asymptotically Optimal Motion Planning for Robots with
Linear Differential Contstraints. In ICRA.


