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Abstract

In this paper, we introduce a novel framework that can learn
to make visual predictions about the motion of a robotic agent
from raw video frames. Our proposed motion prediction net-
work (PROM-Net) can learn in a completely unsupervised
manner and efficiently predict up to 10 frames in the future.
Moreover, unlike any other motion prediction models, it is
lightweight and once trained it can be easily implemented
on mobile platforms that have very limited computing capa-
bilities. We have created a new robotic data set comprising
LEGO Mindstorms moving along various trajectories in three
different environments under different lighting conditions for
testing and training the network. Finally, we introduce a
framework that would use the predicted frames from the net-
work as an input to a model predictive controller for motion
planning in unknown dynamic environments with moving ob-
stacles.

Introduction
Prediction is often considered as one of the key and fun-
damental components of intelligence [1]. Visual prediction
often deciphers much useful information about the environ-
ment in an information-rich but high dimensional format
which presents both opportunities and challenges [3]. A suc-
cessful mechanism capable of predicting future video frames
would have many applications in the automation industry.
For robotics, the path planning problem in an unknown dy-
namic environment with moving obstacles still largely re-
mains an unsolved challenge. A key component of the prob-
lem that remains unsolved is to make predictions about the
motion of the obstacles. To illustrate the complexity of the
problem, consider an Unmanned Aerial Vehicle (UAV) fly-
ing at a speed of 5m/s or higher (which translates to a speed
of ≥ 18km/hr) in a cluttered environment, such as a forest
trail in a high wind condition. In this scenario, the percep-
tion of the camera not only depends upon the dynamics of
the objects present in the scene but also on the control ac-
tions taken by the UAV. The interaction between the robot’s
state and action with the dynamics of the scene renders the
motion prediction problem almost impossible to solve using
conventional vision-based methods such as visual servoing
[17], [7]. While making pixel level prediction on the mo-
tion on robotic agents is a challenging task, designing a mo-
tion planner based on raw predicted image frames is an even

harder task. However, it is imperative to have a mechanism
to predict the motion of the other objects present in the en-
vironment in order to solve the motion planning problem for
autonomous agents operating in a rapidly changing environ-
ment.

Recent works ([18], [21]) on motion prediction delved
into forecasting human motion but these models use very
deep architectures that ultimately renders them computa-
tionally expensive. Given that human motion is much slower
than automated vehicles, predicting higher speed motion
will have a much higher level of difficulty and computation
cost. Even with the recent advancements in mobile graph-
ics units such as NVIDIA Jetson boards, implementation of
deep architectures to solve path planning problems on small
mobile agents still remains a challenge.

Designing a light-weight motion prediction framework
is only the first step in addressing the challenge. Once
the prediction network is designed we need to devise a
mechanism to transfer raw predicted image frames into
control commands for the robot. Recent advancements in
deep reinforcement learning (DRL) [11], [9] have shown
us ways to convert raw sensory inputs into meaningful con-
trol commands. While a few model-free learning algorithms
have out-performed human operators [11], these frameworks
were designed for very limited simulated environments of
video games. Learning tasks in the real world present a wide
range of challenges as the environment becomes dynamic
with sparsely available reward feedback while the agent can
only access a partial state of the world. Finally, we need to
design the entire framework in such a manner that learning
can be enabled without the supervision of human operators.

In this work, we present a novel light-weight framework
that can forecast the trajectory of an object moving in the
robot’s work-space. The proposed Predicting Robot Motion
Network (PROM-Net) can easily be trained on raw video
data without supervision. Once trained, this network can be
implemented on an autonomous mobile agent. The network
generates the visual prediction of the surrounding environ-
ment from the first-person perspective of the robotic agent.
In order to train and test the network we also created our own
data set, using two LEGO Mindstorms under 4 different sce-
narios. To the best of our knowledge, this is the first data set
of its kind where the motion of a robotic agent is captured
from the first-person view of another robot. We also discuss



Figure 1: Visual motion planning framework

how these predicted frames can be used to design a model-
based reinforcement learning algorithm that would be able
to translate the raw predicted image frames into a meaning-
ful reward function to optimize the trajectories of the control
policies.

The paper is organized as follows: We first discuss the
existing literature on video prediction networks and model
predictive controllers (MPC) using raw image frames as in-
put and introduce the Predicting Robot Motion Network
(PROM-Net) model. Then we discuss the virtual experimen-
tal setup we created in the OpenAI-Gym framework and give
a detailed description of the real robotic dataset that was cre-
ated for testing the performance of PROM-Net. A detailed
analysis of the performance of PROM-Net is presented next,
followed by a discussion on the future scope of the work.

Related Work
The problem of video frame prediction [10], [19], [18], [21]
has gained considerable popularity in the computer vision
community in recent years. However, video data comes
with the issue of larger dimensionality with complex spatio-
temporal dynamics in raw pixel values which makes the
pixel label frame prediction task very challenging [5]. While
Convolutional Neural Networks (CNN) have proven to be
very successful at learning features from static images, [8],
[6], the idea of Convolutional Long Short Term Memory
(LSTM) networks that were designed specifically to cap-
ture the spatial and temporal dependencies in video data was
proposed by [15]. The paper [13], designed an action condi-
tional encoder-decoder network predicting future frames for
Atari games. The work in [10] employed a new adversarial
loss function for additional regularization and sharper frame
prediction. The paper [19] designed a multi-scale feedfor-
ward architecture combined with an adversarial objective
to generate a foreground-background mask to create real-
istic looking video sequences. The work in [2] presented
a framework that predicts the intention of autonomous cars
from 3D point clouds and HD maps. The paper [20] pro-
posed a framework that generated a coarse hallucination of
the possible future events from a wide angle view. In [21],
a framework that balances between reconstruction and ad-
versarial loss for the predicted frames is designed. However,
most of the current state of the art video prediction models
often require a high-end GPU enabled system to train and
test the networks which is not often a feasible option for
robotic applications.

While considerable progress has been made in DRL
[11],[12] that learns meaningful skills directly from high
dimensional raw sensory data (especially images), most of
these are restricted to simulated applications of computer
games. Only a few works like [4], [3] talks about the appli-
cation of a model based RL algorithm for robotic manipula-
tion tasks using visual foresight. To the best of our knowl-
edge, there is no existing work that addresses the problem
of an end to end motion planning for autonomous mobile
agents using visual prediction from a first person (robot) per-
spective.

Our Approach
Figure 1 shows the schematic representation of the visual
prediction based motion planning framework. It shows that
the MPC algorithm takes the frames generated by the pre-
diction network as input. The prediction network also gener-
ates a reduced dimensional state representation of the world
from the raw image inputs for the model-based controller.
This is possible as the architecture of the prediction network
is based on the encoder-decoder network philosophy. We
started with designing the prediction network with a goal of
predicting the next N image frames from the past N num-
ber of frames. Furthermore, we aim to design a very light-
weight network that can be easily implemented on a GPU
denied environment. We have successfully designed a mo-
tion prediction network that can approximate frames up to
10 time stamps ahead of time. In the following sub-section
we present a detailed description of our proposed network.

Predicting Robot Motion Network (PROM-Net)
The architecture of the model is shown in figure 2. This
model roughly follows the encoder-decoder philosophy of
autoencoder networks. The encoder network is built using
8 2D convolutional filters of size 3 × 3. The outputs are
down-sampled using a maxpooling layer of stride 2. A sec-
ond 16 channel convolution layer with filter size 5 × 5 and
stride 2, further maps the input to a 3 dimensional tensor of
size (16 × 16 × 16). These spatial feature tensors are then
passed through two consecutive Convolutional LSTM layer
having kernel size of (5× 5) and mapped into a 32 channel
feature space of size (8 × 8). The mathematical model of
Convolutional LSTM is described in [15]. The two ConvL-
STM layers capture the spatio-temporal correlations present
in the sequence of image frames and pass them to the next
decoder layer for inference.

The decoding network consists of 3 Convolutional LSTM
layers. After each ConvLSTM layer we have a deconvolu-
tion or transpose convolution layer that upsamples the size
of each feature channel and downsamples the total number
of feature channels. For example, after the first deconvolu-
tion operation, the (32 × 8 × 8) feature tensor is mapped
into a (16 × 16 × 16) feature tensor. We have used skip
connections at intermediate layers to recover from the lossy
convolution operations (shown with dotted lines in fig. 2).

We apply batch normalization operation after each Con-
volutional LSTM layer. We also upsample the number of
feature channels each time we apply a downsampling oper-
ation on the 2 dimensional spatial feature space. This kind



Figure 2: Schematic architecture of the PROM- Network

of convention has been followed in designing various pre-
vious networks such as [14],[5]. All the convolutional fil-
ters use the ReLU activation function. The entire network
is trained using the RMSProp algorithm that minimizes the
mean square loss.

PROM-Net has about 6 million trainable parameters and
once trained the network weighs only about 5 Megabytes.

Virtual Experimental Setup
For initial analysis of the networks, we set up a ROS-Gazebo
based virtual experimental environment in the OpenAI-Gym
framework for robotics [22] to obtain the training and test
data for the network. Figure 3a shows a snapshot of the
same. The virtual setup has two turtlebots, Tb1 and Tb2.
During the data collection phase, Tb1 remains stationary
while tracking and recording the movement of Tb2 using
a monocular camera. Tb2 moves in front of Tb1, from point
A to point B using a Proportional Integral Derivative (PID)
controller that corrects the positional and angular error of
the robot. We introduce variation in the PID parameters so
that no two trajectories are the same even when Tb2 is mov-
ing towards the same goal point. This introduces variance
in the local neighbourhood of the trajectories even when the
goal point is same. We also recorded video of Tb2 moving
towards 4 different target points. These 4 different target
points are (1, 0.8), (1.5,−0.8), (2 − 0.8) and (0.5,−0.5)
where the position of Tb1 is taken as the origin of the in-
ertial frame. The recorded image frames are converted to
gray scale images before being used to train the networks.
Altogether we collected about 80 different trajectories (20
trajectories in the local neighbourhood of each of the 4 goal
points).

Real Robot Motion Data-set
To evaluate the performance of PROM-Net with the real-
life data, we created our own Actual Robot Motion (ARM)
data-set, using two LEGO Mindstorms under different light-
ing conditions in 4 different environmental settings- indoor
(Atrium) daylight, indoor artificial light, and outdoor (pave-
ment) daylight and outdoor (Airstrip) sunlight. To the best of
our knowledge, this is the first of its kind data set where the
motion of a mobile robot is captured from the first-person
view of another robot. In this section, we present details on
the real robot motion data set that was collected from the

Types of
trajectory

Atrium
Daylight

Atrium
Night

Pavement Airstrip

St. Line 4 4 4 4
Arc 4 4 4 4
Incline L-R 4 4 4 4
Incline R-L 4 4 4 4

Table 1: Arrangement of no. of videos in the Data set

first person perspective of a LEGO Mindstorms robot (see
figure 3b) observing another Mindstorms moving in its field
of view.

We recorded the videos using a GoPro Hero 5 Black cam-
era at 30 fps, with a resolution of 720×1280. We later
down-sampled it to a resolution of 320×240. For the initial
phase of data gathering, we mounted the camera on a LEGO
Mindstorms robot to observe the environment and kept it
in a stationary state. In future, we will add motion to the
recording platform to add more versatility to the data which
would closely resemble the practical cases seen in a robot
path planning problems. The average speed of the moving
agent was kept at about 0.665 km/hr (approximately 11 m/s).
The recorded videos do not contain any labelled data as they
are meant for unsupervised learning algorithms.

We recorded about 1.5 hours of robot motion of the other
LEGO-bot along various trajectories consisting of approxi-
mately 120K frames without excluding any particular seg-
ments. The GoPro camera offers digital stabilization. We
used the narrow-angle shot setting during the recordings.
The wide-angle lens of this particular camera produces a sig-
nificant amount of fish-eye effect for any object moving rel-
atively close to the camera. A wide angle lens will be used in
future when we incorporate recordings of unmanned aerial
vehicles (UAV) into the data set. Unlike the autonomous
ground vehicles, the high speed operation of UAVs (Aver-
age speed of 5m/s) demands long range visual data for ef-
fective path planning. Below we describe the various sce-
narios of the recorded data. The videos are segregated in a
3:1 ratio between training and test data. The data set can
be accessed at https://sites.google.com/view/
meenakshis/dataset

https://sites.google.com/view/meenakshis/dataset
https://sites.google.com/view/meenakshis/dataset


(a) A ROS-Gazebo based virtual experimental environment has been
set up in the OpenAI-gym framework.

(b) LEGO Mindstorms with a
GoPro Hero 5 Black camera

Figure 3

Figure 4: The 4 environments from left- Atrium (daylight), Atrium (artificial light), Pavement and Airstrip, respectively
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Figure 5: PSNR comparison plot between 2 videos of equal
length from two different environment (Atrium daytime and
Pavement).

Scenarios

Among the two Lego Mindstorms bots, one was remote-
controlled via a Bluetooth module to execute four different
types of trajectories- Straight path, Inclined path (left to right
and right to left) and Arc; each with three different depths
(distance from the mounted-camera) in all of the four differ-
ent environmental settings (Figure 4). The logistics of the
recorded videos in each of the environment for each the 4
different types of trajectories are given in table 1.This was
done to incorporate diversity (Figure 5 shows the distribu-
tion of PSNR between 2 videos of equal length from 2 dif-
ferent environment) in the data set and to facilitate efficient
training of deep networks. Each trajectory in a particular
setting was repeated twice for redundancy in a single video.

Environment 1, 2: Atrium (Daylight and Artificial
Light at Night)
This setting was used for collecting two different sets of
recordings. One was during daytime using natural light (Fig-
ure 4,1st frame from left ) and the other at night using mul-
tiple light sources of white halogens (Figure 4, 2nd frame
from left). The smooth floor of the atrium results in consis-
tent motion without any jerks. However, the artificially lit
night-scene introduces complexity due to multiple shadow
formations (different intensities) of the same object.

Environment 3: Pavement
This was recorded in a sun-lit scene with nearby tree canopy
(shadows in the backdrop, Figure 4, 3rd frame from left) .
The ground (lock-tiles) adds intrinsic inconsistency in mo-
tion and is bright-colored.

Environment 4: Airstrip
This was recorded in twilight (resulting in, elongated shad-
ows) and the motion was the most jittery here due to coarse-
ness of the asphalt (Figure 4, 4th frame from left). Also,
there are tiny insects moving in the background which adds
a naturally dynamic clutter.

Results and Analysis
Initially, we trained the network in the simulated environ-
ment. In order to maintain uniformity during training, we
used the RMSProp optimizer with a batch size of 64 and
learning rate 0.001 for all the networks. Our initial investi-
gation with the simulated data set revealed that even though
fully connected LSTM networks ([16]) generates moder-
ately accurate predictions for trajectories in the close neigh-
borhood of the ones it has been trained on, it fails to general-



Figure 6: Qualitative comparison on the performance of Fully Connected LSTM network and PROM network on simulated
data set. The first row represents the ground truth, second and third row show the estimates by PROM network and the fully
connected LSTM network, respectively for time stamps 10, 15, 20, 25, 30, 35 and 40.

Figure 7: Qualitative analysis on the performance of PROM-Net trained on ARM data set. The first and thrid row from top
represents the ground truth, second and fourth row show the estimates generated by PROM-Network for time stamps 20, 30,
40, 50 and 60. The first 2 rows represent data under artificial lighting conditions and the last 2 rows are from the outdoor
environment.



ize the robot motion when the test trajectories are unlike any
training data it has seen before. The same can be inferred
from figure 6. Figure 6 also shows that PROM-Net can effi-
ciently approximate the future robot motion for unforeseen
test scenarios.

For each of the test cases, we have given the network 10
image frames as input and the network predicted the next
10 frames in future. The reconstructed frames by PROM-
Net on the real robot data set for two different environments
(indoor with artificial lights and outdoor with sunlight) are
shown in figure 7. Even though for this paper we have only
presented results with grey-scale images, our network can
be very easily modified for RGB inputs.

We have given the variation in structural similarity index
(SSIM) for all the 10 predicted frames on the real world data
set in figure 8. To compare the performance of the proposed
prediction network with a FC LSTM network we have given
the Peak Signal to Noise Ratio (PSNR) plots for both sim-
ulated and real data set in figure 9. It can be easily inferred
from the plots that PROM-Net performs well with both the
simulated and real data sets.

From figure 7, we can infer that the blurriness in the pre-
dicted frames arises due to the regression losses in convo-
lution layers. As our application is focused on solving path
planning problems for robotic agents, we can easily accom-
modate minor reconstruction loss in the predicted frames.
Our intentions are to infer the future direction of motion for
the moving objects and PROM-Net has proven to be very
effective for that purpose.

Conclusion
We presented a novel light-weight unsupervised learning
framework for robot motion prediction problems. A new
robot motion data set has been introduced to train and test
deep architectures for motion and path planning problems
with small scale mobile agents. While the present model is
capable of predicting robot motions under stationary condi-
tion, a more robust framework is needed in order to estimate
future frames where the motion of the robot influences the
data collected by the camera sensor. We are already working
towards building such models. In our future work, we plan
on designing and testing a vision based MPC on a mobile
agent for motion planning in a cluttered dynamic environ-
ment. We envisage that reward function would penalize the
controller for actions that would move the agent closer to
any obstacle and reward it when the area of the obstacle re-
duces in the predicted frames. We also plan on extending
our robot motion data-set with multiple mobile agents (hu-
man and robots) moving in the robot workspace.
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