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Abstract

Task-motion planning (TMP) addresses the problem of effi-
ciently generating executable and low-cost task plans in a dis-
crete space such that the (initially unknown) action costs are
determined by motion plans in a corresponding continuous
space. A task-motion plan for a mobile service robot that be-
haves in a highly dynamic domain can be sensitive to domain
uncertainty and changes, leading to suboptimal behaviors or
execution failures. In this paper, we propose a novel frame-
work, TMP-RL, which is an integration of TMP and rein-
forcement learning (RL), to solve the problem of robust TMP
in dynamic and uncertain domains. The robot first generates
a low-cost, feasible task-motion plan by iteratively planning
in the discrete space and updating relevant action costs evalu-
ated by the motion planner in continuous space. During exe-
cution, the robot learns via model-free RL to further improve
its task-motion plans. RL enables adaptability to the current
domain, but can be costly with regards to experience; using
TMP, which does not rely on experience, can jump-start the
learning process before executing in the real world. TMP-RL
is evaluated in a mobile service robot domain where the robot
navigates in an office area, showing significantly improved
adaptability to unseen domain dynamics over TMP and task
planning (TP)-RL methods.

Introduction
Building mobile robots that behave intelligently in real envi-
ronments is one of the central problems of robotics and arti-
ficial intelligence. Future service robots are expected to take
general requests such as “deliver coffee to Alice”. To achieve
a goal like this, the integration between high-level task plan-
ning and low-level motion planning, also known as task-
motion planning (TMP), has been widely studied for robot
manipulators (Erdem et al. 2011; Srivastava et al. 2014;
Garrett, Lozano-Perez, and Kaelbling 2018) and navigation
tasks in service robot (Lo, Zhang, and Stone 2018) or self-
driving cars (Chen et al. 2015). TMP algorithms typically
consist of a task planner that generates high-level task se-
quences in an abstract discrete space, possibly using an AI
planning approach (Cimatti, Pistore, and Traverso 2008),
and a motion planner that expands each task using algo-
rithms such as Probabilistic Random Map (Kayraki et al.
1996) or Rapidly-exploring Random Trees (LaValle 1998)
to generate a collision-free trajectory based on the current
status of the environment. This hierarchical approach re-

duces the complexity of long-horizon motion planning by
improving plan feasibility, quality, and scalability.

Despite the progress made on generating feasible and
quality offline plans, during execution, a robot can still face
domain uncertainties and changes that are not available at
modeling time. This challenge is particularly pervasive for
mobile service robots that cohabit with human and serve hu-
man requests (Veloso et al. 2015; Khandelwal et al. 2017).
Mobile service robots usually have to navigate in building-
wide areas, whose environmental dynamics involve, among
many things, crowds of people, changing lighting condi-
tions, and changed furniture layout, which are not practical
for the motion planner to accurately model. Such dynamic
changes may invalidate task-motion plans, leading to subop-
timal behaviors and execution failures. Continually learning
from execution experience and adapting to the changing do-
main is therefore crucial for mobile service robots to achieve
long-term autonomy. To this end, reinforcement learning
(RL) (Sutton and Barto 1998) has been used to build highly-
adaptive autonomous agents (Mnih et al. 2015) and improve
symbolic plan robustness and adaptability (Yang et al. 2018;
Lyu et al. 2019) in various simulation domains, becoming an
attractive approach to enable learning adaptive task-motion
plans for mobile service robots.

Aiming to improve adaptability of task-motion plans for
mobile service robots, in this paper, we propose to integrate
TMP with RL such that the robot can constantly generate
feasible, high-quality task-motion plans and rapidly learn
from execution experience to adapt to domain changes. In-
spired by PETLON, a recent task-level-optimal TMP algo-
rithm (Lo, Zhang, and Stone 2018), and PEORL, a state-of-
the-art task planning-RL framework (Yang et al. 2018), our
approach features two nested planning–reinforcement learn-
ing loops:

• The inner loop is a complete TMP algorithm, where a
symbolic plan is generated and each symbolic action is
evaluated by the motion planner. Iterative learning and
plan improvement is performed on rewards derived from
motion plan costs.

• The outer loop is for learning to generate an optimal task-
motion plan to accommodate domain uncertainty, change,
and extra reward information. Each task-motion plan gen-
erated by the inner loop is executed in the outer loop to



learn from environmental rewards. The inner loop then
uses the learned values to generate an improved plan in
the next episode. When the outer loop terminates, the
robot has learned a task-motion plan that has adapted to
the observed domain changes.

In the framework above, the inner loop generates a high
quality task-motion plan based on its own discrete and con-
tinuous models, leading to a jump-start of plan quality.
The outer-loop helps the task-motion planner to fine-tune
the plans by learning from the environment, improving the
adaptability of TMP facing domain uncertainty and change.
The duality between the inner and outer loop allows a seam-
less integration of TMP with RL such that motion planning
in a continuous model and reinforcement learning from the
real execution experience can jointly contribute to improv-
ing TMP.

Our approach is generic in the sense that a variety of task
planning, motion planning, and reinforcement learning ap-
proaches can be used. In this paper, we instantiate our ap-
proach using the same symbolic planning and reinforcement
learning approach as PEORL (Yang et al. 2018), including
action language BC (Lee, Lifschitz, and Yang 2013) for task
planning due to its expressiveness and efficient implementa-
tion using answer set solver CLINGO, and R-learning (Ma-
hadevan 1996) for reinforcement learning. We have evalu-
ated the approach both in the Gazebo simulator (Koenig and
Howard 2004) and on a real service robot that operates in
an office area. Compared to PETLON, a recent task-level-
optimal TMP algorithm (Lo, Zhang, and Stone 2018) and
PEORL, a recent Task Planning (TP)-RL approach (Yang
et al. 2018), TMP-RL demonstrates superior adaptability to
environmental uncertainties; it achieves better task perfor-
mance than PETLON, and faster convergence than PEORL.
The experiment is extended with a sequence of different sce-
narios, showing that TMP-RL can smoothly reuse learned
information to improve long-term performances.

Related Work
Task planning (Ghallab, Nau, and Traverso 2004) and mo-
tion planning (Choset et al. 2005) generate plans in sym-
bolic and continuous spaces respectively. Robots need task
planning to accomplish goals that are impossible through in-
dividual actions, and need motion planning to generate tra-
jectories that can be executed in the real world. Although
robots that operate in the real world need capabilities of both
task and motion planning, it is not until recent years that
the term of Task and Motion Planning (TMP) was used in
the literature to refer to algorithms that integrate both plan-
ning paradigms (Dantam et al. 2018; Srivastava et al. 2014;
Garrett, Lozano-Perez, and Kaelbling 2018; Lo, Zhang, and
Stone 2018; Kaelbling and Lozano-Pérez 2013; Lagriffoul
et al. 2014; Chen et al. 2015). Existing research on TMP
algorithms have various foci, such as ensuring symbolic
actions’ feasibility via motion planning (Srivastava et al.
2014), integrated symbolic planning under uncertainty and
motion planning (Kaelbling and Lozano-Pérez 2013), and
leveraging symbolic search heuristics in motion planning
space (Chen et al. 2015; Garrett, Lozano-Perez, and Kael-

bling 2018). Recently proposed PETLON (Lo, Zhang, and
Stone 2018), which uses sampling-based probabilistic mo-
tion planning methods to evaluate costs of task-level actions
is most similar to the inner loop of our work, but in our work,
we use RL to learn rewards derived from real action costs,
whereas PETLON is purely a planning method. While gen-
erating feasible, low-cost task-motion plans is the major fo-
cus of existing work on TMP, to the best of our knowledge,
mixing task-motion planning and learning from execution to
accommodate domain uncertainty and change for long range
navigation tasks in mobile robots has not been investigated
before.

The integration of symbolic planning with reinforcement
learning has been studied in a variety of approaches (Parr
and Russell 1998; Hogg, Kuter, and Munoz-Avila 2010;
Leonetti, Iocchi, and Stone 2016). Recent approaches such
as PEORL (Yang et al. 2018) and SDRL (Lyu et al. 2019)
utilize closed-loop communication between planning and
learning: an optimal symbolic plan is obtained from a mutu-
ally beneficial, iterative process of planning and learning.
These approaches are mainly evaluated in simulation do-
mains, but an integrated robot system is usually equipped
with well-designed motion planners that can be used to eval-
uate the outcomes of task plans before execution, calling for
an integration of TMP with RL. Our approach is inspired by
PEORL and PETLON, but generalizes them into two nested
loops to capture the complete task-motion planning, execu-
tion and learning loop for mobile robots. The two nested
loops allow estimates made by motion planner and values
learned from the environment to jointly improve the quality
of plans. Consequently, TMP-RL is adaptive to real-world
changes like PEORL while efficiently leveraging a motion
planner to generate economical task plans like PETLON.
To the best of our knowledge, our work is the first to ap-
ply reinforcement learning to improve adaptability of task-
motion plans for service robots, where task planning in dis-
crete spaces and motion planning, execution and learning in
continuous spaces are handled in a unified framework.

Preliminaries
In this section, we individually introduce the symbolic plan-
ning, motion planning and learning technologies that will be
combined in our framework introduced in the next section.

Symbolic Planning
An action description D in the language BC (Lee, Lifs-
chitz, and Yang 2013) includes fluent constants that rep-
resent the properties of the world and action constants. A
fluent atom is an expression of the form f = v, where
f is a fluent constant and v is an element of its domain.
An action description is a finite set of causal laws that
describe how fluent atoms are related with each other in
a single time step, or how their values are changed from
one step to another, possibly by executing actions. For in-
stance, (A if A1, . . . , Am) is a static law that states at a
time step, if A1, . . . , Am holds then A is true. Another static
law (default f = v) states that by default, the value of f
equals v at any time step. (a causes A0 if A1, . . . , Am) is a



dynamic law, stating that at any time step, if A1, . . . , Am
holds, by executing action a, A0 holds in the next step.
(nonexecutable a if A1, . . . , Am) states that at any step, if
A1, . . . , Am holds, action a is not executable.

A state s is a complete set of fluent atoms, and a transition
is a tuple 〈s1, a, s2〉 where s1, s2 are states and a is a (pos-
sibly empty) set of actions. Let I be the initial state and G
be goal state. The triple (I,G,D) is called a planning prob-
lem. A plan can be computed using answer set solver such
as CLINGO. Throughout the paper, we use Π to denote both
the plan and the transition path by following the plan. Auto-
mated planning can be achieved by an answer set solver.

Motion Planning
A configuration space includes a set of all possible, poten-
tially high-dimensional, configurations, where a configura-
tion describes a possible pose of the robot. The output of a
motion planner is a collision free trajectory, i.e., a sequence
of discrete motions that can be directly passed to the joints
of robot for execution. In this work, we consider a mobile
robot that moves in 2D spaces. where we directly search in
the 2D workspace (instead of higher-dimensional configura-
tion space). A motion planning problem can be specified by
an initial position xinit and a goal setXgoal. The 2D space is
represented as a region in Cartesian space such that the posi-
tion and orientation of the robot can be uniquely represented
as a pose (x, θ). Some parts of the space are designated as
free space, and the rest is designated as obstacle.

The motion planning problem is solved by the motion
planner Pgeo to compute a collision-free trajectory ξ∗ (con-
necting xinit and a pose xgoal ∈ Xgoal taking into account
any motion constraints on the part of the robot) with mini-
mal trajectory length Len(ξ) = L. We use Ξ to represent
the trajectory set that includes all satisfactory trajectories.
The optimal trajectory is ξ∗ = argminξ∈ΞLen(ξ), where
ξ(0) = xinit and ξ(L) = xgoal ∈ Xgoal. In particular,
we use global planner, an off-the-shelf package from the
Robot Operating System (ROS) (Quigley et al. 2009) com-
munity for motion planning, which generates trajectories us-
ing gradient descent together with standard A∗ and Dijk-
stra’s search.

R-learning for Finite Horizon Problems
A Markov Decision Process (MDP) is defined as a tuple
(S,A, P ass′ , r, γ), where S and A are the sets of symbols
denoting states and actions, the transition kernel P ass′ spec-
ifies the probability of transition from state s ∈ S to state
s′ ∈ S by taking action a ∈ A, r(s, a) : S × A 7→ R is a
reward function bounded by rmax, and 0 ≤ γ < 1 is a dis-
count factor. A solution to an MDP is a policy π : S 7→ A
that maps a state to an action. Model-free RL concerns on
learning a near-optimal policy by executing actions and ob-
serving transitions and rewards.

To evaluate a policy π, R-learning (Mahadevan 1996) ap-
plies to the expected un-discounted sum of reward for fi-

nite horizon problems. Define Jπavg(s) = E[
T∑
t=0

rt|s0 = s],

and the gain reward ρπ(s) reaped by policy π from s as

Figure 1: An illustration of our TMP-RL framework

ρπ(s) = lim
T→∞

Jπavg(s)

T = lim
T→∞

1
T E[

T∑
t=0

rt]. R-learning is a

model-free value iteration algorithm that can be used to find
the optimal policy for the average reward criterion. At the
t-th iteration (st, at, rt, st+1), the following update is per-
formed:
Rt+1(st, at)

αt←− rt − ρt(st) + max
a

Rt(st+1, a)

ρt+1(st)
βt←− rt + max

a
Rt(st+1, a)−max

a
Rt(st, a),

(1)
where αt, βt are the learning rates, and at+1

α←− b denotes
the soft update rule at+1 = (1− α)at + αb.

TMP-RL Framework
The TMP-RL framework proposed in this paper is shown in
Figure 1. The inner loop consists of a task planner, a motion
planner and a reinforcement learner that iteratively performs
planning and learning to generate a feasible and low-cost
task-motion plan. Once the inner loop returns a task-motion
plan, it is sent to execution in the outer loop, where the re-
inforcement learner performs value iteration on the reward
derived from execution experience. The learned values are
returned into the symbolic planner, and the inner loop runs
again to generate an improved task-motion plan leveraging
the motion planner and learned experience. The framework
is explained in detail below.

Optimal Task Planning Conditioned on Motion
Planning
A task planning problem defines the objective of generating
a satisfactory plan Πτ , i.e., a sequence of actions given a
planning problem (Iτ ,Gτ ,Dτ ), where Dτ is a domain inde-
pendent symbolic formulation given by human experts, Iτ
is an initial state and Gτ is a goal state. As in PEORL, Dτ
consists of causal laws that formulates preconditions and ef-
fects of actions, such as approach door D1 causes the robot
besides D1 if currently the robot is beside D2 and D1 is ac-
cessible from D2:

approach(D1) causes besides(D1) if beside(D2), acc(D2, D1)

and static relationship on fluents, such as symmetry of ac-
cessible relationship: acc(D1, D2) if acc(D2, D1).



A motion planning problem concerns on generating a col-
lision free trajectory ξ(Im,Gm) given a motion planning
problem (Dm, Im,Gm) where Dm is a motion planning do-
main, Im is an initial position and Gm is the goal position,
such that the position Im is connected with position Gm.

We use a mapping function f : X = f(s) that maps a
symbolic state s into a set of feasible poses X in continuous
space, for the motion planning algorithm to sample from.
We assume the availability of at least one pose x ∈ X in
each state s, such that the robot is in the free space of Dm.
If it is not the case, the state s is declared infeasible. Given
a motion planning domain Dm and a task plan Πτ for task
planning problem (Dτ , Iτ ,Gτ ), a plan refinement of Πτ w.r.t
motion planner, denoted as Πm, is a sequence of collision
free trajectories obtained by perform motion planning on
each navigation actions, i.e., Πm =

⋃
〈s,a,s′〉∈Πτ ξ(x, x

′),

where x ∈ f(s), x′ ∈ f(s′). The cumulative cost of a task
plan Πτ is obtained by the cumulative length of its motion
planning refinement Πm, i.e., Cost(Πτ ) =

∑
ξ∈Πm Len(ξ).

An optimal task plan conditioned on motion plan is defined
as the task plan Πτ

o such that Πm
o has the minimal length

among all task plans.

TMP with Reinforcement Learning

Reward Given a symbolic transition 〈s, a, s′〉where a can
be refined by motion planner, we define a reward function
r that is negative and inversely proportional to a distance
metric of the motion plan that refines the navigation action a,
mapped by a function R : R+ 7→ R−:

r(s, a) = R(Len(ξ(x, x′)) ∝ 1

Len(ξ(x, x′))
,

where x ∈ f(s), x′ ∈ f(s′). One simple way to instanti-
ate R is

r(s, a) = R(Len(ξ(x, x′))) = −Len(ξ(x, x′)).

If a motion plan fails for transition 〈s, a, s′〉, we define
r(s, a) = −∞.

Domain Formulation We enrich the domain formulation
Dτ with the following causal laws formulating the effect of
actions on cumulative plan quality:

a causes quality = C + Z if s, ρ(s, a) = Z, quality = C

where s is a state. The ρ-values are initialized optimistically
to the upper-bound of gain reward, which is the reward de-
rived from the Lp metric in the configuration space:

default ρ(s, a) = max
x,x′

R(||x− x′||p)

where x ∈ f(s), x′ ∈ f(s′), x 6= x′, for 〈s, a, s′〉
in T (Dτ ), p ∈ R+, and Lp metric stands for

||x− x′||p =

(
n∑
i=1

|xi − x′i|p
)−p

.

Algorithm 1 Task-Motion Planning

Require: (Iτ ,Gτ ,Dτ , f,Dm, q0, P0) where quality > q0 ∈ Gτ ,
and an exploration probability ε

1: t⇐ 0
2: while t < +∞ do
3: Π∗ ⇐ Πτ

t

4: obtain a plan Πτ
t ⇐ Plan(Iτ ,Gτ ,Dτ ∪ Pt)

5: if Πτ
t = ∅ then

6: return Π∗

7: end if
8: for symbolic transition 〈s, a, s′〉 ∈ Πτ

t do
9: if a cannot be refined by motion planner then

10: continue
11: end if
12: obtain initial pose x = f(s) and goal pose x′ = f(s′)
13: generate motion plan ξ(x, x′)
14: calculate reward r(s, a) = R(Len(ξ(x, x′)))
15: update R(s, a) and ρa(s) using (1).
16: end for
17: calculate quality of Πτ

t by (2).
18: update planning goal G⇐ (quality > qualityt(Π

τ
t )).

19: update facts Pt ⇐ {ρ(s, a) = z : 〈s, a, s′〉 ∈ Π, ρat (s) =
z}

20: t⇐ t+ 1
21: end while

Planning Goal At any episode t, planning goal Gτt con-
tains a regular logical constraint describing the goal condi-
tion plus a linear constraint of the form

quality ≥ quality(Πτ
t ) (2)

where quality(Πτ
t ) =

∑
〈s,a,s′〉∈Πτt

ρ(s, a) for some task

plan Πτ
t . In the planning – learning loop, the linear con-

straint guides the planner to generate a plan with cumulative
quality higher than a previous one, measured by learned ρ-
values, leading to the iterative process of plan improvement
based on reinforcement learning.

Algorithm for TMP Algorithm 1 describes our inner loop
of task-motion planning. The input to the algorithm includes
a motion planning domain and a task planning problem. q0

is initialized to be −∞, and P0 = ∅. The algorithm first
generates a task plan (Line 4). Then it iterates on each sym-
bolic transition in the plan, and for each navigation action,
it obtains the initial and goal poses in 2D domain (Line 12),
generates motion plan (Line 13) and returns reward (Line
14). Value iteration of R-learning is performed with the re-
ward (Line 15). At the end of this process, plan quality is
computed using the learned ρ values (Line 17), and it is
used as the new constraint in the planning goal (Line 18),
setting a baseline for the planner in the next iteration. The
learned ρ values are also updated in the symbolic formula-
tion (Line 19). When the algorithm terminates, it outputs a
task plan that cannot be further improved w.r.t the motion
planner.

TMP Execution and Learning
Once a task-motion plan is generated, it is sent for execu-
tion, which goes to the outer loop of learning from real ex-



Algorithm 2 Task-Motion Planning and Learning

Require: (Iτ ,Gτ ,Dτ , f,Dm) where quality > 0 ∈ Gτ , and an
exploration probability ε

1: P0 ⇐ ∅, Πτ
0 ⇐ ∅, q0 = −∞, t = 0

2: while t < +∞ do
3: Π∗ ⇐ Πτ

t

4: obtain a task-motion plan by calling Algorithm 1 Πτ
t ⇐

TMP(Iτ ,Gτ ,Dτ , f,Dµ, qt, Pt).
5: if Πτ

t = ∅ then
6: return Π∗

7: end if
8: for symbolic transition 〈s, a, s′〉 ∈ Πτ

t do
9: execute a and obtain true reward r(s, a).

10: update R(s, a) and ρa(s) using (1).
11: end for
12: calculate quality of Πτ

t by (2).
13: update plan quality qt ⇐ qualityt(Π

τ
t ).

14: update facts Pt ⇐ {ρ(s, a) = z : 〈s, a, s′〉 ∈ Πτ
t , ρ

a
t (s) =

z}
15: t⇐ t+ 1
16: end while

ecution experience, where Algorithm 1 becomes the plan-
ning subroutine (Line 4) in Algorithm 2. In Algorithm 2,
each action is executed in the environment, and the true re-
ward is obtained (Line 9). The value iteration performed on
the true reward received during execution further rewrites
the value learned through motion planner and feed back into
the TMP algorithm (Line 14) to iteratively generate a task-
motion plan that is adaptable to domain change.

The difference between Algorithm 2 and Algorithm 1, is
in Line 4: Algorithm 1 makes a task planning call and Algo-
rithm 2 makes a TMP call. Such duality brings a unification
of refining task plans through motion planner and through
learning from the environment: the quality of task plans are
learned in the same framework and the learned values are
propagated back into a symbolic representation so that mo-
tion planners and execution experience can jointly improve
the task plan.

Experiments
We evaluate our approach using a simulated mobile service
robot (Figure 2a) in an office building floor (Figure 2b) in
Gazebo, and later demonstrate it on a real robot. The sim-
ulation is created to closely match the real robot platform
(shown in Figure 2c) and the environment it operates in
(shown in Figure 2d).

We compare the performance of the proposed TMP-RL
algorithm (Algorithm 2) with PETLON (Lo, Zhang, and
Stone 2018), a TMP algorithm, and PEORL (Yang et al.
2018), a TP-RL approach which iteratively generates sym-
bolic task plans and performs reinforcement learning dur-
ing execution. The plan generated by each algorithm is exe-
cuted, and we compare the curves of actual reward received
in each episode. Our hypothesis is that TMP-RL outper-
forms TMP when real action rewards are unexpected, and
it outperforms TP-RL with higher quality exploration and
faster adaptation to domain changes.

Implementation
Our system uses the answer set solver Clingo for task (sym-
bolic) planning1. The task planning domain models navi-
gation actions (approach, open door, go through), as well
as non-navigation actions (such as pick up, put down). Only
navigation actions are required in this experiment.

Path planning is implemented using the navigation stack
of Robot Operating System (ROS) (Quigley et al. 2009). In
TMP and TMP-RL implementations, the global path planner
is called to generate a trajectory for each navigation action,
and the motion costs are estimated by the sum of distances
between waypoints on the trajectory. The plan quality con-
straints are implemented for T(M)P-RL algorithms. Learn-
ing of the ρ values is implemented using Equation (1) with
learning rates α = 0.1, β = 0.5. The default ρ-values of
approach actions are implemented as the Euclidean distance
between the target location and the landmark closest to the
robot. The default reward of an open door action is -3. All
other state-action pairs that do not have an evaluated or de-
fault ρ value are assumed to have reward of -1.

Gazebo Simulation
In this experiment, the robot’s task is to go to a room where
its service is requested. The robot starts near a landmark in
an open space and the robot’s end position can be anywhere
in the target room. The reward is defined as the negative
of the execution time. The room has three initially closed
doors that are available for entrance. The task planner de-
termines which entrance the robot will use. Figure 3 shows
the experiment set-up and three competitive task plans. With
30 regions and 12 doors in the domain, many other feasible
plans may be generated by task planner, and some plans in-
volve significant detour. Thus, generating feasible, low-cost
plans efficiently and quickly adapting to domain uncertain-
ties is quite challenging in this domain. For instance, plan
(1) uses the top door along the blue path and has 3 sym-
bolic actions: approach(top door), open door(top door),
go through(top door).

Table 1 shows the task plan length, motion plan length,
and average execution time of the competitive plans. Among
the three plans, plan (2) features the shortest navigation dis-
tance, but it takes 9 actions and requires crossing 3 doors.
Plan (3) has 3 actions and the second shortest navigation dis-
tance. In this environment, opening door takes longer than
what the robot expects, and opening the bottom door is par-
ticularly expensive. Precisely, the duration of executing an
open door action is sampled from a normal distribution with
a standard deviation of (10 seconds). Opening the bottom
door takes 60 seconds on average, while the mean open time
is 20 seconds for other doors. Therefore, plan (1) which uses
the top door has the lowest expected execution time. This
example shows one situation where all three levels of capa-
bility are required to efficiently find the optimal real-world
plan.

Evaluation of TMP, TP-RL, TMP-RL We use PETLON
(TMP) and PEORL (TP-RL) for comparison in this eval-

1https://github.com/potassco/clingo/releases.



(a) Simulated robot (b) Gazebo simulation environment (c) Real robot (d) Visualization of the robot in a real map

Figure 2: Our experiments use Gazebo to simulate an office environment and a service robot operating in this environment. The
simulation matches the real robot and the office environment it operates in.

Plan Task Plan Length Motion Plan Cost Average Execution Cost
(1) 3 60.8 80.6
(2) 9 45.5 126.9
(3) 3 53.1 116.6

Table 1: Plan costs at different levels of abstraction.

(2) Shortest

(3) High open cost

(1) Optimal

Figure 3: Three competitive plans for the task.

uation. For every approach we conducted 50 runs with 40
episodes in each run. The variability among the trials are
caused by noisy action costs of navigation and opening
doors. For RL-based methods, they can generate different
plans depending on experiences in previous episodes.

Figure 4a plots the learning curves for reward received
in 40 episodes, averaged over 50 runs with the shaded re-
gions representing one standard deviation from the mean.
Figure 4b shows for each approach, the average number
of episodes that the three competitive plans and other fea-
sible plans are executed. Equipped with the reinforcement
learner to refine their plans, TMP-RL and TP-RL converge
to the practically optimal plan, but TMP-RL converges sig-
nificantly faster. Using motion plan costs in task plan evalua-
tion ensures that TMP-RL makes steady improvements after
the first two episodes, while TP-RL learns everything from
executing the plans in the environment. TP-RL has low vari-
ances in the first two episodes, because the task planner first
selects the plans with the smallest number of actions (plans
(1) and (3) in Figure 3), but much higher variances after-

wards. As shown in Figure 4b, TP-RL had to execute many
task plans that are logically valid but significantly worse in
quality directly in the environment, which is expensive and
potentially dangerous for real robots. TMP executes the plan
with the shortest navigation distance in every episode (plan
(2)), without learning any information from execution.

In terms of planning time, each call of the answer set
solver is timed-out after 5 seconds for all three approaches.
The “anytime” property of PETLON allows it to find plans
of good quality given early termination. This property also
holds for Algorithms 1 and 2 since they incrementally
tighten the bound of plan quality. When the solver fails to
find a better plan within the time-out, the algorithms return
the current best plan.

Evaluation of TMP-RL in Multiple Tasks In long-term
deployments, the robot can be asked to achieve the same
end goal from different starting positions. For example, the
robot may start in the mail room and deliver mail to an of-
fice in the morning, and deliver coffee from the kitchen to
the same office in the afternoon. Since the initial states are
different, the task planner and motion planner have to solve
them as different problems, but TMP-RL can leverage the
learned ρ-values to speed up exploration in later tasks. In or-
der to demonstrate TMP-RL’s ability to generalize learned
values to different scenarios, we extend the previous experi-
ment with two more tasks, each with a different starting po-
sition of the robot (shown in Figure 5a).

In this scenario, we compared continuously running
TMP-RL for all three tasks against using TMP-RL to learn
the second and the third tasks from scratch. In the former
setting, the robot explored the first task for 15 episodes, and
then switched to the second position and the third position
while keeping the learned values. In the latter setting, the
robot started at episode 15 and performed the second task, or
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Figure 4: Comparisons between TMP-RL and baselines of TMP and TP-RL in the task of room-to-room navigation.
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Figure 5: Evaluation of TMP-RL in multiple tasks

started at episode 30 and performed the third task. Figure 5b
presents the learning curves averaged over 40 runs in these
three settings, showing that learning the first task leads to
faster, lower variance learning in the later tasks, in compar-
ison with learning from scratch, indicating that the learned
values can be transferred to accelerate learning other tasks.

Real Robot Demonstration
We also implement TMP-RL on a real robot (shown in Fig-
ure 2c), and demonstrate that it achieves the same perfor-
mance as the results in the simulation experiments. Since
the real office area closely matches the simulation environ-
ment with corresponding rooms, corridors and doors, it is
possible to have a highly similar task setup to the one shown
in Figure 3 and Table 1. We ran TMP-RL repeatedly on this
task, and it successfully converged to the practically optimal
plan in only eight episodes. A demonstration video showing
the setup and the results is available2.

2https://youtu.be/EyoqrpO3Qkk

Conclusion
We introduce a novel TMP-RL framework integrating task-
motion planning (TMP) and reinforcement learning (RL)
for adaptable robot sequential decision making. The frame-
work mixes task planning, motion planning, and reinforce-
ment learning in a closed loop with iterative improvements
on plan quality over the course of execution. Experimen-
tal results show that TMP-RL combines the strengths of
the individual paradigms: task-motion planning generates
high-quality plans without performing costly learning in
the real environment, and reinforcement learning refines
task-motion planning in dynamic domains and generalizes
learned information to new scenarios. Therefore, this frame-
work provides important properties for long-term deploy-
ments of robots in dynamic environments. Future work in-
cludes using TMP-RL to improve the long-term perfor-
mance of service robots in a variety of tasks.
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