
Multi-Vehicle Temporal Planning for Underwater Applications

Yaniel Carreno and Yvan Petillot and Ronald P. A. Petrick
Edinburgh Centre for Robotics

Robotarium West, Heriot-Watt University
Riccarton, Edinburgh EH14 4AS

Scotland, United Kingdom
{yc66, y.r.petillot, r.petrick}@hw.ac.uk

Abstract
This paper investigates the application of temporal planning
to multiple robots in marine applications. We analyse plan
concurrency, makespan and plan generation time in the multi-
robot problem and propose a new schema called GA+TP
which combines a Goal Allocation (GA) strategy and Tem-
poral Planning (TP) to improve plan quality in multi-vehicle
missions. We implement a new planning domain, motivated
by realistic scenarios in maritime environments, consider-
ing dynamic reallocation of the refuelling point and the im-
plementation of tasks with multi-domain robots. The ROS-
Plan framework, the UUV-Simulator and the surface vehicle
WAM-V are integrated to implement effective missions and
analyse plan execution using ROS and Gazebo. Experiments
have shown the dynamic refuelling point method enhances
the implementation of long-term missions with small robot
fleets. GA+TP demonstrates robustness to domain changes
and improved plan quality while significantly reducing plan-
ning time for the multi-agent problem.

Introduction
Autonomous Underwater Vehicle (AUV) technology is now
routinely used for small-scale surveys of the subsea world.
One of the key drivers of current research is therefore the
introduction of AUVs into more challenging missions, with
much greater complexity, longer execution times and higher
risks of failures, especially in unknown dynamic environ-
ments. Recent works (Landa-Torres et al. 2017; Zhang et
al. 2017) have favoured the approach of using multiple plat-
forms which collaborate to achieve a common set of goals.
Multi-vehicle systems are more robust to individual plat-
form failures and have advantages in terms of their overall
system capabilities and mission execution performance. The
difficulty with such an approach is that it must also be sup-
ported by robust planning, coordination, and execution tools
in order to increase its optimal performance. As a result,
most autonomous missions successfully implemented in the
maritime domain rely on a single platform (Cashmore et al.
2014; McGann et al. 2008; Cashmore et al. 2015) or use very
simple coordination schemes between platforms (Chrpa et
al. 2015; Marques et al. 2017), limiting the effectiveness and
benefits of full multi-robot solutions. Planning is particularly
promising for maritime robotics since it offers techniques for
managing typical problems that arise in the underwater do-
main, such as limited power and communication bandwidth,

navigational uncertainty, and perception noise. However,
whilst many planners have been proposed (Coles et al. 2010;
Benton, Coles, and Coles 2012; Gerevini and Long 2006;
Eyerich, Mattmüller, and Röger 2012), identifying a single
“optimal” problem solver is a difficult task. The differences
in representational power, plan generation efficiency, highly
constrained domain definition, and the use of multiple robots
limit the planners’ performance, often resulting in a severe
lack in plan quality.

In this paper, we explore the application of planning tech-
niques for multi-robot fleets, to enhance long-term auton-
omy and general fleet robustness. The main contribution of
this work is a new strategy, called the GA+TP, that com-
bines a Goal Allocation algorithm (GA) and Temporal Plan-
ning (TP) to improve plan quality for temporal multi-robot
tasks. We implement this approach in the context of a new
realistic planning domain with high levels of expressiveness
that supports the execution of AUV missions. We also de-
fine a method to reduce the plan generation failures using
dynamic reallocation of the refuelling point. Finally, we in-
tegrate ROSPlan, a realistic AUV and Autonomous Surface
Vehicle (ASV) simulators to execute multi-domain coordi-
nated missions.

Related Work
Automated planning is the process of reasoning about the
actions needed to achieve a set of goals. Planning usually
involves explicit representations of time to implement com-
plex missions with multiple robots. The agents must work
concurrently and execute actions with different time slots
which force the use of temporal references for solving the
problem. Temporal planning problems can be addressed us-
ing PDDL2.1 (Fox and Long 2003), or the latest exten-
sions of the standard Planning Domain Definition Language
(PDDL) (McDermott et al. 1998), which adds support for
temporal planning through additional language constructs.
A number of temporal planners support PDDL2.1, such as
Temporal Fast Downward (TFD) (Eyerich, Mattmüller, and
Röger 2012), UPMurphi (Della Penna, Magazzeni, and Mer-
corio 2012), SGPlan (Hsu and Wah 2008), and LPG-TD
(Gerevini and Long 2006). However, these planners face
problems of scalability, concurrency, or issues with actions’
time slot allocation which have limited their introduction in
marine applications.



Two temporal planners are particularly promising for un-
derwater applications: the Forward-Chaining Partial-Order
Planning (POPF) (Coles et al. 2010) and the Optimizing
Preferences and TIme-dependent Costs (OPTIC) (Benton,
Coles, and Coles 2012). These planners support numerical
fluents, concurrency and exogenous events. POPF is char-
acterised by its ability to find plans with low makespan—
the time that elapses from the start of plan implementation
to the end—while OPTIC’s main application is in problems
where preferences or time-dependent goal costs define the
plan cost. POPF and OPTIC have been successfully tested
in real missions (Cashmore et al. 2014; 2015; Bernardini,
Fox, and Long 2017). However, little work (Tran et al. 2017;
Hertle and Nebel 2018) addresses the multi-agent problem
using these planners. In general, these approaches present
limited domain complexity which prevent the evaluation of
the planners’ performance in highly constrained domains.

Multi-Agent Planning (MAP) has also been addressed
in (Crosby, Rovatsos, and Petrick 2013; Kvarnström
2011; Muise, Lipovetzky, and Ramirez 2015; Sreedharan,
Zhang, and Kambhampati 2015), which apply a distributed
problem-solving design to substitute the classical single-
agent planning paradigm. However, these solvers do not
support tasks with advanced requirements such as tempo-
ral constraints (Torreño et al. 2018), which make them less
attractive for the implementation of complex missions with
concurrent actions. Although several approaches (Largouët,
Krichen, and Zhao 2016; Nikou et al. 2018; Schillinger,
Bürger, and Dimarogonas 2017) consider mission timing
constraints to solve multi-agent problems, they use specific
language representations or provide a solution to particular
planning problems (e.g., path planning optimisation) in the
global plan which limit the approach generalisation.

Other works (Ponda et al. 2010; Nunes and Gini 2015;
Nunes, McIntire, and Gini 2017) have explored tempo-
ral constraints to task allocation using auction-based ap-
proaches. (Ponda et al. 2010) proposes a multi-item auc-
tion strategy which replaces the auctioneer for distributed
consensus phases and considers tasks with time win-
dows. (Nunes and Gini 2015; Nunes, McIntire, and Gini
2017) present the Temporal Sequential Single-Item auction
(TeSSI) algorithm for tasks with temporal constraints. The
strategy allocates tasks with time windows to cooperative
robots. However, its optimality is subject to the number of
robots and regions to explore. In addition, TeSSI assumes
the robots can execute all the actions indefinitely and there
is not further analysis considering robot resources (e.g., en-
ergy level) which can affect the sequence of actions defined.

Recent research (Landa-Torres et al. 2017; Zhang et al.
2017) has considered MAP problems in the context of AUV
fleets. In particular, the ScottyActivity planner (Fernandez-
Gonzalez, Williams, and Karpas 2018) introduces levels of
coordination in maritime applications and provides good re-
sults controlling continuous variables on the domain. The
strategy accomplishes task planning and trajectory optimi-
sation in long horizons for multiple robots. However, the ap-
proach does not guarantee optimal action sequences and the
small number of robots in the mission prevents a scalabil-
ity analysis. Few works directly consider temporal planning

for multi-agent applications. In (Crosby and Petrick 2014),
planning problems are modelled using standard PDDL and
then translated to a temporal planning model for generat-
ing and distributing plans to individual robots. (Hertle and
Nebel 2018) implement a strategy based on an auction algo-
rithm and temporal planning which reduces complexity dur-
ing the planning process. The approach presents limitations
around the auction time and does not support domains which
requires concurrency. (Schneider, Sklar, and Parsons 2017)
also considers auction mechanism. However, this work does
not analyse the coordination of multiple robots and the way
the tasks are clustered. Finally, (Buksz et al. 2018) proposed
an strategy based on clustering to allocate the mission goals.
Nevertheless, the method does not discuss robot capabilities
to implement the allocation which is consider in our work.

While there are several examples of architectures which
support plan execution in robotic systems (Ingrand et
al. 1996; Chanel, Lesire, and Teichteil-Königsbuch 2014;
Muscettola et al. 2002; Hofmann et al. 2016; Dornhege et
al. 2012), including planning for AUV missions (McGann et
al. 2008; Rajan, Py, and Barreiro 2013; Marques et al. 2017),
many approaches employ domain-specific or inflexible lan-
guage specifications and methodologies, which lead to be-
spoke implementations not easily ported to new applica-
tions. Additionally, the complexity of the planning systems
and the robotic architectures entails most of these frame-
works to experience difficulties connecting high-level sym-
bolic plan generation with the actuator level.

A notable exception is ROSPlan (Cashmore et al. 2015)
which connects the widely used Robot Operating System
(ROS) (Quigley et al. 2009) and PDDL2.1. ROSPlan al-
lows different task planners to be embedded in a modular
architecture, making it suitable for testing plan feasibility
and quality while varying the underlying planning approach.
ROSPlan framework solves plans with concurrent actions.
Prior implementations using ROSPlan in maritime contexts
have only explored the performance of a single agent (Cash-
more et al. 2015; 2018), often in simple domains, and have
therefore not evaluated ROSPlan’s ability to deal with com-
plex temporal and resource constrained missions. Our paper
explores the advantages of combining multi-agent temporal
planning and goal allocation based on goal positions to solve
complex domains using ROSPlan.

Domain Definition
In this work, we use an offshore subsea oil platform sce-
nario which is segmented in several regions for modelling
real-world multi-robot problems. This extreme environment
reduces the possibility of human intervention; therefore, the
platform’s supervision and maintenance are autonomously
executed by a fleet of surface and underwater vehicles. Fig-
ure 1 shows a general map representation of the oil platform,
with the Start & Destination points for the surface and un-
derwater vehicles, the operation regions, which contain lo-
cal refuelling points (r-point) and multiple oil rigs, and the
Transmission Centre (TC), which is employed as the point
for data transmission. Our planning domain includes a novel
combination of properties such as robot capabilities and re-
sources, concurrent actions and temporal constraints which



Figure 1: A depiction of the segmented oil platform sce-
nario. This scenario exhibits a fixed transmission centre
(TC), multiple deploy regions and refuelling points.

enhance the implementation of long-term missions. This ap-
proach introduces a benchmark planning domain represen-
tation for multi-robot systems in the marine environment
which allows the dynamic allocation of the refuelling point
depending on the robot position. Moreover, we consider the
optimal implementation of missions in regions separated by
long distances, and multi-domain robot coordination based
on temporal planning.

The domain contains tasks associated with multiple types
of sensors (e.g., camera, sonar, and Doppler Velocity Log
(DVL) sensors), enabling important mission scenarios. The
mission goals for the AUVs include: exploration of the oil
platform, valve state inspection, sensor data acquisition, and
target or failure detection. The surface vehicle supports the
refuelling strategy, moving to the recharging points every
time the robots have low battery level. We here consider
a set of homogeneous AUVs and a single surface vehicle.
While the domains can be modelled at several levels of ab-
straction, here we focus on real world implementations and
define highly constrained actions to avoid high-level coarse
plan generation and handle any discrepancies in the model
and the real (or simulated) world during plan execution.

Our domain1 defines multiple types2 called rexrov,
robot-surface, waypoint, observation point, and
sensors. Waypoints situate the vehicle in specific sections
of the arena, and the robot executes actions related with the
sensor system in the observation points. The ?wp and ?o
instances represent the vehicle’s position, part of the robot
state supporting exploration. These instances have a fixed
location defined by the domain designer. The ?s describes
the robot’s sensor system. The domain also includes static
facts, fluents, functions and actions which defines the sys-
tem. The capabilities of the robots are captured by the fol-
lowing domain actions:

• asv wamv navigate(?asv wamv, ?from, ?to): a
durative action which moves the robot on the surface
?asv wamv from waypoint ?from to ?to. Action du-

1Domain and problem instances are available at ICAPS-2019
repository on https://github.com/MA-TemporalP.

2In the following, we will use ?rov to denote a pa-
rameter of type rexrov, ?asv wamv a parameter of type
robot-surface, ?wp a parameter of type waypoint, ?o a
parameter of type observation point, and ?s a parameter of
type sensors.

ration depends on the robot’s average speed and the
distance between the waypoints which is calculated using
the Euclidean norm.

• rexrov navigate(?rov, ?from, ?to): a durative
action which is similar to asv wamv navigate using
AUV robot ?rov.

• rexrov explore ob(?rov, ?wp, ?o): a durative ac-
tion where the robot ?rov explores around the observa-
tion point ?o, describing a circular trajectory which im-
proves the robot localisation and acquires a global view
of the oil rigs.

• rexrov refuelling(?rov, ?asv wamv, ?from,
?to): a durative action for robot ?rov battery recharg-
ing. The robot moves from waypoint ?from to waypoint
?to, where it stays during recharging time. The action
implementation requires as a precondition to deploy
the surface vehicle ?asv wamv to the point ?to using
the asv wamv navigate action. We define the ?to
position considering the dynamic refuelling point allo-
cation principle, which will be described in this section.
The implementation introduces levels of coordination
between the surface and the underwater robots.

• rexrov undock(?rov, ?wp): durative action to dis-
connect the robot ?rov from the refuelling point ?wp.

• rexrov send data(?rov, ?wp): a durative action
which moves the robot ?rov to the waypoint ?wp (TC)
to transmit information considering as a precondition the
amount of data stored.

• rexrov take -image data/-sample data(?rov,
?o, ?wp, ?s): durative actions which enable robot
?rov’s sensors ?s to capture images or read and store
sensor data on the observation point ?o.

• rexrov target id(?rov, ?o, ?wp, ?s): a durative
action which enables robot ?rov’s sensors ?s to identify
pipeline failures, valve states and take pictures of the tar-
gets.

• rexrov target approach(?rov, ?o, ?wp): a dura-
tive action which makes robot ?rov to implement a
maneuver approach to the target. The effect of im-
plementing this action condition the execution of the
rexrov target id action.

Domain Constraints: We claim the domain is directly
transferable to the maritime environment and the result-
ing plans follow representative constraints of real AUV
missions. In particular, our domain contains: (i) time con-
straints, (ii) capability constraints, (iii) resource constraints
(energy or storage capacity), (iv) communication con-
straints, and (v) robot availability constraints; which allow
the implementation of long-term missions and prevent mis-
sion execution failures. The domain constraints are explic-
itly represented in the PDDL action definition. For tem-
poral constraints, action durations depend on distance
?from ?to and the robot (?rov or ?asv wamv) average
forward speed. The time duration for static actions is de-
cided by the domain designer. In terms of capability con-
straints, for each action associated with specific sensors,



a new rexrov capable ?rov predicate is added to the
list of predicates. Then, each action that appears gains
a precondition rexrov capable ?rov. This ensures the
agents performing the action have the appropriate sensors
for the implementation. Resource constraints take into ac-
count a robot variables state. For instance, the preconditions
for the implementation of the action rexrov refuelling
considers individually the actual energy level and robot’s
energy consumption rate. The communication constraints
are associated with the action rexrov send data which
is conditioned by the robot rexrov image capacity/
data capacity, and force the robot to move to the sur-
face to transmit information. In terms of availability, the
execution of an action prevents the use of the same robot
for another action, which reduces action conflicts. More-
over, we define some action dependencies, such as the
implementation of rexrov refuelling which is con-
ditioned on the execution of asv wamv navigate, and
rexrov target id which depends on the implementation
of the rexrov target approach action.

Refuelling Point and Coordinated Actions: Our domain
establishes the dynamic allocation of the refuelling point
by considering the robot’s actual position. We define a
set of fixed points or possible refuelling points DP =
{dp1, dp2, ..., dpn} in critical areas considering the num-
ber of regions in the environment (typically one refuelling
point per region). Subsequently, we implemented an algo-
rithm which calculates the distance between the waypoints
in set WP = {wp1, wp2, ..., wpm} and all “possible” dock-
ing points. Our approach uses the distance calculation to
determine the closest docking point. The method divides
the WP set into multiple subsets associated with individual
docking points. The results of the algorithm is transformed
into new predicates close to ?wp ?wp which are added
to the set of predicates. The first ?wp represents a waypoint
from the WP set (actual robot position) and the second
?wp is the closest docking point. The rexrov refuelling
action implementation is constrained by a close to ?wp
?wp precondition which will dynamically define the refu-
elling point depending on the position of the vehicle. This
prunes the search-space, resulting in better planner perfor-
mance. We also introduce actions with multiple robots (e.g.,
rexrov refuelling) which increases domain complexity
due to the action allocation in the global plan depends on
the availability of multiple agents. However, we can evaluate
the capacity of temporal planning to deal with coordinated
actions. Furthermore, it enhances the realistic representation
of the domain and the implementation of long-term missions
considering the refuelling method. Finally, the introduction
of the robot-surface can support further actions in the do-
main such as periodic AUVs hardware checks and AUVs
recovery after mission completion.

Multi-Vehicle Implementation
Temporal planning is capable of dealing with multi-agent
planning problems since time is modelled explicitly: indi-
vidual actions for different robots can be scheduled and ex-
ecuted in parallel. However, the highly constrained actions

Figure 2: General architecture of the GA+TP strategy which
considers robot capabilities and goal positions. GA decom-
poses the global goals into simpler goal sets for each robot
and modify the problem file. The GA strategy uses cluster-
ing methods for goal allocation. The temporal planner uses
these goal sets to generate plans.

in the domain and the long distances between the oil plat-
form regions limit the planners’ performance. In this work,
we aim to reduce the complexity of the planning process, as-
sisting temporal planners to achieve a large number of valid
plans, improve makespan, planning time, and goal distribu-
tion. We define the GA+TP approach based on the combina-
tion of a Goal Allocation (GA) strategy and Temporal Plan-
ning (TP). The method decomposes a set of mission goals
into multiple simpler goal sets for each robot.

Goal Allocation: Figure 2 shows the general architec-
ture of the GA+TP approach, which mainly distributes
goals based on goal positions to reduce the distance trav-
elled and the energy consumption. GA takes information
from the domain and problem files and modifies the prob-
lem by adding new predicates which constraints the goals’
allocation. GA takes a set of unallocated goals G =
{g1, g2, ..., gn}, weights the distance between them and de-
composes the goals geographically by applying k-means
clustering method (Hartigan and Wong 1979). This results
in goals’ subsets SG = {s1, s2, ..., st} related with in-
dividual regions R = {r1, r2, ..., rt} with known centres
C = {c1, c2, ..., ct}; where sn = {} contains multiple goals
defined in the goal set G. The algorithm considers the robot
capabilities to determine the goal’s subsets. We define the
capability condition which considers the characteristics of
the goals and robots.

Definition 1: Given a goal subset sn, the capabil-
ity condition is a tuple cap(sn, rob) := 〈GC,RC〉, where
rob is the set of robots in the mission; GC is the set of capa-
bilities needed to implement the goals in the sub-set and RC
the capabilities of the robots in the mission. The condition
which must be hold is RC contains all GC.

The strategy (Algorithm 1) takes the set of available
robots (rob) and checks the RC and GC. If R is equal rob
and RC are equal to GC, the goals of each region are allo-
cated to individual robots. Alternatively, if RC and GC are
different, the strategy (i) checks the number of robots able
to implement the goals (nc), (ii) calculates the distance be-
tween the centroids (dnc), and (iii) applies clustering again,
considering nc and dnc. As a result, the algorithm will re-



Algorithm 1 Goals Allocator Strategy.
Input: set of robots rob, set of unallocated goals G and goals
coordinates CG.
Output: add a set of predicates to the PDDL problem
file.

1: R, c = k-means(CG);
2: while G 6= ∅ do
3: for r ∈ rob do
4: RC, GC = checkcap(r,G);
5: end for
6: if R == rob then
7: if RC == GC then
8: G→ rob
9: else

10: nc = checknc(GC,RC);
11: dnc = distance(c);
12: R = k-means(c, dnc, nc);
13: end if
14: else
15: dc = distance(c);
16: R = k-means(c, dc, rob);
17: end if
18: end while

turn R equal to the number of robots with the capabilities,
and the allocation is complete. For this case, it is likely that
some robots implement actions in multiple segments of the
oil platform. Otherwise, if R differs from rob the algorithm
calculates the distance between the centroids dc and recal-
culates R based on dc and rob, which solves the goal al-
location problem. If we have more robots than regions the
algorithm will not consider the extra robots. This technique
situates GA as a global decision maker, which relaxes the
complexity of the problem and simplifies the temporal plan-
ner’s work, which now examines a smaller number of con-
straints for the plan solution. The strategy also reduces the
risk of collisions, increases the area covered by the agents,
relaxes plan complexity, and helps to guarantee optimality
by forcing the robots to reduce distance travelled and mis-
sion time.

Temporal Planning: Once the goal allocation is fin-
ished, the temporal planner takes the individual goal sets
and generates the plan considering temporal constraints.
GA populates the list of predicates with new predicates
rexrov can act ?rov ?wp, which modify the original
problem allowing the completion of specific goals in the
?wp for individual AUVs (?rov). All the domain actions
are conditioned for a precondition rexrov can act ?rov
?wp, which ensures the vehicle implementing the action has
“permission” to execute tasks in the region. The introduction
of the action precondition reduces the state-space and relax
the plan complexity through the addition of constraints as-
sociated with the geographic goals’ distribution.

Simulation Environment
The simulation environment is implemented in ROS and
Gazebo, and we integrate the ROS packages ROSPlan

Problem Object Instances No. Goals

problem 1 71 48
problem 2 78 60
problem 3 99 72
problem 4 108 90
problem 5 119 96
problem 6 127 102

Table 1: Number of object instances and goals distributed in
each problem for the oil platform scenario domain. The eval-
uation considers 6 problem instances with different levels of
complexity based on the domain actions.

(Cashmore et al. 2015), the UUV-Simulator (Manhães et al.
2016) and the Virtual RobotX (VRX), which describes the
surface vehicle WAM-V (Sarda et al. 2016). The simulation
world is customised considering the models from Gazebo
and the UUV-Simulator libraries. We implement planning
strategies with ROS in the underwater domain to evaluate
plan feasibility using maritime platforms. The case study in
Figure 3 shows a Gazebo environment (right) and the RViz
(left) for a robot fleet (underwater and surface vehicles) in an
oil platform with three regions. Each region contains two oil
rigs which are the main targets for mission implementation.

ROS nodes were written for actions defined in the do-
main. This serves as an interface between high-level actions
from task planning and low-level robot controls. The vehi-
cles can interact with the environment in multiple ways de-
pending on their capabilities. The robots were instructed to
explore certain numbers of points in the environment to col-
lect data, detect valve states, and take pictures, among other
actions defined in the domain. The implementation of the
navigation and the circular exploration strategies are based
on a trajectory-generator function. For navigation, the func-
tion calculates a trajectory based on the shortest path be-
tween the robot’s actual position and the goal’s coordinates
using point interpolation. For circular exploration, the func-
tion takes into account the radius of the circumference and
its centre producing a circular path.

Evaluation
We now evaluate the performance of our approach, com-
paring the results with the outcomes of well established
benchmark planners: POPF, OPTIC-NP (OPTIC-Non Pref-
erences) with plan utility based on total-distance and
makespan; and OPTIC-P (OPTIC-Preferences) with plan
utility based on total-distance, makespan, and prefer-
ences that force the robots to recharge at least one time dur-
ing the mission. Our evaluation considers the oil platform
with three regions described in Figure 3. In this work, we
evaluate the performance of GA in a homogeneous robot
set. However, the strategy can be applied to heterogeneous
vehicles considering the system’s capability analysis is part
of the GA method. All experiments were run on a machine
with a 4GHz processor, limiting the planner to 30 minutes
of CPU for plan generation and 8GB of memory consump-
tion. The set of test problems considers 6 problem instances
of increasing difficulty. Table 1 shows the number of object



Figure 3: Gazebo simulation environment (left) and RViz (right) for three underwater robots and a surface vehicle in the oil
platform scenario with three regions. The robots are in the initial position waiting for the action dispatch to execute a surveillance
mission in the domain.

Problems
planning-time (OPTIC-NP)

1-robot 2-robots 3-robots 4-robots
d non-d d non-d d non-d d non-d

1 109.5 – 105.3 – 323.2 – 88.4 83.2
2 141.5 – 139.3 – 573.2 – 56.1 47.2
3 358.6 – 920.4 – 633.7 – 138.8 180.5
4 1136.4 – – – – – 502.4 197.2
5 – – – – – – 1315.7 –
6 – – – – – – – 115.8

planning-time (OPTIC-P)
1 289.7 – 186.7 – 412.1 567.8 187.3 145.3
2 310.5 – 201.5 – 580.4 582.6 258.3 197.6
3 389.2 – 1301.1 – 503.4 – 358.2 342.7
4 1507.8 – 1420.5 – 606.4 – 401.7 476.7
5 – – – – – – 589.1 603.7
6 – – – – – – – –

Table 2: Planning time (sec) analysis for dynamic and non-
dynamic refuelling point allocation using OPTIC-NP and
OPTIC-P. Results for the dynamic refuelling point (d) strat-
egy show improvements in plan sovability respect to the
non-dynamic refuelling point (non-d) approach.

instances and goals in each problem. Each problem is at-
tempted 30 times, and we measured the average of the sim-
ulation results to avoid occasional jitter.

Domain and Strategy Evaluation
We start the evaluation analysing the effect of the dynamic
refuelling point allocation on plan solvability and plan gen-
eration time. For non-dynamic refuelling points, we situate
the static waypoint in the TC’s coordinates. Table 2 shows
the planning time performance for different robot sets with
OPTIC-NP and OPTIC-P. Results reveal the dynamic re-
allocation of the refuelling point increases the number of
problems solved, particularly for robot sets smaller than the
number of regions. The introduction of multiple points for
recharging relaxes the plan’s complexity due to a minimi-
sation of the energy and distance constraints. Therefore, the
concept of an “optimal” refuelling point based on the robot
position enhances the implementation of long-term missions
in complex environments.

We also analyse the approach’s scalabilty to larger robot
sets (1 to 30 robots) and regions (1 to 30 regions). Fig-
ure 4 shows the curves for dynamic and non-dynamic re-

Figure 4: Number of regions explored during a mission for a
robot fleet using OPTIC-NP for non-dynamic and dynamic
refuelling point allocation. Dynamic refuelling point alloca-
tion improves the robot system’s efficiency, implementing
actions in large numbers of regions with a small group of
vehicles.

fuelling points based on the number of plans solved, using
OPTIC-NP. We assume the same tasks are implemented in
all the regions. The dynamic refuelling point allows the ac-
tions’ execution in a large number of regions using small
robot fleets compared to the non-dynamic approach. How-
ever, the curves converge to the same values for large robot
sets which demonstrates the dynamic strategy is more effec-
tive when the number of regions is greater than the robots’
figures. Therefore, this domain representation adds a mecha-
nism to solve large plans with a reduced number of resources
(robots). The dynamic refuelling point strategy will be used
in all the experiments.

The plan performance of the GA+TP strategy is also com-
pared with POPF, OPTIC-NP and OPTIC-P in terms of
plan solvability, makespan, and plan generation time. We
first evaluated the planners’ ability to cope with changes
in the domain’s numeric variables. Table 3 shows the
plan makespan (min) and planning time (sec) for differ-
ent values of the domain variables consumption rate,
data capacity and avg forward speed using a set of
two robots. For consumption rate equal to 0.1 and 0.5 the
avg forward speed is 0.33 and the data capacity is 5.
For avg forward speed equal to 0.2 and data capacity
of 3, the consumption rate is 0.1.

The results reveal the sensitivity of the benchmark plan-
ners towards changes in the numeric constraints. In con-



Problems
consumption rate = 0.1

POPF OPTIC-NP OPTIC-P GA+TP
time span time span time span time span

1 197.1 348 105.3 296 186.7 313 68.3 254
2 297.4 272 139.3 180 201.5 222 87.3 255
3 – – 920.4 243 1301.1 317 216.6 287
4 – – – – 1420.5 446 419.1 456
5 – – – – – – 537.6 315
6 – – – – – – 547.9 329

data capacity = 3
1 197.1 348 105.3 296 186.7 313 68.3 254
2 297.4 272 139.3 180 201.5 222 87.3 255
3 – – 1892.7 466 2004.4 793 305.4 507
4 – – – – – – 529.1 751
5 – – – – – – 809.6 762
6 – – – – – – 863.1 679

Problems
consumption rate = 0.5

POPF OPTIC-NP OPTIC-P GA+TP
time span time span time span time span

1 957.8 769 429.4 594 619.1 852 138.4 251
2 1042.3 706 – – 1154.6 1063 157.6 725
3 – – 984.5 644 1543.2 875 216.6 689
4 – – – – – – 759.2 849
5 – – – – – – 707.1 789
6 – – – – – – – –

avg forward speed = 0.20
1 227.1 468 325.6 497 201.8 543 138.7 384
2 426.3 579 368.3 410 371.5 452 93.4 392
3 – – 1130.5 243 1651.2 435 348.6 428
4 – – – – 1652.5 646 484.2 478
5 – – – – – – 625.5 495
6 – – – – – – 657.4 518

Table 3: Plan generation time (sec) and makespan (min) analysis for different values of the consumption rate (top left, top
right), data capacity (bottom left) and avg forward speed (bottom right) in 6 problem instances using temporal planners.
Simulations were run for 30 min and show the results of the first solvable plan for 2 robot fleets. GA+TP shows the best
performance solving the majority of the problems despite the variable changes.

Figure 5: Plan makespan analysis for POPF, OPTIC-NP, OPTIC-P and GA+TP in the oil platform domain using a single
robot (left), two robot (middle) and three robot fleet (right). Simulations were run for 30 min and show the first solvable plan
makespan for 6 problem instances. For the single robot implementation, OPTIC-NP and GA+TP behave equally. For multi-
vehicle implementations, GA+TP shows robustness solving all the problems independently of the number of robots, in shorter
time periods.

Figure 6: Plan generation time analysis for POPF, OPTIC-NP, OPTIC-P and GA+TP in the oil platform domain using a single
robot (left), two robot (middle) and three robot fleet (right). Simulations were run for 30 min and show the first solvable plan
makespan for 6 problem instances. OPTIC shows better performance than POPF generating the plan in shorter time periods.
For multi-vehicle implementations, GA+TP substantially reduces the planning time.

trast to this, GA+TP generates solvable plans for almost
all the problem instances, showing a robust performance
despite the domain’s changes. Moreover, GA+TP achieves
the smallest plan generation times as a result of the plan
relaxation obtained with GA. Results indicate the use of
GA+TP allows the problem to be scaled to multiple robots

with different domain properties. We notice the variations
of avg forward speed change the planning time and
makespan but do not affect plan solvability since the vari-
able only constrains action duration. POPF and OPTIC-NP
present the poorest performances resulting from the goal
complexity, action scheduling and the effect of numeric con-



Figure 7: Spatial representation of goal distribution using POPF (top left), OPTIC-NP (top right), OPTIC-P (bottom left) and
GA+TP (bottom right). Simulations evaluate problem 3 results for a set of 3 robots. The Goal Allocator’s implementation
reduces the complexity of the mission strategy and distributes the robots in an optimal manner considering the position of the
waypoints. GA+TP optimises the energy consumption and distance travelled.

straints during plan generation.

In addition, we evaluated the makespan and planning time
performance considering different robot sets. We analyse the
first solvable plan due to the plan optimisation takes consid-
erably amounts of time (particularly with OPTIC) for multi-
agent systems. Figure 5 shows plan makespan performance
for a single robot (left), two robot (middle) and three robot
(right) fleets. For single agent implementations, the results
of OPTIC-NP and GA+TP are equal, since the GA strategy
will only define one region. The benchmark planners can-
not generate a solvable plan for large problems (problem 5
and problem 6) which supports our claim to introduce mul-
tiple robots for the mission implementation. POPF presents
the poorest results generating a solvable plan for just two
problems. The planner’s sensitivity to the ordering of object
instances makes the makespan performance highly depen-
dent on the goal position in the problem instance. In con-
trast, OPTIC is not affected by goal-ordering phenomena
which provides freedom for action allocation in the mission
schedule. OPTIC’s first plan offers better solutions to opti-
mise mission resources and reduce the number of intermedi-
ate actions, taking into account the distance travelled for the
robots. We use OPTIC for the GA+TP approach since POPF
is (i) affected by numeric changes in the domain definition,
and (ii) shows errors in the temporal placement of precon-
ditions. For two and three robot sets, GA+TP is the only
approach that generates solvable plans for all the problem
instances. In addition, we notice a substantial reduction in
the mission times, particularly for three vehicle implemen-
tations. These results provide evidence that the GA mecha-

nism improves the performance of the temporal planners in
these situations.

Plan generation time influences the capacity of the robotic
system to react optimally during time sensitive tasks such
as underwater missions. Figure 6 shows the plan genera-
tion time analysis for the robot fleets mentioned. For a sin-
gle robot, OPTIC-NP and OPTIC-P produce better results
than POPF, generating the first solvable plan in shorter time
periods. The preferences considered for OPTIC-P delay the
plan generation which explains the time differences with
OPTIC-NP. The plots indicate that planning time does not
necessarily increase proportionally with problem instance
complexity. This phenomena suggests that planning time
depends on the actions’ interaction with the problem in-
stances and domain constraints rather than the number of
goals achieved. For two and three robot sets, GA+TP gen-
erates a first solvable plan in the shortest time period, im-
proving the optimality of the mission implementation. The
results clearly demonstrate the GA strategy improves plan
generation performance by acting as a decision maker which
reduces the complexity of the problem and facilitates the
temporal planner’s work. In addition, the simulations illus-
trate the advantage of using GA+TP for multi-vehicle strate-
gies, which provide a tool for temporal planning to optimise
complex mission planning with large numbers of goals and
constraints.

The goal distribution implementation represents one of
the key improvements of the GA+TP approach with respect
to the benchmark planners. Figure 7 shows the sequence of
goals implemented for three robot fleets using problem 3.



Figure 8: Bar chart comparing the plan execution time and
the mission time originally defined by GA+TP. Results for
plan makespan and real execution times are significantly
similar which demonstrate the domain is able to represent
real underwater missions.

The points represent the spatial positions of the goals and
the refuelling points (magenta). The results demonstrate
GA+TP is able to distribute the robots in different regions
which reduces the possibility of robot collisions, the total
distance travelled and the energy consumed. POPF generates
a plan with all the robots implementing actions in the three
regions, which affects the general cost parameters (energy
consumption and total-distance). OPTIC-NP and OPTIC-P
do not produce good solutions; in both cases the robots im-
plement actions in two different regions. Results show that
combining the advantages of temporal planning and GA can
substantially improve the general performance of the system
and optimise the use of robots and resources.

Plan Execution
This section analyses the performance of the planning strat-
egy based on mission execution. We use the ROSPlan frame-
work to dispatch actions to the underwater and surface vehi-
cles. Each robot run its own action interface/implementation
on-board and present individual nodes for path planning and
sensor parsing. The vehicles are subscribed to PDDL mes-
sages and are able to execute them independently. ROSPlan
typically re-plans several times during a mission run, justi-
fying the need for fast planning time. The primary causes for
re-planning in our experiments are the errors in robot locali-
sation. When re-planning is triggered the currently executing
actions are allowed to be completed. We showed the short-
est planning time is achieved with the GA+TP approach.
Therefore, we base our analysis of the planning strategy on
GA+TP. The experiment establishes the main differences be-
tween the makespan obtained for the temporal planner and
the real mission execution time.

Figure 8 shows a bar chart which compares mission time
results. Simulations demonstrate the plan execution times
are similar to those generated for GA+TP, which supports
our claim that the domain definition is applicable to real un-
derwater missions. These results are also supported by the
fact the robot can recharge in different parts of the environ-
ment which reduces the risk of failures. In addition, the time
duration for all navigation actions consider an time-addition-
factor which reduces the system faults. However, we are

also assuming a constant sea current and no additional dis-
turbances such as body wrench. In addition, the system is
running in a single master which limit the application. Nev-
ertheless, our architecture can be easily segmented in mul-
tiple master (one per robot with different ROS core, ROS-
Plan system, and planner) keeping our approach method. Fu-
ture work intends to analyse the effect of environmental dis-
turbances on plan execution, providing additional recovery
mechanisms to support planning.

Conclusions
In this paper we investigated planning for AUV missions
with multiple vehicles, complex models of the environ-
ment, and missions in highly constrained domains. While
we recognise that expressing domains precisely tends to
over-complicate the planning problem and increase plan-
ning time, we focus on accuracy. We presented a new ap-
proach, GA+TP, which improves the performance of well
established temporal planners such as POPF and OPTIC by
increasing system robustness despite domain complexity, re-
ducing the planning times and making optimal allocations of
the mission goals easier. We also introduced the dynamic re-
allocation of the refuelling point which reduces the risks of
mission failures and enhances the implementation of long-
term missions. The dynamic refuelling point method is par-
ticularly effective for small robot fleets that need to execute
actions in multiple regions. We created a subsea oil platform
scenario in ROS and Gazebo to evaluate the performance of
this strategy using ROSPlan, a realistic AUV and ASV sim-
ulators. Our approach allows the effective execution of con-
current actions with homogeneous robot fleets using ROS-
Plan framework.

References
Benton, J.; Coles, A. J.; and Coles, A. 2012. Temporal planning
with preferences and time-dependent continuous costs. In Int. Con-
ference on Automated Planning and Scheduling.
Bernardini, S.; Fox, M.; and Long, D. 2017. Combining temporal
planning with probabilistic reasoning for autonomous surveillance
missions. Autonomous Robots 41(1):181–203.
Buksz, D.; Cashmore, M.; Krarup, B.; Magazzeni, D.; and Rid-
der, B. 2018. Strategic-tactical planning for autonomous underwa-
ter vehicles over long horizons. In 2018 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), 3565–3572.
IEEE.
Cashmore, M.; Fox, M.; Larkworthy, T.; Long, D.; and Magazzeni,
D. 2014. AUV mission control via temporal planning. In Proceed-
ings of ICRA, 6535–6541.
Cashmore, M.; Fox, M.; Long, D.; Magazzeni, D.; Ridder, B.; Car-
rera, A.; Palomeras, N.; Hurtos, N.; and Carreras, M. 2015. ROS-
Plan: Planning in the Robot Operating System. In Int. Conf. on
Automated Planning and Scheduling, 333–341.
Cashmore, M.; Coles, A.; Cserna, B.; Karpas, E.; Magazzeni, D.;
and Ruml, W. 2018. Situated planning for execution under tem-
poral constraints. AAAI Spring Symposium on Integrating Repre-
sentation, Reasoning, Learning, and Execution for Goal Directed
Autonomy.
Chanel, C. P. C.; Lesire, C.; and Teichteil-Königsbuch, F. 2014. A
robotic execution framework for online probabilistic (re)planning.
In Proceedings of ICAPS.



Chrpa, L.; Pinto, J.; Ribeiro, M. A.; Py, F.; Sousa, J.; and Rajan,
K. 2015. On mixed-initiative planning and control for autonomous
underwater vehicles. In IROS, 1685–1690.
Coles, A. J.; Coles, A.; Fox, M.; and Long, D. 2010. Forward-
chaining partial-order planning. In ICAPS, 42–49.
Crosby, M., and Petrick, R. 2014. Temporal multiagent planning
with concurrent action constraints. In ICAPS Workshop on Dis-
tributed and Multi-Agent Planning (DMAP).
Crosby, M.; Rovatsos, M.; and Petrick, R. 2013. Automated agent
decomposition for classical planning. In ICAPS, 46–54.
Della Penna, G.; Magazzeni, D.; and Mercorio, F. 2012. A uni-
versal planning system for hybrid domains. Applied intelligence
36(4):932–959.
Dornhege, C.; Eyerich, P.; Keller, T.; Trüg, S.; Brenner, M.; and
Nebel, B. 2012. Semantic attachments for domain-independent
planning systems. In Towards service robots for everyday environ-
ments. Springer. 99–115.
Eyerich, P.; Mattmüller, R.; and Röger, G. 2012. Using the context-
enhanced additive heuristic for temporal and numeric planning. In
Towards Service Robots for Everyday Environments. 49–64.
Fernandez-Gonzalez, E.; Williams, B.; and Karpas, E. 2018.
Scottyactivity: Mixed discrete-continuous planning with convex
optimization. JAIR 62:579–664.
Fox, M., and Long, D. 2003. PDDL2.1: An extension to PDDL for
expressing temporal planning domains. JAIR 20:61–124.
Gerevini, A., and Long, D. 2006. Preferences and soft constraints
in PDDL3. In ICAPS workshop on planning with preferences and
soft constraints, 46–53.
Hartigan, J. A., and Wong, M. A. 1979. Algorithm as 136: A
k-means clustering algorithm. Journal of the Royal Statistical So-
ciety. Series C (Applied Statistics) 28(1):100–108.
Hertle, A., and Nebel, B. 2018. Efficient auction based coordina-
tion for distributed multi-agent planning in temporal domains using
resource abstraction. In Joint German/Austrian Conference on Ar-
tificial Intelligence (Künstliche Intelligenz), 86–98. Springer.
Hofmann, T.; Niemueller, T.; Claßen, J.; and Lakemeyer, G. 2016.
Continual planning in golog. In AAAI, 3346–3353.
Hsu, C.-W., and Wah, B. W. 2008. The sgplan planning system in
ipc-6. In Proceedings of IPC.
Ingrand, F. F.; Chatila, R.; Alami, R.; and Robert, F. 1996. Prs: A
high level supervision and control language for autonomous mobile
robots. In Robotics and Automation, volume 1, 43–49. IEEE.
Kvarnström, J. 2011. Planning for loosely coupled agents using
partial order forward-chaining. In Twenty-First International Con-
ference on Automated Planning and Scheduling.
Landa-Torres, I.; Manjarres, D.; Bilbao, S.; and Del Ser, J.
2017. Underwater robot task planning using multi-objective meta-
heuristics. Sensors 17(4):762.
Largouët, C.; Krichen, O.; and Zhao, Y. 2016. Temporal planning
with extended timed automata. In 2016 IEEE 28th International
Conference on Tools with Artificial Intelligence (ICTAI), 522–529.
IEEE.
Manhães, M. M. M.; Scherer, S. A.; Voss, M.; Douat, L. R.; and
Rauschenbach, T. 2016. UUV simulator: A gazebo-based pack-
age for underwater intervention and multi-robot simulation. In
OCEANS 2016 MTS/IEEE Monterey. IEEE.
Marques, T.; Pinto, J.; Dias, P.; and de Sousa, J. T. 2017. Mv-
planning: A framework for planning and coordination of multiple
autonomous vehicles. In OCEANS–Anchorage, 2017, 1–6.

McDermott, D.; Ghallab, M.; Howe, A.; Knoblock, C.; Ram, A.;
Veloso, M.; Weld, D.; and Wilkins, D. 1998. PDDL – The Planning
Domain Definition Language (Version 1.2). Technical Report CVC
TR-98-003/DCS TR-1165, Yale Center for Computational Vision
and Control.
McGann, C.; Py, F.; Rajan, K.; Thomas, H.; Henthorn, R.; and
McEwen, R. 2008. A deliberative architecture for AUV control. In
IEEE Int. Conf. on Robotics and Automation, 1049–1054.
Muise, C.; Lipovetzky, N.; and Ramirez, M. 2015. Map-
lapkt: Omnipotent multi-agent planning via compilation to classi-
cal planning. Competition of Distributed and Multi-Agent Planners
(CoDMAP-15) 14.
Muscettola, N.; Dorais, G. A.; Fry, C.; Levinson, R.; and Plaunt, C.
2002. IDEA: Planning at the core of autonomous reactive agents.
In NASA Workshop on Planning and Scheduling for Space.
Nikou, A.; Boskos, D.; Tumova, J.; and Dimarogonas, D. V. 2018.
On the timed temporal logic planning of coupled multi-agent sys-
tems. Automatica 97:339–345.
Nunes, E., and Gini, M. L. 2015. Multi-robot auctions for alloca-
tion of tasks with temporal constraints. In AAAI, 2110–2116.
Nunes, E.; McIntire, M.; and Gini, M. 2017. Decentralized multi-
robot allocation of tasks with temporal and precedence constraints.
Advanced Robotics 31(22):1193–1207.
Ponda, S.; Redding, J.; Choi, H.-L.; How, J. P.; Vavrina, M.; and
Vian, J. 2010. Decentralized planning for complex missions with
dynamic communication constraints. In American Control Confer-
ence (ACC), 3998–4003.
Quigley, M.; Conley, K.; Gerkey, B.; Faust, J.; Foote, T.; Leibs, J.;
Wheeler, R.; and Ng, A. Y. 2009. ROS: an open-source Robot
Operating System. In ICRA Workshop on Open Source Software.
Rajan, K.; Py, F.; and Barreiro, J. 2013. Towards deliberative con-
trol in marine robotics. In Marine Robot Autonomy. Springer. 91–
175.
Sarda, E. I.; Qu, H.; Bertaska, I. R.; and von Ellenrieder, K. D.
2016. Station-keeping control of an unmanned surface vehicle
exposed to current and wind disturbances. Ocean Engineering
127:305–324.
Schillinger, P.; Bürger, M.; and Dimarogonas, D. V. 2017. Simul-
taneous task allocation and planning for temporal logic goals in
heterogeneous multi-robot systems. The International Journal of
Robotics Research 0278364918774135.
Schneider, E.; Sklar, E. I.; and Parsons, S. 2017. Mechanism selec-
tion for multi-robot task allocation. In Annual Conference Towards
Autonomous Robotic Systems, 421–435. Springer.
Sreedharan, S.; Zhang, Y.; and Kambhampati, S. 2015. A first
multi-agent planner for required cooperation (marc). Proceed-
ings of the Competition of Distributed and Multi-Agent Planners
(CoDMAP’15) 17–20.
Torreño, A.; Onaindia, E.; Komenda, A.; and Štolba, M. 2018. Co-
operative multi-agent planning: a survey. ACM Computing Surveys
(CSUR) 50(6):84.
Tran, T. T.; Vaquero, T.; Nejat, G.; and Beck, J. C. 2017. Robots in
retirement homes: applying off-the-shelf planning and scheduling
to a team of assistive robots. JAIR 58:523–590.
Zhang, Z.; Wang, J.; Xu, D.; and Meng, Y. 2017. Task allocation
of multi-auvs based on innovative auction algorithm. In Proc. of
ISCID, volume 2, 83–88. IEEE.


