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Abstract

We present the Goal Uncertain Stochastic Shortest Path
(GUSSP) problem—a general framework to model path plan-
ning and decision making in stochastic environments with
goal uncertainty. The framework extends the stochastic short-
est path (SSP) model to dynamic environments in which it is
impossible to determine the exact goal states ahead of plan
execution. GUSSPs introduce flexibility in goal specification
by allowing a belief over possible goal configurations. The
unique observations at potential goals helps the agent identify
the true goal during plan execution. The partial observability
is restricted to goals, facilitating the reduction to an SSP with
a modified state space. We formally define a GUSSP, discuss
its theoretical properties, and propose an admissible heuristic
that reduces the planning time using FLARES—a start-of-
the-art probabilistic planner. We also propose a determiniza-
tion approach for solving this class of problems. Finally, we
present empirical results on a search and rescue mobile robot
and three other problem domains in simulation.

Introduction and Related Work
Autonomous robots acting in the real world are often faced
with tasks that require path planning in stochastic environ-
ments. These problems are typically modeled as a Stochas-
tic Shortest Path (SSP) problem, which generalizes both fi-
nite and infinite-horizon Markov decision processes (MDPs)
and is a convenient framework to model goal-driven prob-
lems (Bertsekas and Tsitsiklis 1991). The objective in an
SSP is to devise a sequence of actions such that the expected
cost of reaching a known goal state from the start state is
minimized.

Consider a search and rescue domain (Figure 1), a moti-
vating example where the robot has to devise a cost minimiz-
ing path to rescue people from a building (Kitano et al. 1999;
Pineda et al. 2015). While the number of victims and the
map of the building may be provided to the robot, only po-
tential victim locations may be known ahead of plan exe-
cution. The unavailability of the exact goal states (victim
locations) during planning time prevents the problem from
being modeled as a standard MDP or SSP. In this work we
assume that the exact goal states may be hard to identify, but
historical data or noisy sensors allow the robot to establish a
belief distribution over possible victim locations. The search
and rescue domain is an instance of the optimal search for

(a) Problem setting (b) Experimental setting

Figure 1: An illustrative example of a search and rescue
problem with goal uncertainty, showing a motivating prob-
lem setting with the initial belief (left) and the corresponding
experimental setting of the problem with a mobile robot and
updated beliefs (right). The question marks indicate poten-
tial victim locations and values denote the robot’s belief. S
denotes the robot’s start location and G is the actual victim
location (goal). The robot updates its belief about the victim
locations based on its observations.

stationary targets (Hansen 2007; Stone, Royset, and Wash-
burn 2016; Bourgault, Furukawa, and Durrant-Whyte 2003;
Trevizan and Veloso 2013)—a class of problems in which
the target’s exact location is unknown to the robot, but the
robot can observe its current location and determine whether
the target is in the current location. Hence, we assume that
the robot is given well-defined goal conditions, but has un-
certainty about the states that satisfy these goal conditions.

In the existing literature (Nie, Wong, and Kaelbling
2016; Ong et al. 2010), such problems are typically mod-
eled as a Partially Observable MDP (POMDP) (Kaelbling,
Littman, and Cassandra 1998), a rich framework that facili-
tates modeling various forms of partial observability. How-
ever, POMDPs are much harder to solve (Papadimitriou
and Tsitsiklis 1987) than MDPs. The partially observable
SSPs (POSSPs) extend the SSP framework to settings with
partially observable states, offering a class of indefinite-
horizon, undiscounted POMDPs that rely on state-based ter-
mination (Patek 2001). Other relevant POMDP variants are
the Mixed Observable MDPs (Ong et al. 2010) that model
problems with both fully observable and partially observ-
able state factors and the Goal POMDPs (Bonet and Geffner
2009) that are goal-based with no discounting. These models
are solved using POMDP solvers and are difficult to solve
optimally. They also suffer from limited scalability due to



their computational complexity (Papadimitriou and Tsitsik-
lis 1987). Extensions of POMDPs to multi-agent problems
include goal-directed DEC-POMDPs (Amato and Zilber-
stein 2009), which extend goal-directed planning to multi-
agent settings with partial observability.

Another related line of work is the transition-uncertain
MDPs (Delgado et al. 2011) which can capture the uncer-
tainty in transitioning to the goal states. However, solving
MDPs with imprecise transitions is complex and designing
efficient solvers for this class of problems remains under-
explored. Our objective in this work is to develop efficient
planners for problems with goal uncertainty by leveraging
the fully observable components of the problem.

We present goal uncertain SSP (GUSSP), a framework
specifically designed to model problems with imperfect goal
information by allowing for a probabilistic distribution over
possible goals. GUSSPs fit well with many real-world set-
tings where it is easier and more realistic to have belief over
goal configurations, rather than exact knowledge about the
goal states. The observation function in a GUSSP facili-
tates the reduction to an SSP, enabling the computation of
tractable and optimal solutions. We address settings where
the goals do not change over time and we assume the ex-
istence of a unique observation that allows the robot to ac-
curately identify a goal when it reaches one. We define the
property of an order-k policy that helps understand the com-
plexity of policy execution. This measure bounds the maxi-
mum number of unique visits to states that provide informa-
tion about the goal, before the agent discovers a true goal.

Our key contributions are: (i) a formal definition of
GUSSP and its theoretical properties; (ii) a domain-
independent, admissible heuristic that can accelerate prob-
abilistic planners; (iii) a determinization approach for solv-
ing GUSSPs; and (iv) empirical evaluation on three realistic
domains in simulation and on a mobile robot.

Background: Stochastic Shortest Path

A Stochastic Shortest Path (SSP) is a more general for-
mulation of an MDP to model goal-oriented problems that
require sequential decision making under uncertainty. For-
mally, an SSP is defined by the tuple 〈S,A, T,C, s0, SG〉,
where S is a finite set of states; A is a finite set of actions;
T :S× A × S → [0, 1] is the transition function represent-
ing the probability of reaching a state s′ ∈ S by executing
an action a ∈ A in state s ∈ S, and denoted by T (s, a, s′);
C :S ×A→ R+ ∪ {0} is the cost function representing the
cost of executing action a ∈ A in state s ∈ S, and denoted
by C(s, a); s0 ∈ S is the initial state; and SG ⊆ S is the
set of absorbing goal states. The cost of an action is positive
in all states except absorbing goal states, where it is zero.
An SSP is an MDP with no discounting, that is, the discount
factor γ = 1. The objective in an SSP is to minimize the ex-
pected cost of reaching a goal state from the start state. It is
assumed that there exists at least one proper policy, one that
reaches a goal state from any state s with probability 1. The
optimal policy, π∗, can be extracted using the value function

Figure 2: A dynamic Bayesian network describing a GUSSP.

defined over the states, V ∗(s):

V ∗(s) = min
a

Q∗(s, a), ∀s ∈ S

Q∗(s, a) = C(s, a)+
∑
s′

T (s, a, s′)V ∗(s′),∀(s, a)

with Q∗(s, a) denoting the optimal Q-value of the action a
in state s in the SSP. While SSPs can be solved in polyno-
mial time in the number of states, many problems of interest
have a state-space whose size is exponential in the number of
variables describing the problem (Littman 1997). This com-
plexity has led to the use of various approximate methods
that either ignore stochasticity or use a short-sighted label-
ing approach for quickly solving the problem.

Goal Uncertain Stochastic Shortest Path
A goal uncertain stochastic shortest path (GUSSP) problem
is a generalized framework to model problems with goal un-
certainty. A GUSSP is an SSP in which the agent may not
know initially the exact set of goal states (SG, which does
not change over time), and instead can obtain information
about the goals via observations.

Definition 1. A goal uncertain stochastic shortest path
problem is a tuple 〈X,S,A, T, C, s0, SG, PG,Ω, O〉 where

• S,A, T,C, s0, SG denote an underlying SSP with SG un-
known to the agent;

• PG ⊆ S is the set of potential goals such that SG ⊆ PG;
• X = S × G is the set of states in the GUSSP with G =

2PG\{∅} denoting the set of possible goal configurations;
• Ω is a finite set of observations corresponding to the goal

configurations, Ω = G; and
• O : A × X × Ω → [0, 1] is the observation function

denoting the probability of receiving an observation, ω ∈
Ω, given action a ∈ A led to state x′ with probability
O(a, x′, ω) ≡ Pr(ω|a, x′).

Each state is represented by 〈s, g〉, with s∈S and g ∈ G.
GUSSPs have mixed observable state components as s is
fully observable. Each g ∈ G represents a goal configura-
tion (set of states), thus permitting multiple true goals in the
model, |SG|≥1. Every action in each state produces an ob-
servation, ω∈Ω, which is a goal configuration that provides
information about the true goals. The agent’s belief about
its current state is denoted by b(x), with x = 〈s, g〉; that



is, the belief about g = SG. The initial belief is denoted by
b0〈s0, g〉 ∈ [0, 1],∀g ∈ G, where s0 is the start state. SSPs
are therefore a special type of GUSSPs with a collapsed ini-
tial belief over the goals. The process terminates when the
agent reaches a state x such that b(x)=1 and s∈g. Figure 2
shows a part of the network representation for a GUSSP.

As with (PO)SSPs, we assume that in a GUSSP: (1) there
exists a proper policy with a finite cost, (2) all improper poli-
cies have infinite cost, and (3) termination is perfectly rec-
ognized.

Observation Function In a GUSSP, an observation function
is characterized by two properties. First, to perfectly recog-
nize termination, all potential goals are characterized by a
unique belief-collapsing (when the belief over a state is ei-
ther 1 or 0) observation. That is, at potential goal states, if
s′ ∈ g′, then ∀a ∈ A:

O(a, x′, ω) =

{
1 if g′ = ω

0 otherwise.
(1)

Second, the observation function is myopic, providing in-
formation only about the current state. This is based on real-
world settings with limited range sensors and the exploration
and navigation approaches for robots that acknowledge the
perceptual limitations of robots (Biswas and Veloso 2013).
Therefore, the nonpotential goal states provide no informa-
tion about the true goals, O(a, x′, ω) = 1

|Ω| . The landmark
states are special nonpotential goal states that provide accu-
rate information about certain potential goals. Each s ∈ Ls
provides observations about a subset of potential goals with
Ωs denoting the corresponding set of observations. There-
fore, the observation function at nonpotential goal states is,
∀a ∈ A:

O(a, x′, ω)=

{
1 if s′ ∈ Ls ∧ ω ⊆ g′ ∧ ω ∈ Ωs′

0 if s′ ∈ Ls ∧ ω 6⊆ g′ ∧ ω ∈ Ωs′
, (2)

with x= 〈s, g〉 and x′ = 〈s′, g′〉. The potential goals along
with the landmark states are called informative states, I=
PG ∪ Ls, since they provide information about the true
goals through deterministic observations. Thus, our obser-
vation function satisfies the minimum information required
for state-based termination. In the next section, we discuss
a more general setting where every state may have a noisy
observation regarding the true goals.

Belief Update A belief b is a probability distribution over
X , b(x) ∈ [0, 1],∀x ∈ X and

∑
x∈X b(x) = 1. The set of

all reachable beliefs forms the belief space B ⊆ ∆n, where
∆n is the standard (n−1)-simplex. The agent updates the
belief b′∈B, given the action a ∈ A, an observation ω ∈ Ω,
and the current belief b. Using the multiplication rule, the

updated belief for x′=〈s′, g′〉 is:
b′(x′|b, a, ω) = Pr(g′|b, a, ω, s′)Pr(s′|b, a, ω, s)

= Pr(g′|b, a, ω, s′)T (s, a, s′)

Pr(g′|b, a, ω, s′) = ηPr(ω|b, a, s′, g′)Pr(g′|b, a, s′)

= ηO(a, x′, ω)
∑
g∈G

Pr(g′, g|b, a, s′)

= ηO(a, x′, ω)Pr(g|b, a, s′)
= ηO(a, x′, ω)b(g), (3)

with η = Pr(ω|b, a, s′)−1 is a normalization constant and
b(g) is the belief over the goal configuration. Therefore,

b′(x′|b, a, ω) = ηO(a, x′, ω)b(g)T (s, a, s′). (4)
The above equation reflects that the belief is only over the
goal configurations.

Policy and Value The agent’s objective in a GUSSP
is to minimize the expected cost of reaching a goal,
minπ∈Π E

[∑h
t=0 C(xt, at)

∣∣∣π], where xt and at denote the
agent’s state and action at time t respectively, and h ∈ N
denotes the horizon. A policy π :B→ A is a mapping from
belief b ∈ B to an action a ∈ A. The value function for a be-
lief, V :B →R is the expected cost for a fixed policy π and
a horizon h. The Bellman optimality equation for GUSSPs
follows from POMDPs:

V (b) = min
a∈A

[
C(b, a) +

∑
ω∈Ω

Pr(ω|b, a)V (b′aω)
]
,

where b′aω is the updated belief following Equation 4,
C(b, a) =

∑
x b(x)C(x, a), x = 〈s, g〉, and x = 〈s′, g′〉. A

proper policy, π, in a GUSSP guarantees termination in a
finite expected number of steps, V π(b0) <∞.

The number of potential goals with non-zero belief val-
ues indicate the degree of uncertainty over goals. The prob-
lem setting and the optimal policy determine when the belief
values collapse to the true goals. When deploying robots in
real-world settings with goal uncertainty, it is useful to un-
derstand the problem complexity for policy execution. We
measure this by the maximum number of unique visits to
informative states that may be required before a true goal
is discovered by the agent. We consider unique visits since
no new information is obtained thereafter. For example, con-
sider a search and rescue domain in which the agent searches
for victims in a corridor with the start state on one end and
followed by a series of potential goals. If the first potential
goal location is a true goal, then the agent visits only one
potential goal before the true goal is discovered, following
the optimal policy. This property is beneficial especially in
environments with landmark states that reveal the true goals,
thus minimizing the need to visit the potential goals specifi-
cally to determine the true goals.
Definition 2. A GUSSP policy π is of order-k if there are at
most k unique visits to informative states before a true goal
is reached following π.

For state-based termination, 1 ≤ k ≤ |PG|. We illustrate
this property in our experiments on a robot, using optimal
policies corresponding to different initial beliefs.



Theoretical Analysis
In a GUSSP, the observation function critically affects the
number of reachable beliefs. We begin with analyzing how
the number of beliefs may grow in the more general (non-
myopic observation) setting and then show that a GUSSP
with myopic observations has finite reachable beliefs.

In a GUSSP with non-myopic observations, the nonpoten-
tial goal states provide stochastic observations about the true
goals, resulting in infinitely many reachable beliefs. While
this is a trivial fact, it is useful to understand the growth in
complexity of the problem and it provides an important link
to POMDPs via the belief MDP. The following proposition
formally proves this complexity.

Proposition 1. For all horizon h > 0, the belief-MDP of
a GUSSP with non-myopic observations may have O(|Ω|h)
states.

Proof. By construction, we map this GUSSP to a belief
MDP 〈B,A, τ, ρ〉 with a horizon h (Kaelbling, Littman, and
Cassandra 1998). Let R(b0) denote the set of reachable be-
liefs in the GUSSP. The set of states in the MDP is the set
of reachable beliefs from b0 in the GUSSP, B = R(b0).
The set of actions in the GUSSP are retained in the MDP,
A = A. The cost function ρ(b, a) =

∑
x∈X b(x)C(x, a),

where C(x, a) corresponds to cost function of GUSSP. The
transition function for the belief MDP is the probability of
executing action a ∈ A in belief state b ∈ B and reaching
the reaching belief b′, and denoted by τ(b, a, b′), is:

τ(b, a, b′) =
∑
ω∈Ω

Pr(b′, ω|b, a)

=
∑
ω∈Ω

Pr(b′|b, a, ω)Pr(ω|b, a)

=
∑
ω∈Ω

Pr(ω|b, a)[b′ = b′aω],

with Iversen bracket [·] and b′aω denoting the updated belief
calculated using Equation 4, after executing action a and re-
ceiving observation ω. The probability of receiving ω is:

Pr(ω|b, a) =
∑
x′∈X

Pr(ω, x′|b, a)

=
∑
x′∈X

O(a, x′, ω)
∑
x∈X

T (s, a, s′)b(g′),

with x = 〈s, g〉 and x′ = 〈s′, g′〉. Since |S| in the GUSSP is
finite, a finite set of reachable beliefs in the GUSSP results
in a finite set of reachable states in the belief MDP. This
is a tree of depth h with internal nodes for decisions and
transitions, the branching factor is O(|Ω|) for each horizon,
h (Papadimitriou and Tsitsiklis 1987). Therefore, the total
number of reachable beliefs in the GUSSP is O(|Ω|h), and
thus the resulting belief MDP may have O(|Ω|h) distinct
reachable states.

In the worst case, the observation function may be uncon-
strained and all the beliefs may be unique. Since there is no

discounting in a GUSSP and the horizon is unknown a pri-
ori, GUSSPs may have infinitely many beliefs and their com-
plexity class may be undecidable in the worst case (Madani,
Hanks, and Condon 1999). Hence, solving GUSSPs with
non-myopic observations optimally is computationally in-
tractable.

We now prove that a myopic observation function results
in a finite number of reachable beliefs in a GUSSP.
Proposition 2. A GUSSP with myopic observation function
has a finite number of reachable beliefs.

Proof. By definition, a myopic observation function pro-
duces either belief-collapsing observations or no informa-
tion at all. For each case, we first calculate the updated be-
lief for the goal configurations using Equation 3. Therefore,
∀x′ ∈ X with x′ = 〈s′, g′〉:

b′(g′)=
O(a, x′, ω) b(g)∑
x′ O(a, x′, ω)b(g)

.

Case 1: Belief-collapsing observation. Trivially, when
O(a, x′, ω) = 0, the updated belief is b′(g′) = 0.
When O(a, x′, ω) = 1, the updated belief is b′(g′) = 1.
Case 2: No information. When the observation provides no
information, ∀a ∈ A,O(a, x′, ω)=1/|Ω|. Then,

b′(g′) =
b(g)/|Ω|∑
x′ b(g)/|Ω|

= b(g).

Thus, ∀g ∈G, a myopic observation function produces col-
lapsed belief or retains the same belief, resulting in a finite
number of reachable beliefs for a goal configuration. Since
|S| is finite, the belief update following Equation 4 would re-
sult in finite number of reachable beliefs for a GUSSP.

Hence, a myopic observation function weakly monotoni-
cally collapses beliefs, allowing us to simplify the problem
further. We now show that a GUSSP reduces to an SSP,
along the same lines as the mapping from a POMDP to
belief-MDP (Kaelbling, Littman, and Cassandra 1998).
Proposition 3. A GUSSP reduces to an SSP.

Proof. We map the GUSSP to a belief MDP 〈B,A, τ, ρ〉
with a horizon h (Kaelbling, Littman, and Cassandra 1998),
as in Proposition 1. By Proposition 2, a GUSSP with myopic
observation function has a finite number of reachable beliefs
and therefore, finite states in the belief-MDP. By construc-
tion, this belief-MDP is an SSP with the start state s̄0 = b0
and the goal states, S̄G, are the set of states with b̄(x) = 1
such that b̄(g) = 1 and s ∈ g. Since there exists a proper
policy in a GUSSP, the policy in this SSP is proper by con-
struction. Thus, a GUSSP with myopic observation function
reduces to an SSP.

The reduction to an SSP facilitates solving GUSSPs using
the existing rich suite of SSP algorithms. For ease of refer-
ence and clarity, we refer to the above-mentioned SSP as
compiled-SSP in the rest of this paper.

The order-k of π∗ for a GUSSP (compiled-SSP) can be
calculated using a directed graph constructed using π∗. We
now show that computing order-k is polynomial.



Proposition 4. The worst case complexity for computing
order-k for π∗ isO(|PG|(|V |+|E|)), where V andE denote
the vertices and edges of the corresponding directed graph.

Proof Sketch. To calculate order-k for π∗, we construct a di-
rected graph, Z, using π∗ such that V = I ∪ {s0} and the
trajectories between them are the edges, E. We begin with
setting each potential goal to be a true goal. We introduce ad-
ditional (artificial) edges from the true goal to the informa-
tive states. Then, we compute the strongly connected com-
ponents, using depth first search that takesO(|V |+|E|), and
condense it to form a directed acyclic graph Z ′ = (V ′, E′).
We start from the true goal in Z ′ and traverse backwards.
The k value of the true goal is initialized to 1 and propagated
to its (unvisited) neighbors. At each vertex, k is increased to
be the sum of informative states in the condensed vertex and
the incoming value from the neighbor. This continues until
all vertices in Z ′ have been visited and the start state is up-
dated with the maximum k. This process may be repeated
with every potential goal as the true goal and the overall
maximum k is the order of the policy. Thus, the worst case
complexity is O(|PG|(|V |+ |E|)).

Relation to Goal-POMDPs The Goal-POMDP (Bonet and
Geffner 2009) models a class of goal-based and shortest-
path POMDPs with positive action costs and no discount-
ing. The set of target (or goal) states, P̄ , have unique belief-
collapsing observations. Hence, a Goal-POMDP is a GUSSP
when the partial observability is restricted to goals, the ob-
servations set is 2P̄ \{∅}, and observation function is myopic.

Proposition 5. GUSSP ⊂ Goal-POMDP.

The observations in a Goal-POMDP are not constrained
and may result in infinitely many reachable beliefs (Propo-
sition 1). This makes it computationally challenging to com-
pute optimal policies (Papadimitriou and Tsitsiklis 1987),
unlike GUSSPs which are more tractable can be solved op-
timally (Proposition 3).

GUSSP with Deterministic Transitions A GUSSP with
deterministic transitions presents an opportunity for further
reduction in complexity. We show that the optimal policy in
this case is a minimum spanning tree of its corresponding
directed graph.

Proposition 6. The optimal policy for a GUSSP with myopic
observations and deterministic transitions is the minimum
arborescence of a weighted and directed graph Z.

Proof. Consider a GUSSP with deterministic transitions and
a dummy start state, r, that transitions to the actual start state
with probability 1 and zero cost. This can be represented
as a directed and weighted graph, Z = (V,E,w), such that
V = {r} ∪ {x ∈ X|x= 〈s, g〉 ∧ s ∈ PG}; that is, the start
state and the potential goals are the vertices. Each edge e∈E
denotes a trajectory in the GUSSP between vertices. The
proper policy in a GUSSP ensures that there is at least one
edge between each pair of vertices. The weight of an edge
connecting x, y∈V is w(e)=d(x, y)(1−b(y)), with d(x, y)
denoting the cost of the trajectory and b(y) is the belief over

y being a goal. The minimum arborescence (directed min-
imum spanning tree) of this graph, A, contains trajectories
such that the total weight is minimized, minA∈A w(A) with
w(A)=

∑
e∈A w(e). By construction, this gives the optimal

order of visiting the potential goals and hence the optimal
policy for the GUSSP with V ∗(s0)=w(A).

Solving Compiled-SSPs
We propose (i) an admissible heuristic for SSP solvers that
accounts for the goal uncertainty and (ii) a determinization-
based approach for solving the compiled-SSP.

Admissible Heuristic
In heuristic search-based SSP solvers, the heuristic function
helps avoid visiting states that are provably irrelevant. An
efficient heuristic for solving the compiled-SSP guides the
search by accounting for the goal uncertainty. We propose a
heuristic for the compiled-SSP that accounts for goal uncer-
tainty and is calculated as follows:

hpg(x) , min
g∈G

(
(1− b(g)) min

i∈g
d(x, i)

)
where d(x, i) denotes the cost of the shortest trajectory to
the potential goal i from state x and b(g) is the agent’s belief
of g being a true goal. Multiplying by the probability of a
state not being a goal (1− b(g)) breaks ties in favor of con-
figurations with a higher probability of being a goal, with a
lower heuristic value. The following proposition shows that
the proposed heuristic is admissible.
Proposition 7. hpg is an admissible heuristic.

Proof. To show that hpg is admissible, we first show that
mini∈g d(x, i) is an admissible estimate of the expected
cost of reaching a goal configuration g from state x. Let
d∗(x, g) be the expected cost of reaching g from x. Since
d(x, g) is the cost of the shortest trajectory to g from x,
d(x, g) ≤ d∗(x, g). If all paths exist from x to all potential
goal states i ∈ g, then by definition, the shortest trajectory
to a goal configuration is the minimum distance to a poten-
tial goal in g. That is, d(x, g)=mini∈g d(x, i) and therefore
mini∈g d(x, i)≤ d∗(x, g). Multiplying this value by the be-
lief and using the minimum value over all possible goal con-
figurations guarantees that hpg is an admissible estimate of
the expected cost reaching a true goal configuration.

Determinization
Determinization is a popular approach for solving large
SSPs as it simplifies the problem by replacing the proba-
bilistic outcomes of an action with a single deterministic
outcome (Yoon, Fern, and Givan 2007; Saisubramanian, Zil-
berstein, and Shenoy 2018). We extend determinization to
a GUSSP by ignoring the uncertainty about the goals. The
agent plans to reach one potential goal (determinized goal) at
a time, simplifying the problem to a smaller SSP. During ex-
ecution, if the determinized goal is not a true goal, the agent
replans for another unvisited potential goal. This approxi-
mation scheme offers considerable speedup over solving the
compiled-SSP.



LAO* (Optimal solver) Flares(1)-hmin Flares(1)-hpg Det-MLG Det-CG
Problem Instance Cost Time Cost Time Cost Time Cost Time Cost Time

rover (20,6) 28.25 14.99 35.35 ± 2.67 1.08 30.34 ± 2.37 0.17 36.71 ± 2.62 0.07 45.51 ± 3.22 0.06
rover (20,7) 42.16 30.19 43.49 ± 1.62 1.17 45.07 ± 1.77 0.83 49.69 ± 1.91 0.02 48.36 ± 1.43 0.03
rover (30,8) 36.96 190.92 38.21 ± 1.83 2.27 41.31 ± 1.97 0.16 38.54 ± 1.54 0.02 40.34 ± 1.82 0.03
rover (30,9) 34.72 832.56 38.21 ± 2.54 7.56 43.32 ± 2.54 1.73 50.27 ± 2.58 0.88 49.49 ± 1.97 0.45
search (20,4) 87.63 15.78 94.32 ± 0.58 1.45 93.32 ± 0.58 0.98 91.22 ± 0.67 1.05 90.42 ± 0.61 0.86
search (20,5) 74.61 14.42 83.83 ± 0.56 2.99 81.91 ± 0.56 1.93 78.32 ± 0.56 1.98 79.74 ± 6.37 0.98
search (20,5) 86.72 63.71 94.21 ± 0.79 6.21 91.18 ± 1.46 1.93 87.74 ± 0.65 0.66 89.98 ± 0.59 1.68
search (30,6) 90.89 267.35 94.21 ± 1.35 117.63 103.77 ± 3.42 21.07 101.67 ± 1.61 12.68 92.94 ± 0.68 19.50

ev (-,5) 2.34 8.16 3.29 ± 1.55 2.21 4.89 ± 1.36 0.92 5.15 ± 1.46 0.52 7.17 ± 1.43 0.62
ev (-,6) 3.46 10.79 4.89 ± 1.96 2.25 5.96 ± 1.96 1.14 7.15 ± 2.46 0.88 8.17 ± 1.43 0.79

Table 1: Average cost and planning time (seconds) results. Bold titles indicate our solution approaches.

We consider two determinization approaches: (i) most-
likely goal determinization (DET-MLG) and (ii) closest-goal
determinization (DET-CG). In the DET-MLG, the most-
likely goal is determinized, based on its current belief. In
DET-CG, the agent determinizes the closest goal based on
the heuristic distance to the potential goal (with non-zero
belief) from its current state. We resolve ties randomly.

Experiments
We begin with a comparison of different approximate solu-
tion techniques for solving the compiled-SSP on three do-
mains in simulation. We then test the model on a real robot
with three different initial belief settings.

Evaluation in Simulation
We experiment with three domains to evaluate the solution
techniques in handling (i) location-based goal uncertainty
(planetary rover domain, search and rescue domain) and (ii)
temporal goal uncertainty (electric vehicle (EV) charging
problem using real-world data). The expected cost of reach-
ing the goal and run time are used as evaluation metrics. A
uniform initial belief is considered for all the domains in
these experiments. We solve the compiled-SSPs optimally
using LAO* (Hansen and Zilberstein 1998; 2001), which is
an optimal solver based on A* (Hart, Nilsson, and Raphael
1968) for solving MDPs with loops, and approximately us-
ing FLARES, a domain-independent state-of-the-art algo-
rithm for solving large SSPs using horizon=1 (Pineda, Wray,
and Zilberstein 2017), as well as the two determinization
methods. The hmin heuristic, computed using a labeled ver-
sion of LRTA* (Bonet and Geffner 2003), is used as a base-
line for evaluating hpg .

Planetary Rover This domain models the rover science
exploration (Zilberstein et al. 2002; Ong et al. 2010) that ex-
plores an environment described by a known map to collect
a mineral sample. The samples may be ‘good’ or ‘bad’ and
|PG| = n. The rover knows its own position (x, y) exactly,
as well as those of the samples but does not know which
samples are ‘good’. The process terminates upon collecting
a ‘good’ sample. The actions include moving in all four di-
rections, which succeed with a probability of 0.8, and a sam-
ple action which is deterministic. The sample action costs

+2 if the mineral is good and +10 otherwise; all other ac-
tions cost +1.

Search and Rescue In this domain, an autonomous robot
explores an environment described by a known map to find
victims (Pineda et al. 2015). We modify the problem such
that there are m victims locations and n total victims. Each
location may or may not have victims, which are known to
the robot a priori. The state factors are the robot’s current lo-
cation and a counter to indicate the number of victims saved
so far. The observations indicate the presence of victims in
each state. The actions include moving in all four directions
and a SAVE action that saves all the victims in a state. The
move actions cost +1 and are stochastic, succeeding with
0.8 probability. The SAVE action is deterministic and costs
+2. The objective is to minimize the expected cost of saving
all victims.

Electric Vehicle Charging We experimented with the elec-
tric vehicle (EV) charging domain, operating in a vehicle-
to-grid setting (Saisubramanian, Zilberstein, and Shenoy
2017), where the EV can charge and discharge energy from
a smart grid. The objective is to devise a robust policy that is
consistent with the owner’s preferences, while minimizing
the operational cost of the vehicle. We modified the problem
such that parking duration of the EV is uncertain withH de-
noting the horizon. The potential goals in this problem are
the possible departure times. The EV can fully observe its
current charge level and the time step. In our experiments,
|PG|=n denotes that PG={H,H − 1, ..,H−n}. Each t is
equivalent to 30 minutes in real time. If the EV’s exit charge
level does not meet the owner’s desired exit charge level, a
penalty is incurred.

The battery capacity and the charge speeds for the EV
are based on Nissan Leaf configuration and the action costs
and peak hours are based on real data (Eversource 2017).
The charge levels and entry time data are based on charging
schedules of electric cars over a four month duration in 2017
from a university campus. The data is clustered based on
the entry and exit charges, and we selected 25 representative
problem instances across clusters for our experiments.



Figure 3: Demonstration of the path taken by the robot with three different initial beliefs for the map in Figure 1. The start state
and the true goal state are denoted by S and G, respectively. The other potential goals are denoted by the question mark symbol.
Green, blue, and red show the path taken by the robot with 0.1, 0.25, and 0.9 as the initial belief for the true goal state and equal
probability for other potential goal states.

Discussion Table 1 shows the results of the five techniques
on various problem instances, in terms of cost and runtime
respectively. The results are averaged over 100 trials and
standard errors are reported for the expected cost. The results
for the EV domain are averaged over 25 problem instances.
The grid size and the number of potential goals are shown
for each problem instance. We experiment with no landmark
states to demonstrate the performance in the worst case set-
ting. The significance threshold was set at 10%. In terms
of expected costs, the performance of the approximate tech-
niques are comparable. The runtimes for solving the prob-
lems optimally, however, scales rapidly as the number of
potential goals increases. The advantage of using FLARES
with hpg and the determinization techniques are more evi-
dent in the runtime savings. FLARES using our heuristic hpg
is significantly faster than using the baseline hmin heuristic.
The determinizations are faster than solving the problem us-
ing FLARES with either heuristic.

Evaluation on a mobile robot
The robot experiment aims to visually explain how the belief
distribution alters the robot’s trajectory. Figure 3 shows the
results in a ROS simulation and on a real robot for a simple
search and rescue problem with one agent and four poten-
tial victim locations for the map shown in Figure 1. We test
with three different initial beliefs: uniform, optimistic, and
pessimistic. The corresponding belief of the true goal, G,
in each belief setting is: 0.25, 0.9, and 0.1, with the other
potential goals having equal probability. The order-k of the
optimal policy with respect to the true goal in each belief
setting is 4, due to stochastic transitions. The order-k for the
optimal policies of the GUSSP with deterministic transitions
for this problem are: 3, 1, and 4, corresponding to the three
initial beliefs.

Conclusion and Future Work
The goal uncertain SSP (GUSSP) provides a natural model
for real-world problems where it is non-trivial to identify the
exact goals ahead of plan execution. While a general GUSSP
could be intractable, we identify several tractable classes of
GUSSPs and propose effective algorithms for solving them.
Specifically, we show that a GUSSP with a myopic observa-
tion function can be reduced to an SSP, allowing us to effi-

ciently solve it using existing SSP solvers. We also propose
an admissible heuristic that accounts for goal uncertainty in
its estimation and a fast solver based on extending the no-
tion of determinization to handle goal uncertainty. The sim-
ulation results show that solving the compiled-SSPs using
FLARES with the proposed heuristic is faster than the base-
line. The determinization techniques are significantly faster
than solving the compiled-SSP optimally. The results show
that GUSSPs can be solved efficiently using scalable algo-
rithms that do not rely on POMDP solvers. In the future, we
aim to explore other conditions under which GUSSPs have
a bounded set of beliefs that supports the development of
efficient solvers.

Acknowledgments
This work was supported in part by the National Science
Foundation grants IIS-1524797 and IIS-1724101.

References
Amato, C., and Zilberstein, S. 2009. Achieving goals in
decentralized POMDPs. In Proceedings of the 8th Inter-
national Conference on Autonomous Agents and Multiagent
Systems.
Bertsekas, D. P., and Tsitsiklis, J. N. 1991. An analysis of
stochastic shortest path problems. Mathematics of Opera-
tions Research, 16:580–595.
Biswas, J., and Veloso, M. 2013. Multi-sensor mobile
robot localization for diverse environments. In Robot Soccer
World Cup, 468–479. Springer.
Bonet, B., and Geffner, H. 2003. Labeled RTDP: Improving
the convergence of real-time dynamic programming. In Pro-
ceedings of the 13th International Conference on Automated
Planning and Scheduling.
Bonet, B., and Geffner, H. 2009. Solving POMDPs: RTDP-
bel vs. point-based algorithms. In Proceedings of the 21st
International Joint Conference on Artificial Intelligence.
Bourgault, F.; Furukawa, T.; and Durrant-Whyte, H. F.
2003. Coordinated decentralized search for a lost target in
a bayesian world. In Proceedings of the IEEE International
Conference on Intelligent Robots and Systems.



Delgado, K. V.; Sanner, S.; De Barros, L. N.; and Coz-
man, F. G. 2011. Efficient solutions to factored MDPs
with imprecise transition probabilities. Artificial Intelli-
gence 175:1498–1527.
Eversource. 2017. Time of use rates.
https://www.eversource.com/clp/vpp/vpp.aspx.
Hansen, E. A., and Zilberstein, S. 1998. Heuristic search in
cyclic AND/OR graphs. In Proceedings of the 15th National
Conference on Artificial Intelligence.
Hansen, E. A., and Zilberstein, S. 2001. LAO*: A heuristic
search algorithm that finds solutions with loops. Artificial
Intelligence 129:35–62.
Hansen, E. A. 2007. Indefinite-horizon POMDPs with
action-based termination. In Proceedings of the 22nd AAAI
Conference on Artificial Intelligence.
Hart, P. E.; Nilsson, N. J.; and Raphael, B. 1968. A for-
mal basis for the heuristic determination of minimum cost
paths. IEEE Transactions on Systems Science and Cyber-
netics 4:100–107.
Kaelbling, L. P.; Littman, M. L.; and Cassandra, A. R. 1998.
Planning and acting in partially observable stochastic do-
mains. Artificial Intelligence 101:99–134.
Kitano, H.; Tadokoro, S.; Noda, I.; Matsubara, H.; Taka-
hashi, T.; Shinjou, A.; and Shimada, S. 1999. RoboCup
rescue: Search and rescue in large-scale disasters as a do-
main for autonomous agents research. In IEEE Conference
on Systems, Man, and Cybernetics.
Littman, M. L. 1997. Probabilistic propositional planning:
Representations and complexity. In Proceedings of the 14th
Conference on Artificial Intelligence.
Madani, O.; Hanks, S.; and Condon, A. 1999. On the unde-
cidability of probabilistic planning and infinite-horizon par-
tially observable markov decision problems. In Proceedings
of the 16th AAAI Conference on Artificial Intelligence.
Nie, X.; Wong, L. L.; and Kaelbling, L. P. 2016. Search-
ing for physical objects in partially known environments.
In Proceedings of the IEEE International Conference on
Robotics and Automation.
Ong, S.; Png, S. W.; Hsu, D.; and Lee, W. S. 2010. Planning

under uncertainty for robotic tasks with mixed observability.
International Journal of Robotics Research 29:1053–1068.
Papadimitriou, C. H., and Tsitsiklis, J. N. 1987. The com-
plexity of markov decision processes. Mathematics of Op-
erations Research 12:441–450.
Patek, S. D. 2001. On partially observed stochastic shortest
path problems. In Proceedings of the 40th IEEE Conference
on Decision and Control.
Pineda, L.; Takahashi, T.; Jung, H.-T.; Zilberstein, S.; and
Grupen, R. 2015. Continual planning for search and res-
cue robots. In Proceedings of the 15th IEEE Conference on
Humanoid Robots.
Pineda, L.; Wray, K.; and Zilberstein, S. 2017. Fast SSP
solvers using short-sighted labeling. In Proceedings of the
31st AAAI Conference on Artificial Intelligence.
Saisubramanian, S.; Zilberstein, S.; and Shenoy, P. 2017.
Optimizing electric vehicle charging through determiniza-
tion. In Scheduling and Planning Applications Workshop
(SPARK), ICAPS.
Saisubramanian, S.; Zilberstein, S.; and Shenoy, P. 2018.
Planning using a portfolio of reduced models. In Proceed-
ings of the 17th International Conference on Autonomous
Agents and MultiAgent Systems.
Stone, L. D.; Royset, J. O.; and Washburn, A. R. 2016.
Search for a stationary target. In Optimal Search for Moving
Targets. Springer. 9–48.
Trevizan, F., and Veloso, M. 2013. Finding objects through
stochastic shortest path problems. In Proceedings of the In-
ternational Conference on Autonomous Agents and Multia-
gent Systems.
Yoon, S.; Fern, A.; and Givan, R. 2007. FF-Replan: A
baseline for probabilistic planning. In Proceedings of the
17th International Conference on Automated Planning and
Scheduling.
Zilberstein, S.; Washington, R.; Bernstein, D. S.; and
Mouaddib, A.-I. 2002. Decision-theoretic control of plane-
tary rovers. In Revised Papers from the International Semi-
nar on Advances in Plan-Based Control of Robotic Agents,
270–289. Springer-Verlag.


