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Introduction

Automated planning techniques have been extensively
used to generate robot plans in many different scenar-
ios, demonstrating strong generality over properties of
particular domains. The distinction in action mod-
els between humans and general objects, however, has
proved critical in applications that involves people, for
instance requiring human-robot interaction, which is a
key requirement for cognitive social robots.

Therefore, extensions of planning techniques have
been considered, which explicitly take into account, and
model, human actions and robot actions involving in-
teraction with humans, thus defining a new problem re-
ferred to as human-aware planning (Sisbot et al. 2007;
Cirillo, Karlsson, and Saffiotti 2010). Work in this
research line can be grouped into two categories: 1)
human-aware path and motion planning, where the
main task of the robot is to plan for trajectories in the
space taking into account human presence, 2) human-
aware task planning (or action planning), where tech-
niques focus on dealing with high-level representations
of actions, including interactions (i.e., communication
actions between users and robots). In this paper, we
will focus on human-aware task planning.

Automatic generation of human-aware plans has been
studied using several planning frameworks, including
contingent planning under partial observability (Gold-
hoorn et al. 2018), constraint-based planning with tem-
poral constraints (Köckemann, Pecora, and Karlsson
2014), integer programming (Chakraborti et al. 2016),
and model reconciliation (Chakraborti, Sreedharan,
and Kambhampati 2018). Iocchi et al. (2016) presented
a framework for generating and executing robust plans
for service robots in public environments, where the
high uncertainty of interacting with non-expert users
is tackled by an extended version of Progressive Rea-
soning Units planning. A different approach based on
conditional planning for short-term HRI is addressed
by Sanelli et al. (2017), while the use of planning con-
straints to represent social norms for achieving human-
aware plans is proposed by Tomic et al. (2014).
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Negotiation of human-robot shared goals has also
been addressed in several works. While in most of
them such negotiations is performed before plan execu-
tion (e.g., (Lallement, de Silva, and Alami 2018)), Se-
bastiani et al. (2017) extended the Hierarchical Agent-
Based Task Planner to resolve uncertainties in goal ne-
gotiations on-the-fly, while the plan is being executed,
by generating several plans and further merging them
through execution variables.

In all approaches mentioned above, every new plan-
ning task is treated in isolation, and does not take ad-
vantage of previous planning computations, and plan
executions. In addition to human-aware planning tech-
niques, adaptive planning techniques have been studied,
where learning is used to refine or improve the plans
generated by an automated planner. Leonetti, Iocchi,
and Stone (2016) introduced a method combining plan-
ning and reinforcement learning, which takes advantage
of planning to constrain the exploration of the learning
agent, and of learning to adapt to the environment, and
overcome the limitation of an inaccurate model. Pinto
and Fern (2014) proposed a planner that learns a partial
policy from previous planning problems in the same do-
main, so as to guide the search on subsequent instances.
Learning heuristics has also been considered (Balduc-
cini 2011; Petrovic and Epstein 2008) within the plan-
ning community, as has been learning portfolio planning
configurations (Seipp, Sievers, and Hutter 2014). How-
ever, pure planning approaches are only concerned with
plan genearation, and do not learn from its execution.

In this paper, we discuss the formalization of the
problem Adaptive Human-Aware Task Planning where
Human-Aware Task Planning and Adaptive Planning
approaches are properly integrated, including learning
from execution. To the best of our knowledge, there has
been no previous published research in this direction.

Adaptive Human-Aware Task Planning (AHATP)
will be a very important component for cognitive robots
interacting with humans as it will allow several prob-
lems of current systems to be addressed: 1) lack of
adaptivity in user interactions (depending on user pro-
files, situation context, etc.), 2) poor robustness of high-
level plans generated from abstract models, 3) poor in-
tegration of social norms and social behaviors in auto-



mated plans. An Adaptive Human-Aware Task Plan-
ning component will thus enable a social robot to effec-
tively generate and execute plans involving HRI.

We envisage the development of cognitive social
robots as systems integrating the following functional
modules: 1) Knowledge Representation formalism to
describe actions, goals, and plans; 2) Adaptive Goal
Selection; 3) Adaptive Human-Aware Task Planner; 4)
Adaptive and Robust Plan Execution and Monitoring;
5) Knowledge Transfer.

These five components and the corresponding prob-
lems that must be addressed for their development are
discussed further in the next sections.

Knowledge Representation
The design of adaptive cognitive social robots is based
on the definition of a proper formalism that will be used
to represent all the knowledge needed by the robot to
fulfill its tasks. This knowledge contains the following
elements: 1) S, a set of states of the environment (in-
cluding states of users interacting with the robot); 2)
C, a set of contexts of the situation (e.g., user profile,
situation context); 3) A, the actions available; 4) G,
a set of goals; 5) P, a set of plans/behaviors/policies,
6) E , a set of past experiences. Note that we distin-
guish states from contexts depending on whether the
robot can affect their evolution (states) or not (con-
texts). Therefore, only state variables appears in the
post-conditions of actions.

A knowledge base can be thus represented as

KB = 〈S, C,A,G,P, E〉

and a proper representation language must be defined
for each of these elements.

At a given instant of time t, the agent will have a
particular instance of knowledge Kt about the world
that can be represented as

Kt = 〈St ∈ S, Ct ∈ C, At ⊆ A, Gt ⊆ G, Pt ∈ P, Et ⊆ E〉

where St ∈ S is the current state (as known by the
agent), Ct ∈ C are the current contexts, At ⊆ A are
the actions available at this time, Gt ⊆ G are the cur-
rent goals, Pt ∈ P is the current plan, Et ⊆ E is the
experience collected so far.

The explicit representation of the above mentioned
elements allows for a formal definition of the problems
to be addressed in the functional modules identified
above. Such problem definitions are briefly summarized
here and discussed in more details later on.
Adaptive Goal Selection. Given the current knowl-
edge Kt, compute (possibly new) goals Gt+1, according
to the current state, current contexts and experience.
Adaptive Human-Aware Task Planning. Given
the current knowledge Kt, compute a (possibly new)
plan Pt+1, according to the current state, current con-
texts, goals, and experience.
Plan Execution and Monitoring. Given the cur-
rent knowledge Kt, execute the current plan monitoring

state and context evolution St+1, Ct+1 and collecting
new experience Et+1.
Knowledge Transfer. Given the current knowledge
Kt, exploit past experience to derive (possibly new)
contexts Ct+1.

Adaptive Goal Selection

As social cognitive robots are involved in dynamic and
unpredictable scenarios, while they continuously per-
ceive the environment, monitor the current situation,
and execute the current plan to achieve the current goal,
new pieces of knowledge may bring to an opportunity
or a necessity to switch to a different goal. As described
in the previous section, the robot’s KB contains a set
of goals G that the robot has to accomplish and the
current instance of knowledge Kt can be used to de-
termine which goals are suitable at this moment, thus
computing Gt+1.

This functionality is implemented as a goal selection
procedure based on reasoning about the current knowl-
edge of the robot. More specifically, such a reasoning
module will exploit the information represented in the
current knowledge base Kt to compute the best achiev-
able goal. Experience contained in the knowledge base
will also be used for adaptive goal selection based on
the context (e.g., user profiles, special situations, etc.).

The selection of the best goals will be based on the
definition of a utility (either numeric or logic-based)
that is a key component of the adaptive goal selection
module.

Adaptive Human-Aware Task Planning

High-level plans drive the behaviour of the robot at the
highest (symbolic) control level, including the interac-
tion with the users. The behaviour of the robot must
evolve over time, by proposing new ways of achieving
the goal based on the success of previous executions.
The system takes advantage of automated reasoning,
to leverage an approximate model and propose actions
that lead to the goal in ways that are potentially more
successful than before, and machine learning to assess
the effectiveness of the executed actions and optimize
the behaviour over time.

Generating behaviours for tasks that involve humans
is inherently difficult, since the two strategies most em-
ployed in the planning and learning literature cannot be
applied satisfactorily: create compact models for plan-
ning or build reliable simulations for learning. How-
ever, long-term deployment offers an opportunity to ad-
dress this challenge, by optimizing the behaviour over
time through well-defined exploratory actions, limited
in scope by the rationality of an automated reasoner,
and the guidance of an approximate model. With each
planning session, the planner will contribute a new al-
ternative, eventually building up behaviour over sev-
eral executions. Throughout the learning process, the
model can be adapted, if the system accumulates evi-
dence of incorrectness. However, no amount of model



learning will make it perfect, which also motives the
use of model-free adaptation techniques, so as to com-
plement an imperfect model.

Adaptive and Robust Plan Execution
and Monitoring

Plans generated by task planners still need to be refined
in order to be effective in the real world. More specifi-
cally, it is necessary to increase their robustness in real
situations, where unmodelled or incorrectly modelled
features may invalidate the choices made at planning
time. Moreover, an effective plan for robots interact-
ing with people must support complex features such
as time-durative actions, on-line sensing, parallel exe-
cution, joint actions, interrupts, etc. To this end, an
expressive plan representation formalism is needed.

Moreover, the robot should be equipped with a ro-
bust plan execution layer that processes all perception
inputs at run-time, including the ones coming from hu-
man interactions, in order to allow the robot to update
its state and effectively and efficiently achieve its goals
with minimal replanning and failures. The robust plan
is a modified version of the nominal plan that reaches
the same goals, but it is more reliable in situations not
modelled at planning time and thus can reach the goals
in more actual cases than the nominal plan.

Finally, the execution and monitoring component can
also be configured in order to define different operation
modes (i.e., different ways of executing the same plan)
and to collect past experience on the use of such op-
eration modes. Such experience will allow for adaptive
operation mode selection according to the context (e.g.,
user profile and therapy) that will thus enable person-
alized plan execution.

From our past experience in developing complex
robot and multi-robot applications using planning and
plan execution techniques, we propose the use of Petri
Net Plans (PNP)1 (Ziparo et al. 2011) to exploit the
high representation power of Petri Nets and its effec-
tiveness in representing high-level robot plans. The
PNP formalism is suitable to represent time-durative
actions, on-line sensing, parallel execution, joint ac-
tions, interrupts, as well as multi-robot operators that
can be useful also for plans involving human-robot in-
teraction. Moreover, PNP has been already successfully
used in planning and plan execution for HRI applica-
tions, in particular to define social norms (Nardi and
Iocchi 2014) and to use conditional planning to gener-
ate short interactions (Sanelli et al. 2017).

When using the PNP formalism, generation of ro-
bust plans can be obtained through the use of execu-
tion rules that can be either provided by the system
designer (Iocchi et al. 2016) or learned from experience
or by demonstration.

1http://pnp.diag.uniroma1.it

Knowledge Transfer

A fundamental aspect of our proposal for Adaptive
Human-Aware Task Planning is that the system takes
advantage of experience acquired during execution.
Past experience needs, therefore, to be condensed so
as to provide context and initial information for the
adaptive planner and the execution monitor. Learning
must be performed in the real world, rather than in
simulation as is common in robotics, because of the in-
herent difficulty in correctly simulating tasks and envi-
ronments involving human presence, as previously men-
tioned. Therefore, it is particularly critical that ap-
propriate models are leveraged to constrain the explo-
ration, and that the system generalizes efficiently across
similar executions, so as to reuse as much knowledge as
possible.

Execution similarity may be modelled at two levels:
static and dynamic. Static features assess the similar-
ity between the elements of a situation that do not de-
pend on the robot’s behaviour, such as the initial state
of the environment S0 and the contextual information
C0. Dynamic features determine the similarity between
behaviours that have proven successful, regardless of
static features, that is, in potentially different situa-
tions. Ultimately, the system must learn contexts in
which a given successful behaviour could be transferred
to the current context, regardless of apparently different
situations. For instance, if similar behaviours are suc-
cessful different contexts, experience between the two
can be merged, even if the knowledge transfer would
not have taken place looking at static features only.
Note that learning the features entirely with recent deep
learning techniques is likely to be unfeasible, as we can-
not expect to be able to collect enough real-world data.
Therefore, we expect transfer to be based on statistical
methods, which can control for the uncertainty brought
about by the limited information. The features are used
to cluster execution contexts, and determine executions
between which knowledge can be shared.

Conclusions

The goal of deploying adaptive cognitive social robots
in public environments requires addressing many inter-
esting scientific problems at the intersection between
artificial intelligence (in particular, knowledge repre-
sentation, automated planning and machine learning)
and robotics. In particular, we believe that such so-
cial robots may significantly benefit from the use of a
proper integration of automated planning and machine
learning techniques.

In this abstract, we have defined a set of problems
that should be solved in order to achieve the above
mentioned objective. In particular, we advocate the
development of adaptive human-aware task planning
techniques that will certainly be the basis of a future
generation of cognitive social robots.
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