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Abstract

Previous case studies of the MSL Mars rover mission iden-
tified onboard activity planning as a key capability to im-
prove productivity of planetary surface exploration missions.
NASA’s transition to non-sun-synchronous relay communi-
cations at Mars further magnifies the need for reduced re-
liance on ground-in-the-loop interaction with future rovers.
A new prototype onboard planner called Pathogen was im-
plemented to explore the challenges of effectively conveying
operator intent, efficiently producing high-quality plans, and
responsively adapting to both challenges and opportunities
encountered during execution. In particular, the onboard plan-
ner can re-route the mission path as terrain data accumulates
as well as incorporate updated objectives provided by in-situ
autonomous science analyses. Preliminary field evaluation of
the Self-Reliant Rover system by planetary scientists using
an MSL-class research rover on Earth to conduct a walkabout
science camapign indicated significant increases in mission
productivity: 80% decrease in required mission duration and
267% increase in total locations surveyed.

Introduction
Achieving consistently high levels of productivity has been
a challenge for Mars surface missions. While the rovers have
made major discoveries and dramatically increased our un-
derstanding of Mars, they require a great deal of interaction
from the operations teams, and achieving mission objectives
can take longer than anticipated when productivity is paced
by the ground teams’ ability to react. We have conducted a
project to explore technologies and techniques for creating
Self-Reliant Rovers: rovers that are able to maintain high
levels of productivity with reduced reliance on ground inter-
actions.

A full overview of the Self-Reliant Rovers (SRR) design
has been supplied in (Gaines et al. 2018). In this paper, we
provide a more complete and detailed discussion of the on-
board planning problem, and present the results of a series of
component-level and system-level evaluations that we per-
formed. For context, we begin here by first reviewing two
elements of that previous discussion: the specific challenges
gleaned from the planetary rover case study that motivates
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this effort, and our formulation of campaign intent, which
forms the basis on which we define our planning problem.

We conducted an extensive case study of Mars Science
Laboratory (MSL) operations in order to identify signifi-
cant productivity challenges (Gaines et al. 2016). The case
study included an analysis of the challenges the team faced
in making more effective use of time and vehicle resources.
Two of the main challenges, which we address in part by
the inclusion of an onboard planner, are predicting vehicle
resource usage and strict reliance on ground-in-the-loop for
target selection and drive planning.

It is difficult to predict how long activities will take to
complete. Operators tend to overestimate duration to avoid
activities being cut off. As a result, activities typically end
earlier than expected which contributes to rover idle time.
In addition, the rover relies on ground operators to pick out
specific science targets and to identify paths around slip haz-
ards, such as patches of loose sand. This results in a signifi-
cant drop in productivity on sols (Mars solar days) that fol-
low drives during constrained periods of the mission. Even
during non-constrained sols, it constrains the timing of ac-
tivity that can change the state of the vehicle and activity
that acquires decisional data to occur prior to the decisional
communication pass.

In this paper, we highlight the design considerations and
a prototype implementation of an onboard goal planner that
we developed to address these challenges. In particular, we
present the Pathogen planning algorithm, which we devel-
oped to provide high-quality plans that meet the needs of
this particular effort. Via the inclusion of an onboard plan-
ner, our proposed system is able to incorporate up-to-date
knowledge of onboard resource levels and vehicle state to
generate sequences of activities that fulfill high-level mis-
sion objectives. This allows the team to use less conserva-
tive modeling of activity resource use and duration, which
in turn contributes to less idle time due to unused margin.
The planner also enables the system to respond to new ob-
jectives identified by an onboard autonomous science sub-
system (described in detail in (Gaines et al. 2018)).

Under our proposed approach, ground-based planning
teams retain the ability to command specific actions, but
the primary means of guiding rover operations becomes
the crafting of these high-level goals. In this way, the on-
board goal planner supplements and enhances, rather than
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Figure 1: Summary of Campaign types.

replaces, the traditional tactical planning process.

Campaign Intent
A significant challenge to maintaining high rover produc-
tivity under reduced operator interaction is conveying op-
erator guidance and objectives without requiring operators
have up-to-date knowledge of the rover and its environment.
In traditional operations, each planning cycle begins with
a review of the current long term objectives of the mission
presented in the context of the latest available rover state
data (Chattopadhyay et al. 2014). The operators assimilate
all the various objectives, state data, and mission knowl-
edge in order to synthesize a high quality plan that makes
progress toward the goals while respecting limited rover re-
sources such as time, energy, and data volume.

The team will typically have several high-level objectives
to pursue, as well as a variety of supplementary objectives.
A wide range of recurring engineering activities also need
to be accommodated: instrument calibrations, telemetry col-
lection, system configuration management, etc.

Importantly, the quality of the plan is not just a function
of what activities are scheduled; it depends on how well they
relate to the current objectives and to each other.

We developed the concept of campaign intent to convey
such information to the rover so that it may generate its own
prudent in-situ plans when human guidance is prohibitively
delayed. Campaign intent specifies a set of Goals for the
rover and Campaigns which define the relationships among
those Goals. We gleaned three initial types of Campaigns
from MSL scenarios, as summarized in Figure 1:

Class sampling: Choose observation targets that best ex-
emplify a particular feature (e.g. geological layering).

Once identified, the targets form a Goal Set. The plan
typically accumulates utility as additional targets are in-
cluded, but eventually reaches a point of diminishing re-
turns.

Temporally-Periodic sampling: Schedule Goals to match
a repeating temporal pattern (e.g. hourly). The preferred
Goal cadence typically allows at least some timing flexi-
bility.

State-based sampling: Trigger Goals based on the evolu-
tion of the rover/terrain state (e.g. at every 50m traveled).
The state criteria is typically expressed as a preferred ca-
dence with some flexibility.

For prototyping purposes, we identified and implemented
a few specific Goal types that were chosen to represent com-
mon kinds of operational objectives seen on rover missions,
while also being amenable to entirely autonomous execu-
tion by the available research rover hardware. Goals describe
how they award utility to a plan, but might also be able to
generate concrete options for extending the plan.

Target Goal: Rewards proximity to a target location and
performance of science observations there. Suggests drive
actions toward the target (possibly broken up with stops
for interrupt events) and then execution of the science task
on arrival.

Cyclic Goal: Rewards scheduling some action with a de-
sired cadence. Suggests executing the action when next
cadence timepoint arrives (possibly as an interrupt event).

Limit Goal: Rewards rover state that remains within the re-
source limits. Suggests actions that help move away from
the limits (possibly as an interrupt event, e.g. sleep peri-
ods to allow battery regeneration).

Dimension Goal: Rewards increasing certain resource val-
ues (e.g. distance traveled).

Conflict Goal: Penalizes incompatible states (e.g. overlap-
ping sleep and drive actions).

Problem Definition
Inputs
Operating with this notion of campaign intent, we frame the
onboard planning problem as follows:

The rover is provided with a set of Goals. Each Goal
has an associated Utility value and strict Priority rank, with
higher Priority always overriding any combination of lower
Priority, but equal Priorities competing based on their Util-
ity. In addition, operators may define Campaigns that award
additional Utility to a plan if specific combinations of Goals
are achieved. The two main Campaign types are Periodic
Campaigns and Goal Set Campaigns. Periodic Campaigns
award Utility when two or more activities of a given type
are scheduled at a desired sampling cadence, whether tem-
poral (e.g. once per hour) or state-based (e.g. once every N
meters of travel). Goal Set Campaigns award Utility when
the plan contains a number of activities of a particular type
within some specified bounds, useful for class sampling sce-
narios. For example, a Goal Set Campaign might award 10.0



Utility after the rover takes 3 images of geological layering,
plus 2.0 more Utility for each additional such image up to a
maximum of 5.

While attempting to satisfy the provided Goals and Cam-
paigns, the planner must obey a set of provided engineering
constraints, including energy limits, instrument heating re-
quirements, and required battery state of charge at a des-
ignated handover time. It must also accommodate exoge-
nous events such as fixed communication windows and the
day/night cycle. Constraint violations result in a large nega-
tive Utility penalty.

The planner is also provided the starting state of the sys-
tem and a model of how each parameterized activity instance
impacts the evolution of those states. The modeled states in-
clude: location of the rover, battery state of charge, instru-
ment heating states, and the lighting state. In some cases,
resource and state modeling may be provided by other rover
subsystems. For example, in our prototype implementation
the expected duration and energy expenditure for a planned
drive activity is provided by an onboard navigation path
planner, using up-to-date local terrain maps.

Outputs
Based on the above inputs, the planner searches for an opti-
mal plan - i.e., a sequence of activities which achieves as
much Utility as possible without violating any of the en-
gineering Constraints. The resulting plan must include not
only activities which directly contribute Utility by satisfy-
ing Goals and/or Campaigns, but also those activities which
are necessary to maintain compliance with the engineering
constraints, such as pre-heating of instruments, sleeping to
allow state of charge to regenerate, and pre-planned commu-
nication activities.

The planner must execute in real-time on rover hardware
and provide the best plan available whenever its time-slice
expires. In addition, it must be able to re-plan at any time.
Re-planning may be triggered by the arrival of new Goals
(whether from human operators or from other rover sub-
systems such as automatic science data analysis) or by the
significant divergence of some rover state from the pre-
dicted/expected state of the system (e.g. a drive that takes
too long).

Pathogen: Using Campaign Intent to Guide
Planning

Overview
Each Goal in our system implements a successor generator
which takes in an existing plan and moves the state forward,
typically by adding activities to the plan which achieve or
make progress toward the Goal. Goals that specify activi-
ties which must be performed at specific times may also im-
plement an interrupt requester, which marks points in the
proposed plan where the Goal would like a chance to add a
successor.

Our approach to plan generation is based on branch-and-
bound search, is outlined in Algorithm 1. Nodes in the
search graph represent partial action plans and a correspond-
ing forward-sweeping “current state”. A node’s score is the

sum of its past Utility (i.e. the Utility of all Goals which are
satisfied by the scheduled activities) and a heuristic “future”
Utility. Disincentivization of state conflicts is accomplished
by attributing large negative Utility to such conflicts when
calculating a node’s score. Utility awarded for satisfying the
criteria of Campaigns, as described in the previous section,
is also taken into account when calculating a node’s score.

Result: Valid plan
Generate seed nodes
while ! Done do

Pick best pending node
Expand that node
Update pending nodes

end
Pick best pending node

Algorithm 1: Pathogen Search

Starting from the empty plan, each iteration of search ex-
pands a chosen partial plan into many possible successor
plans (the branches). Each potential successor is scored and
must exceed a running threshold of plan quality (the bound)
in order to be retained for future expansion; otherwise it is
pruned (along with all its descendants). Specifically, the op-
timistic maximum quality of any plan based on the candidate
partial plan must exceed the pessimistic minimum quality
prediction of all other candidates already considered. The
frontier of un-expanded partial plans is periodically sorted
by estimated final plan quality, yielding a hybrid of depth-
first and best-first expansion order.

Node Expansion
As illustrated in Figure 2a, We take a multi-threaded ap-
proach to expanding nodes. Pathogen maintains a (per-
thread) workspace frontier, which grows in depth-first bursts
and is periodically merged back into the main frontier.
An active frontier repository is sorted by heuristic value.
Threads check out nodes from the active frontier, and then
merge the expanded nodes that they’ve generated back into
it. For efficiency, we limit the size of the frontier by collect-
ing the least promising nodes into a separate retired frontier.
These nodes may be called back into the active frontier as
needed (on underflow, or languishing active).

When a node is to be expanded, we first check its score to
determine if it is prunable. If it could not beat the current best
node even if it achieved its full maximum possible future
Utility, we drop it. Given that we allocate large negative Util-
ity for nodes containing conflicts (with exogenous events, or
with resource constraints), nodes with such conflicts are al-
ways removed in this step. For nodes which are not pruned,
we generate successor nodes by appending new activities to
the plan. These successor nodes are scored, and any poor-
quality children are immediately pruned, as are any which
duplicate previously-examined nodes. The latter is achieved
using a hash function on the plan contained within the node.
This leaves only those child nodes which are conflict-free
and which have potential to beat the best plan discovered so
far. Those resulting successor nodes are used to update the



(a) Nodes are expanded in
one or more (per-thread)
workspaces. Low-scoring
nodes are retired from the
active frontier, which is
maintained in a sorted state.

(b) Low-scoring and duplicate
successor nodes are pruned. Re-
maining successors are added
back into the workspace queue,
or directly into the active frontier
if they can be expanded no fur-
ther.

Figure 2: Node Expansion and Successor Generation in
Pathogen

best node metrics and are pushed either into the workspace
(for further expansion) or directly into the active frontier (if
they cannot be expanded further).

Successor nodes are generated from an existing node by
looping over all remaining Goals and generating activities
that make progress toward satisfying these Goals. Partial
plans are always expanded forward in time by appending
one of the possible subsequent activities to the growing plan.
Long activities may be broken up into segments, if possible,
to allow for interrupts. We also check for opportunities to
skip ahead in time, in particular to the ends of upcoming
exogenous activities and to future times that correspond to
goals specified by time cadence. Finally, predetermined ex-
ogenous events are also inserted at the appropriate times dur-
ing the successor generation step. This process is illustrated
in detail in Figure 2b.

Performance And Trade Offs
The complete search can be very time intensive, but is
guaranteed to return an optimal plan according to the ex-
pressed campaign preferences. Pathogen is an anytime al-
gorithm (Boddy 1991); even without running to completion,
the search can return the best plan encountered so far. This
feature allows the rover to limit its planning time and pro-
ceed to be productive with a reasonable (but not provably
optimal) plan. Minor plan perturbations during execution
are accommodated by time-efficient repair strategies (for ex-
ample, to shift actions forward after a small driving delay),
while major disruptions (such as an insurmountable obstacle

in a drive, or the injection of an entirely new goal) invoke a
full replanning cycle so that all goals are reconsidered.

Evaluation
Onboard Planning Performance Evaluation

(a) Goal Planner finds higher-quality plans the longer that it runs.
Most of the improvement occurs in early iterations.

(b) Plan found after 10 seconds; satisfies 6 of 10 Target Goals

(c) Plan found after 30 seconds; satisfies all 10 Target Goals in 7
sols

(d) Final plan found after 2 minutes of search; satisfies all 10 Target
Goals in only 5 sols

Figure 3: Plan Quality vs Time and Sample Intermediate
Plans

Figure 3 demonstrates plan quality improving over time
during the search process, highlighting the anytime nature
of Pathogen. In this particular example, the goal planner has
been provided with the goals of performing Autonomous
Science activities at 10 different target locations and a plan-
ning horizon long enough to allow for accomplishing all of
them. Early iterations result in plans that accomplish only a
subset of the goals (Figure 3b). Within 30 seconds it has
found a plan (Figure 3c) that accomplishes all 10 goals
within the 7-sol horizon. By the end of the allocated run-
time of 2 minutes, the planner has found a more efficient
plan that accomplishes all 10 objectives over the course of
only 5 sols (Figure 3d).

In many cases we will want to ask our system to gen-
erate high-quality plans while over-constrained. When the



(a) 2 sol planning horizon, 5 goals (A-E)

(b) 2 sol planning horizon, 6 goals (A-F). The planner achieves a
higher total score by replacing the activity at target D with a higher-
Utility activity at target F

Figure 4: Over-constrained 2-sol plans. Targets A, C, D, and
E were assigned Utility values of 100, while targets B and F
were assigned Utility values of 200

amount of time or resources available makes it impossible
to accomplish all of the provided goals, our system needs to
intelligently choose which to perform and in what order.

Utility values for each individual goal can be used to ex-
press their relative importance to the planner. In the set of
tests illustrated by Figure 4, we restricted the planning hori-
zon to 2 sols and provided more goals than could be accom-
plished within that time. In Figure 4a, the input goals cor-
respond to targets labeled A-E.. All of these goals have a
Utility value of 100, except for the goal at location B, which
has a Utility value of 200. In the resulting plan, the rover
drives first to target A, then B, C, and finally D. Target E is
too far to reach within the remaining amount of time, but the
rover is scheduled to start driving toward it at the end of the
second sol. In Figure 4b, we add a goal at target F that has a
Utility value of 200. In the resulting plan, the rover will drive
from target C to F in the second sol, instead of finishing at
target D as it had in Figure 4a.

Similarly, the goal planner is capable of producing high-
quality plans while honoring constraints on resource usage.
In Figure 5, we show plan quality and sample plans for
varying rover battery capacity values. With a lower-capacity
battery, the rover needs to sleep (to recharge) more fre-
quently and can therefore satisfy fewer goals within any
given amount of time. In this way, lower energy resources
typically result in fewer goals achieved and thus lower-
Utility plans. For example, the rover resource model used
for Figure 3 included a 2400 Whr battery; in that case, the
planner was able to schedule activities to satisfy all 10 goals
with additional sols to spare. In contrast, the plans presented
in Figures 5b and 5c show the rover accomplishing only 5
and 7 of its goals, respectively, and spending a larger pro-
portion of the schedule sleeping. This illustrates the flexibil-
ity of our approach to handling a wide variety of resource
constraints.

System Evaluation: Mars Yard Walkabout
Campaign
We have developed a prototype implementation of the Self-
Reliant Rover approach using the Athena research rover. In
order to evaluate the ability of the Self-Reliant Rover ap-

(a) Plan Quality vs Time for Varying Battery Capacities

(b) Plan for rover with 1000 Whr battery capacity

(c) Plan for rover with 1400 Whr battery capacity

Figure 5: Plan Quality vs Time and Sample Plans for Vary-
ing Battery Capacity

proach to increase productivity we conducted a simulated
walkabout campaign in which actual planetary scientists
used our system to explore a geographical region. A walka-
bout is a reconnaissance campaign in which operators com-
mand the rover to make an initial pass over a region of in-
terest performing remote sensing observations The data col-
lected during a walkabout is then used to decide which loca-
tions to revisit for more in-depth study. We selected a walka-
bout campaign for the evaluations because it has been found
to be an effective means of exploring a region of interest
(Yingst et al. 2017) and is anticipated to be used in the Mars
2020 mission to help identify sampling locations.

Our primary objective in conducting the simulated walk-
about campaign was to evaluate the ability of the SRR
approach to enable productivity for rover operations with
reduced ground-in-the-loop interactions. The productivity
metrics we used are based on the MSL case study described
in (Gaines et al. 2016). These metrics relate to how long it
takes to accomplish campaign objectives:

• Percentage of sols making significant contributions to-
ward campaign

• Number of sols to complete objectives

• Number of locations surveyed during campaign

For our region of interest, we constructed geological
scenes in the JPL Mars Yard. The area that we created can be
seen in Figure 7. We simulated a larger area by applying an



8x scaling factor to the actual Mars Yard dimensions. This
allowed us to simulate a longer-duration mission than would
otherwise be feasible in the Mars Yard. We similarly scaled
time between the simulated mission and actual rover activity
to match realistic activity durations from MSL operations.

Three planetary scientists from the MSL mission partici-
pated in the evaluations. We prepared strategic guidance for
the scientists similar to the guidance they would be provided
for an actual campaign on Mars. This included the labeled
imagery in Figure 7 showing units and features identified
from “orbital” data. The team was also provided with con-
textual information and strategic guidance for the campaign.

Because we are interested in the impact of non-sun-
synchronous orbiters, we used a projected overflight pattern
based on the MAVEN (Mars Atmosphere and Volatile Evo-
lutioN) orbiter. Figure 6a shows the timing of projected or-
biter overflights that were used for the simulated campaign.
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Figure 6: A realistic sol path was generated for this cam-
paign using projected overflight pattern from the non-sun-
synchronous MAVEN orbiter.

We used the overflight information from Figure 6a to de-
fine the beginnings of a “sol path” for the campaign. A sol

path is a high level summary of the team’s near-term plans.
It groups the upcoming sols into groups based on which sols
will be planned together in a multi-sol plans. A complete sol
path would also state the high level activities anticipated for
each sol. We left that description out, leaving it up to the
scientists to decide how to spend each sol. Figure 6b shows
the sol path we provided for the Mars Yard Walkabout Cam-
paign.

We met with the scientists on three separate occasions in
the course of conducting the simulated mission. At our first
meeting, we provided them with high-level guidance as pre-
viously described and then collected their objectives for the
first phase of the walkabout campaign (sols 33 and 34), en-
coded formally as Goals and Campaigns. In the second and
third sessions, we presented the results of the previous plan’s
execution, asked for new inputs, and solicited feedback.

Between each of these meetings, we uploaded the scien-
tists’ inputs to the research rover and allowed it to plan and
execute accordingly. It should be noted that our system is
still in a prototype stage in which not all bugs have been
worked out. However, we wanted to conduct a fairly ambi-
tious evaluation of the system in this relatively early stage to
help guide future development. To facilitate this evaluation,
we developed a “checkpointing” capability that allowed us
to save a snapshot of the state of execution and resume exe-
cution from a previous checkpoint. This enabled us to restart
execution from saved checkpoint if a problem was encoun-
tered without having to restart from the very beginning. As
such, the results that follow represent a composite of execu-
tions.

Figure 7 shows the initial planned route and final as-
executed route for each of the three execution sessions.
While the rover was able to explore all 10 locations of in-
terest chosen by the scientists, the order in which it even-
tually visited these locations was different from the order
in which it initially planned to visit them at the start of the
mission. The system re-planned a number of times over the
course of the walkabout, as a result of new inputs from the
ground team, new follow-up observations suggested by the
onboard autonomous science subsystem, and unanticipated
state changes resulting from unpredictable execution. In the
latter case, we found that our system needed to frequently
replan during or following long drives, as the onboard navi-
gation system refined its estimate of how long it would take
to drive between two target points and potentially routed
around previously-unseen hazardous terrain.

We met with the scientists for one final session to eval-
uate the results of the walkabout campaign. In order to de-
termine how well the rover performed in the walkabout we
asked the scientists to review the results of each visited loca-
tion and assess if the location had been sufficiently surveyed
to meet the campaign objectives. While there were cases in
which the scientists would have selected different observa-
tions from those selected by the rover, they concluded that
each location had been sufficiently surveyed. Further, they
concluded, given the locations that were visited, that the
walkabout had successfully achieved the strategic objective
of surveying the Mars Yard region.

As a baseline for performing a productivity comparison,



(a) Initial planned traversal

(b) The traversal order was updated mutiple times over the course
of the campaign. Here we see an intermediate plan produced after
the rover recieved updated goals on Sol 35

(c) Final path traversed

Figure 7: Planned traversal order evolved based on new
goals and new information acquired over the course of the
7-sol walkabout

we estimated how the campaign would have been conducted
using an MSL-style rover. For each ground-in-the-loop cy-
cle, an MSL-style rover would be limited to surveying at
most one location, due the reliance on operators selecting
observations, and driving to the next location. For drive seg-
ments that required the rover to avoid sand, an MSL-style
rover would require additional ground-in-the-loop cycles as
it would rely on human operators to identify the sand haz-
ards and plan paths around them.

Figure 8 provides quantitative measurements of the pro-
ductivity improvements achieved by the Self-Reliant Rover
approach. In Figure 8a we provide a breakdown of sol pro-
ductivity similar to the ones we performed for the MSL case
study in (Gaines et al. 2016). The MSL approach was pro-

jected to have 32% low productivity sols due to the need
to wait for ground-in-the-loop for performing location sur-
veys and to guide the rover around areas with sand hazards.
In contrast, the SRR approach was able to make significant
progress toward campaign objectives on each sol. This re-
sults in SRR achieving a 47% increase in productive sols.
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(a) Comparison of sol productivity: SRR showed a 32% increase in
sol productivity.
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Figure 8: Quantitative evaluation of Self-Reliant Rover pro-
ductivity.

Figure 8b compares the number of sols required to survey
all of the locations selected by the scientists. An MSL-style
rover would require 28 sols to perform the survey while the
Self-Reliant Rover completed the campaign in 6 sols. This
represents an 80% reduction in sols to complete the cam-
paign.

Finally, in Figure 8c we compare the number of locations
the rovers would be able to survey if we were to restrict the
walkabout to a single week. An MSL-style rover would sur-
vey only 3 locations while the Self-Reliant Rover surveyed
11 locations. This is a 267% increase in number of locations
surveyed.

Over all, the walkabout campaign demonstrated that the
Self-Reliant Rover approach is able to maintain high lev-
els of productivity with limited ground-in-the-loop cycles.
The approach provided mechanisms that allow the scientists
to effectively guide the rover’s behavior despite the limited
communication opportunities.

Discussion and Future Work
Planner Expressivity
While the notion of Campaign intent and the underlying
search-based planner’s notions of Utility and Priority pro-
vided a powerful interface for expressing intent to the plan-



ner, we did identify a number of challenges related to effec-
tively guiding the planning process.

Oversubscribing, or providing more Goals than the rover
can perform given its time and resource constraints, tends
to result in shedding lower Priority objectives; however, this
isn’t always desirable if the rover will have the opportunity
to accomplish those Goals in the next planning cycle. One
potential approach, which was employed during our mock
walkabout execution, is to extend the planning horizon be-
yond the next uplink, perhaps to the limit you will allow
rover to accomplish a given set of objectives. The trade-off
inherent in this approach is that the longer planning horizon
may result in longer planner running times.

The scientists participating in the evaluations suggested
additional options for how to specify Goals to the rover.
Our interface required users to specify the location the rover
should drive to and heading it should point in order to char-
acterize a location. Instead, the scientists wanted to specify
what area to characterize and have the rover determine the
appropriate location and heading.

The scientists also would have preferred the ability to
specify locations the rover should be at certain times. For
example, if the team knows there will be a good ground-
in-the-loop opportunity, they may want the rover to be at a
particular location so that they can better direct the charac-
terization of that area.

Related to priorities, the scientists suggested that the plan-
ner might take into account objective Priority when deciding
on the order in which locations are visited. If it does not re-
sult in significant increase to drive duration, they would pre-
fer higher Priority locations be visited earlier. This would
allow the team to receive the data earlier, giving them more
time to analyze the data. More generaly, there may be value
in taking into account more than just the Goals that are ac-
complished and their relative importance when scoring indi-
vidual plans. One might also want to penalize, for example,
excess drive distance, mast slew, or idle time.

Planner Design & Implementation
We found that the depth-first approach allows Pathogen to
very quickly reach complete plans that use up the whole
horizon. Choosing the best of the successors to expand next,
in a limited best-first fashion, results in generally busy plans
that achieve many objectives. And allowing the search to oc-
casionally jump to the globally most promising node helps
brings it out of a local maximum.

However, there are still issues that remain with the over all
search algorithm. One of those issues is the heuristic func-
tions Pathogen uses for node evaluation. The heuristic de-
fined for each Goal and Campaign tended to vastly overesti-
mate the Utility that can be achieved, due to their ignorance
of other input objectives:

Given a set of Target Goals, the heuristic function for each
one only evaluates whether the rover has the time left to
travel to and achieve itself. This is admissible, but results
in the rover planning suboptimal paths due to an expectation
that it can achieve all of the Goals, when the more accurate
expectation is simply that it can achieve at least one of any
of them.

Cyclic Goals direct the rover to stop every X meters dur-
ing a drive and perform imaging. Each imaging instance
doles out a Utility value. The heuristic function for this Cam-
paign cannot predict how much the rover will actually drive
in the future, so it makes the only admissible assumption
that the rover will always be driving. This ends up greatly
overestimating the achievable Utility.

In general, the independent reasonable heuristic and suc-
cessor behavior of each Goal may result in potentially un-
desirable global search behavior. Much of our initial design
was in figuring out what and how to express science objec-
tives and operations in terms of Goals and Campaigns. How
to balance their interactions when translating to node eval-
uation and successor generation turned out to be the most
difficult part of the implementation. To mitigate the Target
Goal issue, for instance, we might have instead considered
the targets together as a set that internally chooses a traversal
order using a simpler path planning algorithm. Alternatively,
we might have introduced another primitive Goal type that
rewards plans for choosing shorter paths.

We also learned that using the Priority & Utility as the
sole metric for evaluating a node is insufficient to express
most constraints. Many factors can result in invalid plans;
for instance, a plan that skips mandatory, user-specified ac-
tivities like Comm windows, or a plan where the state of
charge goes below the allowed minimum, should not be al-
lowed. Such constraints cannot be properly expressed with
Utility, and we relied on encoding external knowledge that
these nodes, failing these conditions, should be pruned. Be-
cause these constraints are evaluated as binary conditions,
the search cannot be guided away from violating them by
heuristics, only backtracking once it realizes the constraint
has been violated.

Reserving Resources for Future Activity
When the planner generates plans that include autonomous
science activities, it does not know ahead of time how many
follow-up Goals will be proposed by the autonomous sci-
ence algorithms. This makes it difficult to appropriately al-
locate resources in the plan. The planner needs to reserve
resources for these future autonomous activities to enable
follow-up observations to be performed. However, if the
planner reserves too much, then this may unnecessarily limit
the amount of activity that can be performed earlier in the
plan.

The approach we took with the current implementation
was to have the autonomous science activity that represents
running the detectors include additional resource reservation
to account for a set amount of follow-up observations. This
forces the planner to set aside resources for follow-up obser-
vations whenever it plans an autonomous science activity.
Because the activity does not actually consume the reserved
resources, there will be available resources for the planner
to make use of when re-planning to accommodate the newly
proposed follow-up observations.

Planning and Execution
It is often the case that the execution of an activity depends
on the successful completion of the activity that precedes it.



We found that it was crucial that the state of the system and
the progress and ultimate success/failure of activities were
monitored and communicated back to the planner in real-
time. This allowed us to update the planner’s internal model
of system resources so that future invocations would have
up-to-date information, but more importantly it also allowed
us to dynamically trigger re-planning if the state of the sys-
tem deviated too far from what the planner had anticipated
when the plan was generated. Future work should consider
this re-planning based strategy alongside other methods of
handling variability in execution, such as dynamically shift-
ing and extending/contracting activity timing.

Some activities, particularly long-running activities such
as drives, may need to be broken up into smaller chunks in
order to accommodate the timing of other activities - comm
windows, periodic observations, sleep, etc.. In these cases,
our system generates the breaks in the long-running activ-
ity automatically, and therefore needs to fill in the success
criteria automatically based on the requirements of the im-
mediate successor activity.

One particular execution-related issue that we have not
addressed in this work is how to deal with activities that
continually fail. For example, a particular Goal location may
not be reachable due to traversability issues (e.g. the target
is the middle of a sand bowl or blocked by rock hazards).
The strategy of re-planning and re-scheduling may not help
in this case. There is room for future work in determining
when a failed activity indicates that a particular Goal cannot
be accomplished and should be removed from consideration
in the planner.

Related Work
Shalin, Wales, & Bass conducted a study of Mars Explo-
ration Rovers operations to design a framework for express-
ing the intent for observations requested by the science
teams (Shalin, Wales, and Bass 2005). Their focus was the
use of intent to coordinate planning among human opera-
tors and the resulting intent was not captured in a manner
that would be conducive for machine interpretation. Our ap-
proach codifies some of the fields in their framework in a
way suitable for the rover. In particular, the authors defined
a “Related Observations” field as a way for scientists to iden-
tify relationships among different observations, which need
not be in the same plan. Our work on campaign intent can be
seen as a way of defining a specific semantics to these types
of relationships to facilitate reasoning about these relation-
ships by the rover.

Their framework also includes information that we agree
is essential for effective communication among operators
but that we do not currently express to the rover. For ex-
ample, the “Scientific Hypotheses” field is used to indicate
what high-level campaign objective is being accomplished
by the requested observation. We are not yet providing these
higher-level campaign objectives to the rover, though it is an
interesting area of future research.

Mali views intent as a means for a user to place constraints
on the types of plans a planner is allowed to produce such
as only generating plans that have at most one instance of a
class of actions or that plans must limit the use of a particular

action (Mali 2016). The primary role of our use of intent is
to allow the planner to assess the value of achieving a given
set of goals. However, some of our campaign intent does
imply constraints and preferences on how, or more specifi-
cally, when goals are accomplished. For example, the peri-
odic campaign intent specifies a timing relationship among
goals and a preference on how close to comply with the de-
sired timing.

There are some similarities between our campaign defi-
nitions and those used for Rosetta science planning (Chien
et al. 2015). Both use campaigns to express requests for
variable-sized groups of observations with relationships and
priorities. Rosetta plans covered much longer time periods
(e.g. weeks) and required more complex temporal patterns,
such as repeating groups of observations. But observation
patterns were primarily driven by the predictable trajectory
of the spacecraft, allowing relationships to be expressed as
temporal constraints. This is not sufficient for rovers, where
many observations are dictated by the rover location and sur-
rounding terrain, and the duration of many activities cannot
be accurately predicted. State-based and goal set relation-
ships more accurately represent some of the science intent
found on surface missions.

There have been several integrated rover systems with
similar objectives to our work including PRoViScout (Paar
et al. 2012), Zoe (Wettergreen et al. 2014), and OASIS (Cas-
tano et al. 2007). These systems include autonomous sci-
ence capabilities to enable onboard identification of science
targets. Similar to our approach, they select follow-up ob-
servations for identified targets and submit these requests to
an onboard planner to determine if there are sufficient re-
sources to accomplish these new objectives. OASIS uses the
CASPER (Continuous Activity Scheduling, Planning, Exe-
cution, and Re-planning) continuous planner (Chien et al.
2000), like SRR, but relies on a simpler iterative repair algo-
rithm where we use Pathogen for plan generation. The cam-
paign intent concepts we have developed would also be ap-
plicable to PRoViScout as a way to increase the expressivity
for providing scientist intent to the rover.

There have also been a variety of autonomous science
systems deployed or proposed for rovers including the
AEGIS system running on the Opportunity and Curiosity
rovers (Francis et al. 2017), and the SARA component pro-
posed for an ExoMars rover (Woods et al. 2009). These sys-
tems allow the rover to identify targets in its surroundings
that match scientist-provided criteria. The introduction of
campaign relationships broadens the scope of the type of
guidance that scientists can provide these systems, allowing
scientists to express the amount of observations they would
like for their different objectives along with the relative pri-
orities of the high-level objectives.

Automatic goal generation has precendent in systems
such as ARTUE (Klenk, Molineaux, and Aha 2013). In
thier Goal-Driven Autonomy framework, new goals may be
automatically generated in response to state discrepancies
detected during execution. These generated goals are typ-
ically intermediate objectives in a Heirarchical Task Net-
work, whereas in our system we allow for entirely new top-
level objectives to be submitted to the planner by other au-



tonomy subcomponents.
The Mars 2020 mission is planning to incorporate on-

board scheduling to improve resource utilization of the
rover (Rabideau and Benowitz 2017). Similar to the Self-
Reliant Rover approach, the use of onboard scheduling is
intended to allow the Mars 2020 rover to use current ve-
hicle knowledge when generating schedules to accomplish
mission objectives. This will reduce the loss of productivity
that results from the difficulty in predicting how much re-
sources (e.g. time and energy) activities will consume. The
Self-Reliant Rover approach is addressing additional pro-
ductivity challenges by improving the ability of rovers to
identify their own objectives, to incorporate a richer set of
guidance from operators and to reason about slip hazards as
it navigates.

Conclusion
We have demonstrated an anytime planning approach that
incorporates operator intent and is capable of reacting to
changes encountered during execution. In isolated tests as
well as a realistic integrated system evaluation, these capa-
bilities were shown to provide a measurable improvement in
over all productivity.
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