
Anytime Integrated Task and Motion Policies for Stochastic Environments

Naman Shah and Siddharth Srivastava
School of Computing, Informatics, and Decision Systems Engineering,

Arizona State University, Tempe, AZ, USA
{namanshah,siddharths}@asu.edu

Abstract

In order to solve complex, long-horizon tasks, intelligent
robots need to be able to carry out high-level, abstract plan-
ning and reasoning in conjunction with motion planning.
However, abstract models are typically lossy and plans or
policies computed using them are often unexecutable in prac-
tice. These problems are aggravated in more realistic situ-
ations with stochastic dynamics, where the robot needs to
reason about, and plan for multiple possible contingencies.
We present a new approach for integrated task and motion
planning in such settings. In contrast to prior work in this di-
rection, we show that our approach can effectively compute
integrated task and motion policies with branching structure
encoding agent behaviors for various possible contingencies.
We prove that our algorithm is probabilistically complete and
can compute feasible solution policies in an anytime fashion
so that the probability of encountering an unresolved contin-
gency decreases over time. Empirical results on a set of chal-
lenging problems show the utility and scope of our methods.

1 Introduction
In order to solve complex tasks, autonomous robots need to
be able to compute high-level strategies consistent with low-
level constraints such as object geometries, the robot’s own
joint limits, stability constraints, etc. This becomes more
complex when the environment or the robot’s actions are
stochastic. For instance, consider the problem where a robot
needs to pick up a can (black) from a cluttered table (Fig. 1).
In order to achieve this objective, the robot needs to consider
multiple contingencies, e.g., what if the can slips? What if it
tumbles and rolls off when it is placed?

This situation, and the need to efficiently manage contin-
gencies is representative of many real-world situations. In
order to safely accomplish tasks such as diffusing IEDs, op-
erating live machinery, or assisting emergency response per-
sonnel, it is desirable to pre-compute contingent plans, or
policies in order to reduce the need for on-the-fly replan-
ning. These situations require the computation of high-level
strategies that can be realized with physical movements mo-
tion plans for each high-level action.

One of the main challenges in addressing computing such
policies is that in general, their size grows exponentially
with the solution depth. Naive approaches that first compute
the policy and then refine each “branch” are computationally

Figure 1: A stochastic variant of the cluttered table domain
where robot needs to pick up the black can, but pickups may
fail.

intractable as many branches may have no feasible motion
plans. Furthermore, refining exponentially many paths to the
goal would be computationally intractable. We believe this
is one of the reasons for the absence of solution approaches
for computing task and motion policies.

In this paper, we present the first probabilistically com-
plete algorithm for computing integrated task and motion
policies in stochastic environments using a relational input
representation. We model the overall problem as an abstract
Markov decision process (MDP), where each action in the
MDP corresponds to a set of lower-level (motion planning)
problems. High-level action outcomes may be stochastic due
to unmodeled properties (e.g. the weight of a can and its co-
efficient of friction against the gripper material), or due to
the dynamic nature of the domain (e.g., actions of other per-
sons in the environment).

The overall problem is to compute a policy for the MDP
along with “refinements” that select, for each action in the
policy, a specific motion planning problem and its solution.
E.g., the “high-level” action for picking up a can (Fig. 1) cor-
responds to infinitely many motion planning problems, each
defined by a target specific grasping pose of the gripper and
target pose for the can after it is picked up. The refinement
process would thus need to associate a specific pair of target
poses and a motion plan for each occurrence of the pickup
action in the computed policy.

Our approach uses off-the-shelf MDP planners with off-
the-shelf motion planners. The use of relational representa-
tions allows us to easily express problems involving object
manipulation, which would be cumbersome if not infeasi-
ble in propositional representations. The use of off-the-shelf
MDP planners and motion planners allows our approach to
scale automatically with improvements in those fields. We
show that our approach has a desirable anytime property that
makes it possible to tune the amount of precomputation car-
ried out, thereby alleviating the computational challenges
discussed above. Our experiments indicate the probability
of encountering an unresolved contingency drops exponen-
tially as the algorithm proceeds.

We begin with a presentation of the background defini-
tions (§2) and our formal framework (§3). §4 describes our
overall algorithmic approach, followed by a description of
empirical results using the Fetch robot in simulation (§5),
and a discussion of other related work (§6).

2 Background
A fully observable, deterministic task planning problem is
a tuple 〈A, s0, g〉, where A is a set of propositional actions
that are parameterized and defined by preconditions and ef-
fects, s0 is an initial state of the domain, and g is the goal
condition which is also a set of propositions. A sequence of
actions a0, ..., an executed starting from s0 will generate a
state sequence s1, ..., sn+1, where si+1 = ai(si) is the re-
sult of executing ai in si. Solving the task planning problem
is to find out the sequence of actions si which satisfies the
preconditions of ai for i = 0, ..., n and sn+1 satisfies g.

A motion planning problem is a tuple 〈C, f, p0, pt〉, where
C is the space of possible configurations or poses of a robot,
f is a boolean function which determines whether or not a
pose is in a collision and p0, pt ∈ C are the initial and final
poses. A trajectory is a a sequence of way-points (joint val-
ues). A collision-free motion plan solving a motion planning
problem is a trajectory in C from p0 to pt such that f is false
for any pose in the trajectory.

A Markov decision process (MDP) is defined as a tuple
(S,A, T,R, γ) where S is a set of states; A is a set of possi-
ble of actions; T (s, a, s′) = P (s′|s, a) for s, s′ ∈ S, a ∈ A;
R(s, a, s′) is a reward function for s, s′ ∈ S, a ∈ A; γ is the
discount factor.

A Solution to an MDP is a policy, π : S → A, which maps
each state to an action. We are more specifically interested
in a subclass of MDPs that have absorbing states, γ = 1 and
a finite horizon. Such MDPs are known as stochastic short-
est path (SSP) problems (Bertsekas and Tsitsiklis 1991). An
SSP can be defined as a tuple (S,A, T,C, γ = 1, H, S0, G)
where S,A,T are as described as above. In addition to that,
C(s, a) is the cost for action a ∈ A in state s ∈ S; H is
the length of horizon; S0 is the initial state; G is the set of
absorbing or goal states;

A Solution to an SSP is a policy π of the form π :
S × {h0, h1, . . . , hn} → A which maps all the states and
time steps at which they are encountered to an action. The
optimal policy π∗ is a policy which reaches the goal state
with the least expected cumulative cost. In general, policies
for SSPs are not stationary as the horizon is finite. Dynamic

Place(obj1, config1, config2, target pose, traj1)
precon RobotAt(config1), holding(obj1),

IsMP(traj1, config1, config2),
IsPlacementConfig(obj1, config2, target pose),
∀ obj’ ¬ Collision(obj′, traj1)

concrete effect ¬holding(obj1),
RobotAt(config2), at(obj1, target pose)
∀traj intersects(vol(obj ,target pose),
sweptVol(robot, traj)→ Collision(obj1, traj)

abstract effect ¬holding(obj1),RobotAt(config2),
∀traj ?© Collision(obj1, traj)

Figure 2: Concrete (above) and abstract (below) effects of a one-
handed robot’s action for placing an object.

programming algorithms such as value iteration or policy it-
eration can be used to compute these policies. Value iteration
can be defined as:

V 0(s) = C(s) (1)

V i(s) = mina
∑
s′

T (s, a, s′)R(s) + V i−1(s′) (2)

πi(s) = argmina
∑
s′

T (s, a, s′)R(s) + V i−1(s′)(3)

Non-stationary policies for finite-horizon SSPs can be rep-
resented as finite-state machines (FSMs). Given an upper
bound on the time horizon, any policy over a finite state and
action set can be unrolled into a tree-structured FSM.

Several representations have been developed for effi-
ciently representing the MDPs, such as Relational Dynamic
Influence Diagram Language (RDDL) (Sanner 2010), Prob-
abilistic Planning Domain Definition Language (PPDDL)
(Younes and Littman 2004). These languages separate an
MDP domain, which consists of parameterized actions,
functions, and predicates, from an MDP Problem, which ex-
presses the objects, an initial state and a goal that needs to
be achieved. Without loss of generality, we use PPDDL to
represent SSPs in this paper.

3 Formal Framework
We introduce our formalization with an example.

Example 1. Consider the specification of a robot’s action
of placing an item in the refrigerator. In practice, low-level
accurate models of such actions may be expressed as gen-
erative models, or simulators, as was the case in our ex-
periments. We show a declarative version in Fig. 2 to help
identify the nature of abstract representations needed for ex-
pressing abstractions of such models. For readability, we
use a convention where preconditions are comma-separated
conjunctive lists and universal quantifiers represent con-
junctions over the quantified variables.

An accurate description of this action (Fig. 2) requires
action arguments representing the object to be picked up
(obj1), the initial and final robot configurations (config1,
config2), the target pose of the object, and the motion
planning trajectory traj1 to be used. These arguments rep-
resent the choices to be made when placing an object. The

preconditions of Place capture the conditions that traj1 is
a collision-free motion plan or trajectory for moving from
config1 to config2, and that config2 corresponds to the
object being at the target pose (such that opening the gripper
would leave it at the target pose; we ignore the third configu-
ration with an open gripper for ease in exposition). The con-
crete effect of Place states that the robot is no longer hold-
ing the object, the robot is in config2 and that the object is
in collision with all robot trajectories whose swept volume
intersects with the object’s volume at the target pose. The
intersects predicate is static as it operates on volumes, while
Collision can change with the state.

Intuitively, our approach replaces the domains of a sub-
set of action arguments with singleton symbolic values that
can be instantiated with values from their real domains to
obtain the concrete actions. E.g., the possible robot config-
urations config2 for placing an object obj are represented
by the symbol config obj. Action effects on predicates over
symbolic values can no longer be determined precisely; their
values are assigned by the planning algorithm. E.g., it is not
possible to determine at this level of abstraction which mo-
tion planning trajectories would get obstructed as a result
of the placement action. Such predicates are annotated in
the set of effects with the symbol ?©, denoting imprecision
due to abstraction (see the abstract effect in Fig. 2). The re-
sulting model is a sound abstraction (Srivastava et al. 2014;
Srivastava, Russell, and Pinto 2016).

Abstraction Framework In order to formalize such ab-
stractions we first introduce some notation. We denote states
as logical models or structures. We use the term logical
structures or structures to distinguish the concept from SDM
models. A structure S, of vocabulary V , consists of a uni-
verse U , along with a function fS over U for every relation
symbol f in V and an element cS ∈ U for every constant
symbol c in V . We denote the value of a term or formula ϕ
in a structure S as JϕKS . These values are either True, False,
or elements of the universe of S. We also extend this nota-
tion so that JfKS denotes the interpretation of the function
f in S. We consider Boolean relations as a special case of
functions.

We formalize abstractions by building on the notion
of first-order queries (Codd 1972; Immerman 1998) that
map structures over one vocabulary to structures over an-
other vocabulary. In general, a first-order query α from
V` to Vh defines functions in α(S`) using interpreta-
tions of V`-formulas in S`: JfKα(S`)(o1, . . . on) = om iff
Jϕαf (o1, . . . on, om)KS` = True, where ϕαf is a formula in
the vocabulary V`.

In this notation, function abstractions or predicate ab-
stractions are first-order queries where Vh ⊂ V`; the pred-
icates in Vh are defined as identical to their counterparts
in V`. Such abstractions reduce the number of properties
being modeled. Entity abstractions, on the other hand, re-
duce the number of entities being modeled. Such abstrac-
tions have been used for efficient generalized planning (Sri-
vastava, Immerman, and Zilberstein 2011) as well as answer
set programming (Saribatur, Schüller, and Eiter 2019). Let
U` (Uh) be the universe of S` (Sh) such that |Uh| ≤ |U`|.

We define entity abstractions using an auxiliary represen-
tation function ρ : Uh → 2U` . Informally, ρ maps each
element õ of Uh to the subset of U` that õ represents.
E.g., ρ(Kitchen) = {loc : ∧i loc · BoundaryVectori <
0} where the kitchen has a polygonal boundary. An en-
tity abstraction αρ using the representation ρ is defined as
JfKαρ(S`)(õ1, . . . õn) = õm iff ∃o1, . . . on, om such that
oi ∈ ρ(õi) and Jϕαρf (o1, . . . on, om)KS` = True. We omit
the subscript ρ when it is clear from context.

Let S be the set of abstract states generated when an ab-
straction function α is applied on a set of concrete states X .
For any s ∈ S, the concretization function Γα(s) = {x ∈
X : α(x) = s} denotes the set of concrete states represented
by the abstract state s. For a set C ⊆ X , [C]α denotes the
smallest set of abstract states representing C. Generating the
complete concretization of an abstract state can be compu-
tationally intractable, especially in cases where the concrete
state space is continuous and the abstract state space is dis-
crete. In such situations, the concretization operation can be
implemented as a generator that incrementally samples ele-
ments from an abstract state’s concretization.

Formally, our approach carries out a entity abstraction
to yield compact, imprecise yet sound action descriptions
(Srivastava, Russell, and Pinto 2016). The entity abstrac-
tion is notable in using a dynamic representation function.
E.g., for the action in Fig. 2, ρ(config obj) = {config1 :
ϕpre(config, obj)}, where ϕpre is precondition for Place
with existential quantifiers for the other continuous argu-
ments. ρ is dynamic in the sense that the set of poses rep-
resented by config obj varies with the state because the set
of collision free trajectories depends on the state.

Definition 1. A stochastic task and motion planning prob-
lem 〈M, co, α, [M]〉 is defined using a concrete SSP model
M and its abstraction [M] obtained using a composition of
function and entity abstractions, denoted as α.

Solutions to task and motion planning problems, like so-
lutions to SSPs, are policies with actions from M .

4 Algorithmic Framework
4.1 Overall Approach
We now describe our approach for computing task and
motion policies as defined above. For clarity, we begin
by describing certain choices in the algorithm as non-
deterministic. Variants of our overall approach can be con-
structed with different implementations of these choices; the
versions used in our evaluation are described in §4.2.

Recall that abstract grounded actions [a] ∈ [M]
(e.g., Place(cup, config1 cup, config2 cup, target pose cup,
traj1 cup)) have symbolic arguments that can be instantiated
to yield concrete grounded actions a ∈ M. If the argument
instantiation satisfies the preconditions of a in a concrete
state c, M can be used to compute the concrete effects of
a on c. This process requires that it should be possible to
evaluate each predicate instantiation in a low-level state.

Of course, doing this evaluation during the search for a
plan can be prohibitively expensive: one would have to com-
pute all possible instantiations of symbolic action arguments

and then use M to generate the next possible states. The
whole purpose of abstraction is to avoid such operations
since exploring the space of all possible argument instantia-
tions and carrying out action propagation inM for each in-
stantiation is computationally intractable, particularly ifM
is an arbitrary simulator.

Instead, we interleave computation among the processes
of (a) concretizing an abstract policy, (b) update abstrac-
tion for a fixed concretization, and (c) computing an abstract
policy for an updated state. This is done using the plan re-
finement graph (PRG), a graph that stores the different mod-
els, their corresponding abstract policies and partial refine-
ments. Every node u in the PRG represents an abstract model
[M]u, an abstract policy [π]u in the form of a tree whose
vertices represent states and edges represent action applica-
tions, a concretization for a subset of action occurrences in
[π]u, and the current state of search for concretizations of all
actions aj ∈ [π]u. Every edge (u,v) between nodes u and v
in the PRG represents a failure reason ϕ for a particular con-
cretization σ for [π]u; [M]v is the version of [M]u updated
with the failed preconditions corresponding to (u,v).

Alg.1 carries out the interleaved search outlined above as
follows. It first initializes the PRG with node containing an
abstract policy for the given SSP (line 1), and then selects a
node in the PRG and extracts an unrefined root-to-leaf path
from the policy for that node (lines 3-5).

Concretization of an available policy Lines 7-13 search
for a concretization (refinement) of the partial path by in-
stantiating its symbolic action arguments (including the
action refinement to use, e.g. traj1) with values from
their original non-symbolic domains, to obtain a feasi-
ble concrete policy {πi} using a motion planner with
M. However, it is possible that [π] admits no feasi-
ble concretization because every instantiation of the sym-
bolic arguments violates the preconditions of some ac-
tion in πi. A concretization c0, a1, c1, a2, c2 . . . , ak, ck
of the path [s0], [a]1, [s]1, [a]2, [s]2, . . . , [a]k, [s]k is feasi-
ble starting with a concrete initial state c0 iff ci+1 ∈
ai+1(ci)Γ([s]i+1) for i = 0, . . . , k − 1. E.g., an infeasible
path would have the robot placing a cup on the table in the
concretete state c0, when every possible motion plan for do-
ing so may be in collision with other objects.

Update abstraction for a fixed concretization Lines 16-
20 fix a concretization for the partially refined path se-
lected on line 6, and identify the earliest state in this path
whose subsequent action’s concretization is infeasible. This
state is updated with the true forms of the violated pre-
conditions that hold in this concretization, using symbolic
arguments. Discard the plan suffix after this state. E.g.,
Collision(teapot, traj cup)). A state update is immediately
followed by the computation of a new abstract policy the
computation of a new abstract policy.

Computation of a new abstract policy Lines 21-22 com-
pute a new policy with the updated information computed

Algorithm 1: ATM-MDP Algorithm

Input: model [M], domain D, problem P , SSP Solver SSP,
motionPlanner MP

Output: anytime, contingent task and motion policy
1 Initialize PRG with a node with an abstract policy [π] for P

computed by SSP;
2 while solution of desired quality not found do
3 PRNode← GetPRNode();
4 [π]← GetAbstractPolicy([M], PRNode, D, P , SSP);
5 path to refine← GetUnRefinedPath([π]);
6 Compute← NDChoice{Concretization,

UpdateAbstraction};
7 if Compute = Concretization then
8 while [π] has an unrefined path and resource limit is

not reached do
9 if explore// non-deterministic

10 then
11 replace a suffix of partial path with a

random action;
12 end
13 search for a feasible concretization of

path to refine;
14 end
15 end
16 if Compute = UpdateAbstraction then
17 partial path← GetUnrefinedSuffix(PRNode,

path to refine);
18 σ ← ConcretizeLastUnrefinedAction([π]);
19 failure reason← GetFailedPrecondition([π], σ);
20 updated state← UpdateState([π], failure reason);
21 [π′]← merge([π], solve(updated state, G, [M]));
22 generate new pr node([π′], [M]);
23 end
24 end

under (b). The SSP solver is invoked to compute a new pol-
icy from the updated state; its solution policy is unrolled as
a tree of bounded depth and appended to the partially re-
fined path. This allows the time horizon of the policy to be
increased dynamically.

In our implementation the Compute variable on line 6 is
set to either Concretization or UpdateAbstraction with prob-
ability 0.5. The explore parameter on line 9 needs to be set
with non-zero probability for a formal guarantee of com-
pleteness, although in our experiments it was set to False.

4.2 Optimizations and Formal Results
We discuss two major optimizations of Alg. 1 below.

Selecting the path to refine The main computational
challenge for the algorithm is that the number of root-to-
leaf (RTL) paths grows exponentially with the time horizon.
Waiting for a complete refinement results in wasting a lot of
time as the probability of encountering that situation has a
very low probability for most of the paths. Each RTL path
has a certain probability of being encountered; refining it in-
curs a computational cost. The optimal selection of the paths
to refine within a fixed computational budget can be reduced
to the knapsack problem. Unfortunately, however, we do not

Figure 3: Figure: Left: Backtracking from node B invalidates
the refinement of subtree rooted at A. Right: Replanning
from node B which in some cases requires fewer resources.

know the precise computational costs required to refine a
path. Furthermore, the knapsack problem is NP-hard. How-
ever, we can compute provably good approximate solutions
to this problem using a greedy approach: we prioritize the
selection of a path to refine based on the probability of the
encountering that path p and the estimated cost of refining
that path c. We use a priority queue for the RTL paths with
their p/c values as the keys.

Theorem 1. Let t be the time since the start of the algorithm
at which the refinement of any root-to-leaf path is completed.
If path costs are accurate and constant then the total proba-
bility of unrefined paths at time t is at most 1 − opt(t)/2,
where opt(t) is the best possible refinement (in terms of
the probability of outcomes covered) that could have been
achieved in time t.

The proof follows from the fact that the greedy algorithm
achieves a 2-approximation for the knapsack problem. In
practice, we estimate the cost as ĉ, the product of measures
of the true domains of each the symbolic argument in the
given RTL. Since, ĉ ≥ c modulo constant factors, the pri-
ority queue never can only underestimate the relative value
of refining a path, and the algorithm’s coverage of high-
probability contingencies will be closer to optimal than the
bound suggested in the theorem above. This optimization
gives a user the option of starting execution when a desired
value of the probability of covered contingencies has been
reached.

Search for concretizations Sample-based backtracking
search (Srivastava et al. 2014) for the concretizations of
symbolic variables suffers from a few limitations in stochas-
tic settings that are not present in deterministic settings.
Fig. 3 illustrates the problem. In this figure, grey nodes rep-
resent actions in the policy tree that have already been re-
fined; the refinement for B is being computed. White nodes
represent the nodes that still require refinement. If back-
tracking search changes the concretization for B’s parent
(Fig. 3, left) it will invalidate the refinements made for the
entire subtree of that node. Instead, it may be better to com-
pute an entirely new policy for B (effectively jumping to the
UpdateAbstraction mode of computation (line 16). We im-
plement an optimization where the algorithm chooses be-
tween this alternative and backtracking to the parent node
with probability 0.5.

Numerous additional optimizations could be used to fur-

ther improve the performance of this approach in future
work. In particular, better strategies and/or statistical learn-
ing could be used in place of the probabilistic choices in the
search for concretizations and in the selection of the mode
of computation (line 7). Thm. 2 shows that our algorithm is
probabilistically complete.

Theorem 2. If there exists a proper policy which reaches
the goal within horizon h with probability p, and has feasible
low-level refinement, then Alg. 1 will find it with probability
1.0 in the limit of infinite samples.

Proof. Let πp be the proper policy. Consider a policy π in
the PRG; let k denote the minimum depth up to which πp
and π match. k will be used as a measure of correctness.
When π’s PRG node is selected, suppose we try to refine
one of the child nodes of depth k + 1 in the partial path that
had the k-length prefix consistent with the solution. The al-
gorithm selects the correct child action with non-zero prob-
ability under the explore steps (line 11), and then generates
a plan to reach the goal from the resultant state. The finite
number of discrete actions and the fixed horizon ensures that
at in time bounded in expectation, ATM-MDP will generate
a policy with the measure of correctness k + 1. Once the
algorithm finds the policy with the measure of correctness
h, it stores it in the PRG and is guaranteed to find feasible
refinements with probability one if the measure of these re-
finements under the probability-density of the generators is
non-zero.

5 Empirical Evaluation
We implemented the algorithms presented in previous sec-
tions using an implementation of LAO* (Hansen and Zil-
berstein 2001) as the SSP solver, the OpenRAVE (Diankov
2010) system to model and visualize test environment and
its collision checkers and BiRRT implementation for Mo-
tion Planning. Since there are no common benchmarks for
evaluating stochastic task and motion planning problems,
we evaluated our algorithm on three test problems geared
towards evaluating the systems performance on a range of
scenarios. In practice, coming up with an exact number for
horizon h is not possible. To overcome that, we implemented
a variant which dynamically increases the horizon until the
goal is reached with probability p > 0.

Cluttered Table In this problem the Fetch robot needs to
pick up a specific object from a cluttered table. The target
object can be obstructed by different objects which need to
picked and placed at different locations to reach the final
object. The actions available to the robot are to pick up an
object, place an object, and to move around the table. Gener-
ators for the concretization of the actions include generating
the grasping poses, put-down poses and target base poses.
The action of picking up an object succeeds with probabil-
ity 0.8; the object falls back onto the table with probability
0.2. We increase the number of cans on the table to increase
the complexity of this problem. Fig. 4 shows the results for
the time taken to solve 100 randomly generated instances for
three configurations of the environment with 15, 20, and 25
number of cans with horizon initially kept to 6.

Figure 4: Time taken to compute abstract policies with com-
plete motion planning refinements for randomly generated prob-
lems (left: cluttered domain with 15 cans, center: cluttered domain
with 20 cans, right: cluttered domain with 25 cans).

Aircraft Inspection In this problem, a UAV needs to in-
spect an airplane. The available actions are to fly to a cer-
tain region, go to the charging station and charge, and to
inspect a certain component. While trying to fly from one
location to other location, the UAV may drift to a differ-
ent region with probability 0.05. Each operation consumes
a certain amount of battery, but this cannot be computed at
the high-level since the high-level abstraction cannot reason
with trajectories. There is a battery recharge station which
can be reached from anywhere in the environment on re-
serve power. Generators for this problem include sampling
target locations for move actions as well as the waypoints
used to envelope a component for the inspection action. The
algorithm needs to come up with the sequence of actions to
examine the required parts with valid non-colliding trajecto-
ries while keeping sufficient battery at each time step. Fig. 5
shows the results for probability reaching the goal refined
with the percentage of nodes in policy tree refined. Empiri-
cal evaluations show that it takes less than 1% of nodes re-
fined and less than 100 seconds to whereas entire policy tree
refinement takes more than 4600 seconds.

Empirical evaluation of anytime performance Fig. 5
shows the anytime characteristics of our approach in all of
the test domains. The x-axis shows the percentage of nodes
that have been evaluated, refined and potentially replaced
with updated policies that permit low-level plans. The y-axis
shows the probability with which the policy available at any
time during the algorithm’s computation will be able to han-
dle all possible execution-time outcomes.

These empirical results indicate that in all of our test do-
mains the refined probability mass increases exponentially
with the percentage of nodes refined. This is desirable be-
cause most of the possible execution time outcomes are han-
dled by the task and motion policy with only 20-40% of the
computation. Such an approach would allow users to deter-
mine the amount of computation to invest in prior to execu-
tion, based on the acceptable levels of risk.

6 Other Related Work
There has been a renewed interest in integrated task and
motion planning algorithms. Most research in this direc-
tion has been focused on deterministic environments (Cam-
bon, Alami, and Gravot 2009; Plaku and Hager 2010;
Hertle et al. 2012; Kaelbling and Lozano-Pérez 2011; Gar-
rett, Lozano-Pérez, and Kaelbling 2015; Dantam et al. 2016;
Garrett, Lozano-Pérez, and Kaelbling 2018). Kaelbling and
Lozano-Perez (Kaelbling and Lozano-Pérez 2013) consider
a partially observable formulation of the problem. Their ap-
proach utilizes regression modules on belief fluents to de-
velop a regression-based solution algorithm. While they ad-
dress the more general class of partially observable prob-
lems, their approach follows a process of online, incremen-
tal discretization and does not address the computation of
branching policies, which is the focus of this paper. Sucan
and Kavraki (Şucan and Kavraki 2012) use an explicit multi-
graph to represent the problem for which motion planning
refinements are desired. Other approaches (Hadfield-Menell
et al. 2015) address problems where the high-level formula-
tion is deterministic and the low-level is determinized using
most likely observations. Our approach uses a compact, rela-
tional representation; it employs abstraction to bridge MDP
solvers and motion planners and solves the overall problem
in anytime fashion. The closest work is done by (Srivastava
et al. 2018) which implements a primitive version of the al-
gorithm presented in the paper.

Principles of abstraction in MDPs have been well studied
(Hostetler, Fern, and Dietterich 2014; Bai, Srivastava, and
Russell 2016; Li, Walsh, and Littman 2006; Singh, Jaakkola,
and Jordan 1995). However, these approaches assume that
the full, unabstracted MDP can be efficiently expressed as a
discrete MDP. Marecki et al. (Marecki et al. 2006) consider
continuous time MDPs with finite sets of states and actions.
In contrast, our focus is on MDPs with high-dimensional,
uncountable state and action spaces. Recent work on deep
reinforcement learning (e.g., (Hausknecht and Stone 2016;
Mnih et al. 2015)) presents approaches for using deep neu-
ral networks in conjunction with reinforcement learning to
solve short-horizon MDPs with continuous state spaces.
These approaches can be used as primitives in a comple-
mentary fashion with task and motion planning algorithms,
as illustrated in recent promising work by Wang et al. (Wang
et al. 2018).

ACKNOWLEDGMENTS
We thank Midhun Pookkottil Madhusoodanan for help with
an initial implementation of the presented algorithms. This
work was supported in part by the NSF under grant IIS
1844325.

References
Bai, A.; Srivastava, S.; and Russell, S. J. 2016. Marko-
vian state and action abstractions for MDPs via hierarchical
MCTS. In Proc. IJCAI.
Bertsekas, D. P., and Tsitsiklis, J. N. 1991. An analysis of
stochastic shortest path problems. Mathematics of Opera-
tions Research 16(3):580–595.

Figure 5: Anytime performance of ATM-MDP, showing the percentage of nodes refined (x-axis) v/s probability mass refined (y-axis).

Cambon, S.; Alami, R.; and Gravot, F. 2009. A hybrid ap-
proach to intricate motion, manipulation and task planning.
IJRR 28:104–126.
Codd, E. F. 1972. Relational completeness of data base
sublanguages. In R, R., ed., Database Systems.
Dantam, N. T.; Kingston, Z. K.; Chaudhuri, S.; and Kavraki,
L. E. 2016. Incremental task and motion planning: A
constraint-based approach. In Proc. RSS.
Diankov, R. 2010. Automated Construction of Robotic Ma-
nipulation Programs. Ph.D. Dissertation, Carnegie Mellon
University.
Garrett, C. R.; Lozano-Pérez, T.; and Kaelbling, L. P. 2015.
FFrob: An efficient heuristic for task and motion planning.
In Proc. WAFR.
Garrett, C. R.; Lozano-Pérez, T.; and Kaelbling, L. P. 2018.
Sampling-based methods for factored task and motion plan-
ning. The International Journal of Robotics Research.
Hadfield-Menell, D.; Groshev, E.; Chitnis, R.; and Abbeel,
P. 2015. Modular task and motion planning in belief space.
In Proc. IROS.
Hansen, E. A., and Zilberstein, S. 2001. LAO∗: A heuristic
search algorithm that finds solutions with loops. Artificial
Intelligence 129(1-2):35–62.
Hausknecht, M., and Stone, P. 2016. Deep reinforcement
learning in parameterized action space. In Proc. ICLR.
Hertle, A.; Dornhege, C.; Keller, T.; and Nebel, B. 2012.
Planning with semantic attachments: An object-oriented
view. In Proc. ECAI.
Hostetler, J.; Fern, A.; and Dietterich, T. 2014. State aggre-
gation in monte carlo tree search. In Proc. AAAI.
Immerman, N. 1998. Descriptive complexity. Springer Sci-
ence & Business Media.
Kaelbling, L. P., and Lozano-Pérez, T. 2011. Hierarchical
task and motion planning in the now. In Proc. ICRA.
Kaelbling, L. P., and Lozano-Pérez, T. 2013. Integrated

task and motion planning in belief space. The International
Journal of Robotics Research 32(9-10):1194–1227.
Li, L.; Walsh, T. J.; and Littman, M. L. 2006. Towards a
unified theory of state abstraction for mdps. In ISAIM.
Marecki, J.; Topol, Z.; Tambe, M.; et al. 2006. A fast ana-
lytical algorithm for mdps with continuous state spaces. In
Proc. AAMAS.
Mnih, V.; Kavukcuoglu, K.; Silver, D.; Rusu, A. A.; Ve-
ness, J.; Bellemare, M. G.; Graves, A.; Riedmiller, M.;
Fidjeland, A. K.; Ostrovski, G.; et al. 2015. Human-
level control through deep reinforcement learning. Nature
518(7540):529–533.
Plaku, E., and Hager, G. D. 2010. Sampling-based motion
and symbolic action planning with geometric and differen-
tial constraints. In Proc. ICRA.
Sanner, S. 2010. Relational dynamic influence
diagram language (rddl): Language description.
http://users.cecs.anu.edu.au/˜ssanner/
IPPC_2011/RDDL.pdf.
Saribatur, Z. G.; Schüller, P.; and Eiter, T. 2019. Abstraction
for non-ground answer set programs. In Proc. JELIA.
Singh, S. P.; Jaakkola, T.; and Jordan, M. I. 1995. Reinforce-
ment learning with soft state aggregation. In Proc. NIPS,
361–368.
Srivastava, S.; Fang, E.; Riano, L.; Chitnis, R.; Russell, S.;
and Abbeel, P. 2014. Combined task and motion planning
through an extensible planner-independent interface layer.
In Proc. ICRA.
Srivastava, S.; Desai, N.; Freedman, R.; and Zilberstein, S.
2018. An anytime algorithm for task and motion mdps.
arXiv preprint arXiv:1802.05835.
Srivastava, S.; Immerman, N.; and Zilberstein, S. 2011. A
new representation and associated algorithms for general-
ized planning. Artificial Intelligence 175(2):615–647.
Srivastava, S.; Russell, S.; and Pinto, A. 2016. Metaphysics
of planning domain descriptions. In Proc. AAAI.

Şucan, I. A., and Kavraki, L. E. 2012. Accounting for uncer-
tainty in simultaneous task and motion planning using task
motion multigraphs. In Proc. ICRA.
Wang, Z.; Garrett, C. R.; Kaelbling, L. P.; and Lozano-Pérez,
T. 2018. Active model learning and diverse action sampling
for task and motion planning. In Proc. IROS.
Younes, H. L., and Littman, M. L. 2004. PPDDL 1.0: An ex-
tension to pddl for expressing planning domains with prob-
abilistic effects. Technical Report CMU-CS-04-162.

