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Abstract

In this paper, we present a new approach to learning for mo-
tion planning (MP) where critical regions of an environment
with low probability measure are learned from a given set of
motion plans and used to improve performance on new prob-
lem instances. We show that convolutional neural networks
(CNN) can be used to identify critical regions for motion
planning problems.
We also introduce a new sampling-based motion planner,
Learn and Link. Our planner leverages critical region loca-
tions identified by our CNN to overcome the limitations of
uniform sampling, while still maintaining guarantees of cor-
rectness inherent to sampling-based algorithms. We evalu-
ate Learn and Link against planners from the Open Motion
Planning Library (OMPL) using an extensive suite of exper-
iments on challenging motion planning problems. We show
that our approach requires far less planning time than exist-
ing sampling-based planners.

Introduction
The MP problem deals with finding a feasible trajectory
that takes a robot from a start configuration to a goal con-
figuration without colliding with obstacles. From a com-
putational complexity point of view, even a simple form
of the MP problem is NP-hard (Reif 1979). In order to
achieve computational efficiency, motion planning methods
relax requirements of completeness. Sampling-based motion
planners, such as Rapidly-exploring Random Trees (RRT)
(LaValle and Kuffner Jr 2001) and Probabilistic Roadmaps
(PRM) (Svestka, Latombe, and Overmars Kavraki 1996),
rely on probabilistic completeness, which assures a solution,
if one exists, as the number of samples approaches infin-
ity. Sampling-based motion planners sample a set of states
from the configuration space (C-space) and check their con-
nectivity without ever explicitly constructing any obstacles.
This can reduce computation time considerably, especially
as environments increase in complexity. Their performance,
however, hinges on two main considerations: the way the C-
space is sampled, and the particular order in which samples
are chosen.

In order to improve the scalability of MP we present a
new approach for learning approximate, significant land-
marks, or critical regions, for MP problems. These regions
are those that are less likely to be sampled, such as narrow

Figure 1: 7-DOF Barrett WAM arm on a movable base
solves a transportation task using LL-RM. The pink points
are states that were created when linking the start and goal
configurations to the roadmap.

corridors (Lindemann and LaValle 2005), but are critical for
solutions since most solutions to a given class of problems
pass through them. The notion of discrete landmarks has
been used to improve the performance of classical planners
(Hoffmann, Porteous, and Sebastia 2004). Our approach re-
lates to this concept but differs in its consideration of the sets
of states that are not only useful for reaching the goal, but
are also less likely to be reached under a stochastic search
paradigm. Further, unlike landmarks, critical regions are not
necessary parts of a solution.

In this work, we overcome the sampling limitations of
sampling-based motion planners using a CNN to identify
critical regions prior to planning. Recent work on CNNs has
demonstrated their utility in situations where the input data
can be expressed as an image-based representation (Badri-
narayanan, Kendall, and Cipolla 2015; Ronneberger, Fis-
cher, and Brox 2015). For a MP problem, we can create
an image representation through recording the motion plans
and environment. Our approach begins using RRT-Connect
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(Kuffner and LaValle 2000) to compute motion plans on a
set of handmade training environments, though historical
data or human demonstrations can be used as well. We pro-
ceed using a raster scan to construct images of the environ-
ments and trajectories. The environment images are based
on collisions, and the trajectory images are based on path
intersections. Saliency maps are created from the trajectory
images using Itti’s saliency model (Itti and Koch 2000), and
are then thresholded to identify the most salient regions. Fi-
nally, we train the CNN to identify critical regions using the
thresholded saliency labels. The model’s generalizability is
evaluated on two domains: SE(2) and a 10-DOF C-space in-
volving a 7-DOF Barrett WAM arm on a moveable platform
(see Figure 1). We demonstrate that the learned model suc-
cessfully generalizes to unseen problem instances.

We also show that our model can be utilized to construct
a new sampling-based motion planner, Learn and Link, to
reduce the computation necessary to solve challenging MP
problems without compromising guarantees of correctness.
Learn and Link has two modes: a single query mode, re-
ferred to as Learn and Link planner (LLP), and a multi-
query mode, referred to as Learn and Link Roadmap (LL-
RM). LL-RM is similar to PRM in that we construct a gen-
eral roadmap, though using both critical regions and ran-
dom configurations, which covers an environment and can
be used for multiple queries (see Figure 2). LLP is used for
more efficient single query plans where we do not need a
general roadmap, and instead want to bias the construction
of a roadmap for a given start-goal pair and set of critical
regions. Currently, Learn and Link is best suited for MP
problems involving base movements and is being extended
for stationary planning problems in the future. We compare
our new planner with sampling-based motion planners from
OMPL.

Figure 2: An example of a roadmap created using LL-RM (a)
versus a vanilla PRM (b) for a Barrett WAM arm transporta-
tion task. Both planners are given 1 second to build their
roadmap using 30 vertices. The green points are states that
were created when linking the vertices of the roadmap, the
blue points are the vertices of the roadmap that were uni-
formly sampled, and the red points are the vertices of the
roadmap that came from the critical regions.

Our experiments reveal that areas of an environment that
are critical for MP, but have a low probability of being

sampled under a uniform distribution, are identifiable us-
ing CNNs. We demonstrate that these critical regions can
be utilized by Learn and Link to robustly compute motion
plans while requiring far less planning time than existing
sampling-based motion planners. Our approach is advanta-
geous over pure sampling-based planners and pure learn-
ers: it leverages learning from experience to outperform
sampling-based planners, but avoids the possibility of miss-
ing solutions that limits pure imitation learning, and remains
probabilistically complete.

We believe these results are general, and that they hold
across many domains. This approach is particularly use-
ful in situations where one would have prior knowledge on
the types of environments being traversed, but not have the
luxury of using time-expensive planners. We demonstrate
that in situations where some prior knowledge on the dis-
tribution of environments and class of planning problems is
known, the critical regions identified by our model can re-
duce planning time considerably. Even considering prepro-
cessing, these costs become increasingly negligible as the di-
mensionality of the planning problem increases. As demon-
strated in the experimental section for the 10-DOF problem,
the classical motion planners tend to fail a majority of the
time when quick planning is required.

Our approach presents a first step towards creating hierar-
chies for continuous planning problems by extracting criti-
cal regions for a given environment and defining actions as
transitions between them.

Related Works
Several methods have been proposed to guiding sampling-
based motion planners to solutions. Heuristically-guided
RRT (Urmson and Simmons 2003) uses a probabilistic im-
plementation of heuristic search concepts to create a reason-
able bias towards exploration, as well as exploiting known
good paths. Although this approach was able to produce
less expensive paths, it required a high computational price.
Anytime RRTs (Ferguson and Stentz 2006) reuse informa-
tion from previous RRTs to improve on the path by rejecting
samples which have a higher heuristic cost. Batch Informed
Trees (BIT*) (Gammell, Srinivasa, and Barfoot 2015) uses a
heuristic to efficiently search a series of increasingly dense
implicit random geometric graphs while reusing previous in-
formation. In contrast, our method guides sampling-based
motion planners to solutions without the need of a heuris-
tic. Rather, the learned sampling distribution helps bias sam-
pling towards critical regions which have a lower probability
of getting sampled, but in most scenarios are necessary for
solutions.

The coupling of learning and MP has been extensively
investigated in the past. Recent work by Ichter et al.
uses a Conditional Variational Autoencoder to bias sample
points for MP conditioned on encoded environment vari-
ables (Ichter, Harrison, and Pavone 2018). This encoding
is generalizable to higher dimensions, however it requires
structuring the data to encompass the state of the robot, the
environment, the obstacles (encoded as occupancy grid), and
the start and goal configurations. Moreover, during infer-
ence, the network model requires this expensive data struc-



turing again, which can take around 50 seconds. In contrast,
we focus on image-based learning where data can be eas-
ily generated for training using a top-view camera. More-
over, inferences can also be made using a top-view im-
age of the environment in less than 5 seconds. This results
in faster inference for situations demanding faster motion
plans. Havoutis et al. use topology to learn sub-manifold ap-
proximations that are defined by a set of possible trajecto-
ries in the C-space (Havoutis and Ramamoorthy 2009). This
requires either motion plans that are generated through a
motion capture device, or hand-crafted partial plans. Pan et
al. use instance-based learning where prior collision results
are stored as an approximate representation of the collision
space and the free C-space (Pan, Chitta, and Manocha 2013).
This is used to make cheaper probabilistic queries. Although
their method shows significant improvement in some envi-
ronments, their work is limited in finding solutions through
narrow passages between obstacles where optimal solution
may lie. In our work, the network learns the position of re-
gions that are critical for a given class of MP problems, but
have a low probability of getting sampled under a uniform
distribution. These critical regions can be leveraged by any
motion planner for faster solutions.

Our work shows a reduction in average planning time of
57%-99%, and higher success rates for quick planning, com-
pared to OMPL’s RRT, RRT-Connect, and PRM planners.

Learning Critical Regions
Given a robot R, an environment E, and a class of MP prob-
lems M, we define the measure of criticality of a Lebesgue-
measurable open set r ⊆ Rn, µ(r), as ltsn→+r

f (r)
v(sn)

, where
f (sn) is the fraction of observed motion plans solving tasks
from M that pass through sn, v(sn) is the measure of sn under
a reference (usually uniform) density, and →+ denotes the
limit from above along any sequence {sn} of sets containing
r (r ⊆ sn for all n). Note that µ(r) is zero when f (r) = 0.
While µ(r) can be infinite for a region, for all practical pur-
poses we consider regions r with v(r) > 0 under the uni-
form density. Intuitively, regions with high criticality mea-
sures are those that are vital for solutions to problems in M,
but have a low probability of exploration under a uniform
density.

To learn critical regions, we construct a set Dtrain of Ntrain
MP problem instances {Π1, ...,ΠNtrain} and obtain a corre-
sponding set of solution trajectories {τ1, ...,τNtrain} to con-
struct the images. A set Dtest of Ntest MP problem instances
is used to evaluate the learned model. The problem instances
are picked for various environments. Raster scans of the en-
vironments create the input images, and the solution trajec-
tories are used to construct the label images.

Our approach consists of two phases: a data generation
phase and a model training phase.

Data Generation
For each instance of an environment, we begin by ran-
domly selecting a set of 50 motion planning problems
from M {Π1, ...,Π50} and running an off-the-shelf mo-
tion planner to generate a corresponding set of mo-

tion plans {τ1, ...,τ50}. We do this multiple times for
each handmade environment (see Figure 3) to make sure
we fully cover its critical areas; 179 instances per en-
vironment in our dataset. In our data generation pro-
cess, we utilize an OpenRAVE (Diankov and Kuffner
2008) implementation of OMPL’s RRT-Connect plan-
ner by https://github.com/personalrobotics,
though any motion planner can be used instead.

We construct the 224x224 training images for each in-
stance using a raster scan and a saliency model. We de-
scribe the process for an SE(2) robot (see Figure 4), though
it can be extended to mobile manipulators, such as the Bar-
rett arm on a mobile base. We begin by creating a pixel-
sized obstacle based on the dimensions of the desired im-
age and the bounds of a given environment. We proceed by
scanning the pixel-sized obstacle across the environment.
For the input images, if a collision is detected with an en-
vironment’s obstacles, we select a black pixel, otherwise a
white pixel is selected. For the motion trace images, we as-
sign a pixel value based on the µ-criticality of the region
the pixel encompasses, which we obtain using {τ1, ...,τ50}.
We then use an implementation of Itti’s saliency model
by https://github.com/mayoyamasaki to extract
relevant salient information and smooth out the salient areas
from the motion trace images. The saliency maps are binned
into two categories, high saliency (denoted by white pixels)
and low saliency (denoted by black pixels), and are used as
the labels.

Even large environments do not affect training. Since our
input images are simple black and white binary images, we
are able to convert an environment into a 224x224 image
during preprocessing without losing important information.
If there exists an environment so large and detailed that too
much information is lost when converting it to a 224x224
image, we instead crop the image into smaller components
before training/inference, and then stitch the pieces together
when looking at the environment as a whole.

Figure 3: Handmade training environments used for the
SE(2) domain (not including rotations). Training environ-
ments for the Barrett arm are similar, though scaled appro-
priately for the difference in robot size.

Network Architecture
We propose a general structure for a convolutional encoder-
decoder neural network which learns to detect critical re-
gions.

Our network, depicted in Figure 5, has 14 convolutional
layers. 7 layers in the encoder network and 7 layers in the de-
coder network forming the encoder-decoder architecture for

https://github.com/personalrobotics/or_ompl
https://github.com/mayoyamasaki/saliency-map


Figure 4: (a) An example training environment overlain with
motion traces. Training data for each instance is created us-
ing this information. (b) Model input obtained post raster
scan. (c) Motion trace image based on µ-criticality of each
pixel. (d) Saliency map obtained from the motion trace im-
age. (e) Label obtained after binning the saliency map based
on pixel intensity.

pixel-wise classification. A max pooling layer with stride 2
is introduced after each group of same number of filters to
encode the learned representation. Similarly, an upsampling
layer is added before each deconvolutional layer group of
same number of filters. We draw inspiration from (Badri-
narayanan, Kendall, and Cipolla 2015) for a learnable up-
sampling layer in the decoder network.

Figure 5: Network architecture selected for our model.

The first two convolutional layers have 64 filters with
a 3× 3 kernel. Motivated by recent promising results (Si-
monyan and Zisserman 2014), we stack 3 layers with 3× 3
kernel size to obtain a similar receptive field as a 7×7 ker-
nel, with 81% less parameters, and more effective training
owing to the added non-linearity after every layer. For the
initial layer group of filter size 64 and 128, we stack only
two layers of kernel size 3× 3. Though the receptive field
is smaller than a 7× 7 kernel, we still stack only 2 layers
as our problem statement does not require learning complex
geometric features. The next 2 layers are of 128 filters with a
3×3 kernel. We add 3 layers of 256 filters each, with a 3×3
kernel, for a larger receptive field since deeper layers learn
invariant complex features (Zeiler and Fergus 2014). All the
convolutional and max-pool layers have padding added to
them.

In the decoder network, corresponding deconvolutional
layers to the encoder network are used. The upsampled out-
put is used for pixel-wise classification using a softmax
cross-entropy loss function. Each layer in the network is ac-
tivated using ReLu nonlinearity.

Training
The network was trained using a mini-batch size of 16 and
a dataset of 10,024 images. Following (Ioffe and Szegedy
2015), we did not train the network with dropout (Sri-
vastava et al. 2014) since the output of every layer is
batch-normalised, which also acts as a regularizer. We use
Adam Optimizer (Kingma and Ba 2014) with a 0.1 learn-
ing rate to train the network. The network was trained
for 50,000 epochs since the loss converges at this point.
The training images are shuffled before each epoch and
trained with mini-batch to ensure that every input to the
network is different from the previous. This assists the
optimizer to exit local minima. We used an implemen-
tation of SegNet (Badrinarayanan, Kendall, and Cipolla
2015) by https://github.com/andreaazzini for
its data pipelines since they provide a fast and efficient input
pipeline which reduces training time.

On average, training for the full dataset takes approxi-
mately 3 hours on a single Nvidia GTX 1080Ti.

Processing Critical Regions
In the following section we discuss how to process the model
output so that it can be used by Learn and Link.

Seeing as the model output is in image format, we need
a mapping of pixel indices to the environment’s coordi-
nate system: f : (i, j) 7→ [pminx , pminy , pmaxx , pmaxy ]. We de-
fine such a mapping as follows:

f (i, j) =
∣∣∣∣pminx pminy
pmaxx pmaxy

∣∣∣∣
f (i, j) =

∣∣∣∣bmin bmax
bmin bmax

∣∣∣∣+ ∣∣∣∣ i −( j+1)
i+1 − j

∣∣∣∣× pw

where pw = bmax−bmin
224 and 0≤ i, j ≤ 224.

In the equation: i is the horizontal pixel index, j is the ver-
tical pixel index, bmin and bmax are the bounds of our square
environment, pw is the width of a pixel in terms of the en-
vironment’s coordinate system, and f (i, j) gives the bounds
for a pixel located at (i, j) in terms of the environment’s co-
ordinate system. i and j are bounded since 224× 224 is the
desired dimension of the model input. It can be altered to
accommodate the model.

Using f, we iterate through the pixels of the model out-
put and store the sample bounds of the pixels identified as
critical regions, i.e. the white pixels. We then take a list of
critical region points and pass them to Learn and Link.

Learn and Link
In this section we discuss the methods that make up our plan-
ner. We describe both its single query mode, LLP, and its
multi-query mode, LL-RM.

Learn and Link Planner
LLP is Learn and Link’s single query mode. This version
differs from LL-RM in that we set m= 0 and pass in the start
and goal configurations right away to algorithm 1. We do this
so that instead of building a general roadmap that spreads
across the entire environment, we build a biased roadmap

https://github.com/andreaazzini/segnet.tf


in which subgraphs rooted from the start and goal configu-
rations are connected using additional subgraphs rooted at
critical regions to speed up the process.

We first describe algorithm 1 in LLP mode. In lines
14− 17, n random collision-free configurations are added
as vertices to the roadmap from the critical regions identi-
fied by the model. In lines 18− 21, m = 0 configurations
are added as vertices to the roadmap using a uniform sam-
pler. Since we are in LLP mode, in lines 22−26, subgraphs
rooted from the start and goal configurations are added to
the roadmap. For the remainder of the algorithm, we at-
tempt to link the subgraphs spawned from the vertices in
the roadmap. In line 28, a random sample is taken to grow
the current subgraph in its direction. In line 29, an attempt is
made to extend the current subgraph to qnew, a new config-
uration in the direction of qrand . If adding qnew to the graph
results in a collision, i.e. EXTEND returns Trapped, qnew is
not added to the graph; otherwise it is added. In line 30, a
connectivity attempt occurs to link the current subgraph to
the remaining graphs in the roadmap; once all the subgraphs
have been connected, Linked is returned and the roadmap
is complete. By this point, since we are in LLP mode, the
start and goal configurations have been linked into a single
graph. To extract a path P connecting both points we use
Dijkstra’s algorithm (Dijkstra 1959) in line 32. If the condi-
tions in lines 29− 30 are not satisfied, we shift to the next
subgraph in the roadmap, using a round-robin approach, in
line 36. If an explicit sample cap is reached, i.e. S 6= ∞, with-
out a solution path being found, an empty path, indicating a
failure, is returned.

Algorithm 2 is used in an attempt to link a subgraph to
the remaining graphs in the roadmap (lines 9− 11), to re-
move dead graphs from consideration (line 12), and to check
whether all the subgraphs in the roadmap have been linked
(line 13). A subgraph is considered dead once it has been
linked and added to another graph. Once only one graph re-
mains in the roadmap list, Linked is returned to indicate that
the roadmap is connected.

Algorithms 3 and 4 depict methods reused and adapted
from RRT-Connect. These methods are used to grow the cur-
rent subgraph in the direction of the random samples taken.

Learn and Link Roadmap
LL-RM is Learn and Link’s multi-query mode. This ver-
sion differs from LLP in that we attempt to build a general
roadmap which can be reused multiple times for traversing a
C-space based on collision-free configurations from the crit-
ical regions, as well as some uniformly sampled. To solve a
query, we simply try to connect the start and goal configura-
tions to the roadmap given by algorithm 1 in LL-RM mode.
If we are successful, we use Dijkstra’s to obtain a plan.

When in LL-RM mode, the linking process works the
same as described for LLP. The only differences in LL-RM
mode are that we include additional vertices in the roadmap
from areas which were uniformly sampled (i.e. m > 0) in
lines 18− 21, and we return the roadmap RM, instead of a
path, when the subgraphs are connected in line 35.

Algorithm 5 is the planning component of LL-RM. In
lines 9− 12, two subgraphs are initialized from the start

Algorithm 1 Learn and Link

1: Input
2: N: number of critical region states to include
3: M: number of uniform states to include
4: CR: list of critical region points
5: Mode: planner mode; LLP or LL-RM
6: Qstart : start configuration, if LLP mode
7: Qgoal : goal configuration, if LLP mode
8: Output
9: P: collision-free path from qstart to qgoal , if it exists

10: RM: constructed roadmap
11: procedure LL(N,M,CR,MODE,Qstart,Qgoal)
12: curr← 0
13: RM← []
14: for n = 0 to N−1 do
15: s← SAMPLE(CR)
16: Gn.init(s)
17: RM.append(Gn)

18: for m = 0 to M−1 do
19: s← SAMPLE()
20: GN+m.init(s)
21: RM.append(GN+m)

22: if mode == LLP then
23: GN+M .init(qstart)
24: GN+M+1.init(qgoal)
25: RM.append(GN+M)
26: RM.append(GN+M+1)

27: for s = 1 to S do
28: qrand ←UNIFORM()
29: if EXT END(Gcurr,qrand) 6= Trapped then
30: if LINK(RM,Gcurr,qnew) == Linked then
31: if mode == LLP then
32: P← PAT H(RM[0])
33: Return P
34: else
35: Return RM
36: Gcurr← SWAP(RM,Gcurr)

37: Return []

(qstart ) and goal (qgoal) configurations in an attempt to con-
nect them to the existing roadmap RM. In lines 13−18, the
same approach used in the building process is employed to
connect the start and goal subgraphs to the roadmap. In line
16, a solution check occurs. If a solution is found, the path
P connecting the start and goal configurations is obtained
using Dijkstra’s algorithm in line 17.

Probabilistic Completeness

Link and Learn maintains the probabilistic completeness
property inherent to sampling-based motion planners. Since
LLP and LL-RM only add a finite set of points to seed their
roadmaps, it does not reduce the set of support (regions with
non-zero probability) of its uniform sampler, and thus, this
property is preserved. Even when the network paired with
Learn and Link fails to identify any critical regions, no is-
sue arises. In this scenario, LLP works analogously to RRT-
Connect, and LL-RM works analogously to PRM, both of
which are probabilistically complete.



Algorithm 2 LINK

1: Input
2: RM: roadmap of graphs to be connected
3: Gcurr: current subgraph being grown
4: Qnew: most recent configuration added to Gcurr

5: Output
6: S: status of Gcurr’s link attempt
7: procedure LINK(RM,Gcurr,Qnew)
8: R← []
9: for Gi in RM \Gcurr do

10: if CONNECT (Gi,qnew) == Reached then
11: R.append(Gi)

12: RM.link and remove(R,Gcurr)
13: if |RM|== 1 then
14: S← Linked
15: else if |R|> 0 then
16: S←Connected
17: else
18: S← Advanced
19: Return S

Algorithm 3 CONNECT

1: Input
2: G: graph being grown towards q
3: Q: configuration which G is trying to connect to
4: Output
5: S: status of G’s connect attempt
6: procedure CONNECT(G,Q)
7: repeat
8: S← EXT END(G,q)
9: until S 6= Advanced

10: Return S

Extension for Mobile Manipulators
The extension for higher DOF robots follows simply. Since
our model only gives base poses, we append each configu-
ration in CR with a random, collision-free configuration for
the additional DOF values prior to calling the planner. The
algorithm then proceeds as usual.

Experiments
In this paper, we focus on investigating two main questions:

1. Can CNNs be used to identify critical regions for motion
planning?

2. Can critical regions be used to improve planning perfor-
mance?

The first consideration aims to see if we can extend the
visual prowess exhibited by CNNs to identifying the critical
regions of an environment. The second consideration aims
to see if knowing critical regions helps a planner reduce its
computation time. Our intent is not to create the best, most
optimal planner, but to evaluate the gains that can be made
when a planner leverages the critical regions of the C-space
being traversed.

To investigate these considerations, we designed chal-
lenging MP problems for SE(2) (see Figure 6) and the Bar-
rett WAM arm (see Figure 7), and we explored various net-

Algorithm 4 EXTEND

1: Input
2: G: graph being grown towards q
3: Q: configuration which G is stepping toward
4: Output
5: S: status of G’s extend attempt
6: procedure EXTEND(G,Q)
7: S← Trapped
8: qnear← NN(q,G)
9: if CONFIG(q,qnear,qnew) then

10: G.add vertex(qnew)
11: G.add egde(qnear,qnew)
12: if qnew == q then
13: S← Reached
14: else
15: S← Advanced
16: Return S

Algorithm 5 LL-RM PLAN

1: Input
2: Qstart : start configuration
3: Qgoal : goal configuration
4: RM: roadmap created using LL in LL-RM mode
5: Output
6: P: collision-free path from qstart to qgoal , if it exists
7: procedure RM-PLAN(Qstart,Qgoal,RM)
8: curr← 0
9: G1.init(qstart)

10: G2.init(qgoal)
11: RM.append(G1)
12: RM.append(G2)
13: for s = 1 to S do
14: qrand ←UNIFORM()
15: if EXT END(Gcurr,qrand) 6= Trapped then
16: if LINK(RM,Gcurr,qnew) == Linked then
17: P← PAT H(RM[0])
18: Return P
19: Gcurr← SWAP(RM,Gcurr)

20: Return []

work architectures. For both domains, 100 MP problems
were constructed using the same start and goal pair, the same
range, and a planning time limit of 60 seconds. LLP and LL-
RM both use 5% of the critical regions identified as n, and
m is 0 and n/10, respectively. OMPL PRM and LL-RM are
both given 1 second to build a roadmap prior to planning.
Our approach is for robots with omnidirectional base move-
ments, though an arbitrary local planner can be substituted
in the EXTEND module. It is also important to point out that
OMPL is written in highly optimized C++ code compared
to our Python implementation.

Evaluating Identified Critical Regions
We evaluate the critical regions identified by a model for
an environment using its ground truth motion trace image
(see Figure 4(c)). We first cluster the model-identified crit-
ical regions using k-Nearest Neighbors (Altman 1992) with
k = 25. Then we evaluate each critical region cluster ci us-
ing its µ-criticality, where we estimate v(ci) as the area of



Figure 6: SE(2) test environments used to evaluate the
model. Red dots represent the start and goal configurations.

Figure 7: Barrett arm test environments used to evaluate the
model. The robot is placed at the start and goal configura-
tions.

the pixels in the cluster. The metric values for each cluster
are then summed to obtain an evaluation of the environment
as a whole. The higher the value, the better the critical re-
gions.

We use this metric instead of comparing pixel accuracy
with the ground truth label since the motion trace image is
embedded with much more information regarding the qual-
ity of the critical regions than simply identifying them.

Figure 8 shows a comparison of the critical regions iden-
tified by VGGNet, SegNet, and our parsimonious network
using this metric.

Results
Our results suggest that both LLP and LL-RM require far
less time to obtain a solution than OMPL’s RRT, RRT-
Connect, and PRM planners, especially as the environments
increase in difficulty. Figures 9 and 10 show a comparison
of planning time used by the OMPL planners and Learn and
Link using the areas learned by our parsimonious network.

SE(2) Domain For SE(2), LLP and LL-RM outperformed
OMPL’s planners in terms of average planning time and suc-
cess rate. It was only close on environment (b) where LLP
and LL-RM required 66% and 57% less time on average,
respectively, than PRM, the best performing OMPL planner
on this environment; which we attribute to there being a lot
more open space and less narrow passages compared to the
size of the robot. Also recall that PRM and LL-RM both re-

Figure 8: (a) Critical regions identified using VGGNet. From
left to right, their µ-criticality is 0, 0, 0. (b) Critical regions
identified using SegNet. From left to right, their µ-criticality
is 0, 0.141, and 0.260. (c) Critical regions identified using
our network. From left to right, their µ-criticality is 0.604,
0.371, and 0.702.

ceived an additional second for roadmap construction. On
environments (a) and (c), whose passages allow for limited
movement, the difference is more extreme. On environment
(a), RRT, RRT-Connect, and PRM had success rates of 19%,
0%, and 53%, respectively. For successful plans, LLP and
LL-RM required 97% and 99% less time on average, respec-
tively, than PRM, the best performing OMPL planner on this
environment. On environment (c), RRT, RRT-Connect, and
PRM had success rates of 93%, 8%, and 100%, respectively.
For successful plans, LLP and LL-RM required 64% and
74% less time on average, respectively, than PRM, the best
performing OMPL planner on this environment.

10-DOF Domain For the transportation tasks using the
movable Barrett arm, LLP and LL-RM require less planning
time on average and had higher success rate than OMPL. On
environment (a), RRT, RRT-Connect, and PRM had success
rates of 0%, 87%, and 31%, respectively. When comparing
successful plans, LLP and LL-RM required 89% and 92%
less time on average, respectively, than PRM, the best per-
forming OMPL planner on this environment. On environ-
ment (b), RRT, RRT-Connect, and PRM had success rates of
0%, 23%, and 8%, respectively. When comparing successful
plans, both LLP and LL-RM required 88% less time on aver-
age than RRT-Connect, the best performing OMPL planner
on this environment.



Figure 9: Boxplots of the 100 runs comparing planning time for the SE(2) domain. The success rate of the 100 plans for each
planner is listed in red on the plot.

Figure 10: Boxplots of the 100 runs comparing planning
time for the 10-DOF domain. The success rate of the 100
plans for each planner is listed in red on the plot.

Network Ablation Study
Since obstacles in an environment can be represented by
bounding boxes, most of the objects in our dataset have reg-
ular geometric shapes. We performed an ablation study to
find the simplest model that can learn the feature representa-
tion using as few layers as possible, without compromising
the results. We investigated two different types of neural net-
works and compared their performance with SegNet using
our µ-criticality measure. The ablation study for both types
of architecture is discussed below.

Convolutional Network The main question in the net-
work ablation study was to enquire whether a solely con-
volutional network would suffice in solving this problem.

The CNN-based VGGNet learned only to trace obstacle
borders. The µ-criticality for VGGNet as shown in the Fig-
ure 8(a) is 0 for all the test environment. Although the crit-
icality values were not promising, it still shed light on net-
work behaviour. The network was able to learn the geometry
of the obstacles in the image, which CNNs are known to be
good at, but was unable to identify the critical regions. More-
over, training VGGNet takes 16 hours on a single Nvidia
GTX 1080Ti GPU for 50,000 epochs.

Encoder-Decoder After a fully convolutional approach
failed, we investigated how well a segmentation architec-
ture, such as SegNet, could learn critical regions. Follow-
ing promising initial results using SegNet as shown in Fig-
ure 8(b), we investigated an encoder-decoder network which
can learn the latent representation in a supervised manner
for pixel-wise classification. In an encoder-decoder, the en-
coder can learn the feature representation and encode it into
a latent space. While the decoder can learn the pixel-wise
classification on the learned features.

A simple encoder-decoder network with 4 layers each in
the encoder and decoder sections of the network was able to
somewhat learn the critical regions of the data well, obtain-
ing µ-criticality scores of 0.0156, 0.384, and 1.043, respec-
tively on the SE(2) environments, but tended to show a lot of
checkerboard artifacts in the identified regions.

Building on the simple encoder-decoder architecture, we
added 3 more batch normalized layers to increase the recep-



tive field size in an attempt to smooth out the critical regions
and generalize to the test set. We achieved a µ-criticality
score of 0.604, 0.371 and 0.702 for respective environments
as shown in Figure 8(c), indicating the network’s ability to
identify the critical regions for motion planning.

Conclusions
We presented a new approach in learning for MP and used
it to create a new sample-based motion planner, Learn and
Link. We constructed a fully convolutional encoder-decoder
neural network to learn critical regions for MP problems that
generalizes across different domains. Our model is used by
Learn and Link to remedy the limitations of uniform sam-
pling, without compromising guarantees of correctness.

Our results on challenging MP problems demonstrate that
CNNs have the capability to extract important features rele-
vant to MP problem.
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