
Minimum Time Validation for Hybrid Task Planning

Ayal Taitler? and Ilya Ioslovich‡ and Erez Karpas† and Per-Olof Gutman‡
?Technion Autonomous Systems Program

†Faculty of Industrial Engineering and Management
‡Faculty of Civil and Environmental Engineering

Technion Israel Institute of Technology
Haifa, Israel 32000

Abstract

The problem of mixed discrete-continuous task planning
for mechanical systems, such as aerial drones or other au-
tonomous units, can often be treated as a sequence of point-
to-point trajectories. The minimum time optimal solution be-
tween points in the plan is critical not only for the calcu-
lation of the trajectory in cases where the goal has to be
achieved quickly but also for the feasibility checking of the
plan and the planning process itself, especially in the pres-
ence of deadlines and temporal constraints. In this paper, we
address the minimum time problem for a second-order system
with quadratic drag, under state (velocity) and control (accel-
eration) constraints. Closed-form expressions for the trajec-
tory are derived and the optimality is proven using the Pon-
tryagin Maximum Principle. Simulations supporting the re-
sults are provided and compared with those of an open source
academic optimal control solver.

Introduction
Robots operating in the real world often have to come up
with a sequence of actions, i.e., a plan, which will take them
from an initial state to the desired goal state. During plan-
ning the robots have to take into account both discrete and
continuous changes, as well as temporal constraints. Hy-
brid temporal planners such as Scotty (Fernandez-Gonzalez,
Williams, and Karpas 2018), COLIN (Coles et al. 2012) and
Kongming (Li and Williams 2008) have been introduced in
the last few years, and managed to deal with such mixed
discrete-continuous temporal planning problems quite well.

The Scotty planner (Fernandez-Gonzalez, Williams, and
Karpas 2018) addressed the problem of finding a discrete
temporal plan with a continuous control policy for sys-
tems represented by a first order integrator. Scotty supports
durative actions with a flexible (controllable) duration. It
combines search through plan skeletons with trajectory op-
timization via mathematical programming. For the search
phase, Scotty uses non-admissible heuristics which may re-
sult in a non-optimal action sequence, but the continuous
assignments are done according to a global objective. Thus,
the output plan is optimal under the model assumptions and
the skeleton imposed by the search. The first order dynamics
assumption makes it possible to formulate a solvable Second
Order Cone Programming (SOCP) optimization problem,
but no requirement on the continuity of the input (velocity) is

imposed. Thus, Scotty can output a trajectory which is infea-
sible for a physical system, e.g., where the velocity changes
significantly within a very small (ε) amount of time.

Our long-term objective is to make planners like Scotty
aware of more complex dynamic constraints in order to find
a more realistic trajectory, while still keeping the simplic-
ity of planning with a first order integrator. Scotty calculates
a linear trajectory from an initial condition to a goal condi-
tion for each temporal action in the plan, composing a piece-
wise linear trajectory. These conditions are imposed by the
actions’ start and end conditions. As previously mentioned,
Scotty formulates this problem as an SOCP optimization
problem, and thus cannot reflect real higher order physical
dynamics. In previous work (Taitler et al. 2019b), we pre-
sented an analytical method without an explicit solution for
trajectory optimization of a second-order integrator system
with quadratic drag, optimizing a mixed time-energy per-
formance criterion. The segment trajectory optimization is
performed after completion of Scotty’s planning in the first
order model, and can identify segments of the plan that are
infeasible according to the second order model. A method to
resolve the infeasibility is not proposed.

In this paper, we address the physical feasibility problem
inspired Scotty, i.e. determining if the change in the con-
tinues variables between two following events is physically
achievable. We address this as an optimal control problem
with the same model and constraints as our previous work
(Taitler et al. 2019b), but with a pure minimum time op-
timization criterion. We emphasise that the minimum time
objective is a tool to bound the physical requirement of two
following events, and not a global objective for the planner.
We show it is possible to derive explicit closed-form expres-
sions for the optimal time, and the velocity and control pro-
files. This has a direct impact on the optimization problem
of the search stage. The expression for the minimum time
between two points (position and velocity) in the continu-
ous state space is a tight lower-bound that has to be satisfied
by any feasible plan produced by the planner. The minimum
time expression can be used as a post-search validation for
the time requirement, but it can also be used as a constraint
in the optimization problem that is being solved during the
search.

In order to derive these lower-bound expressions we rely
on tools from optimal control theory. The general prob-



lem of optimal control has been studied extensively, and
solid mathematical tools have been established by (Pontrya-
gin et al. 1962), and extended to problems with state con-
straints (Hartl, Sethi, and Vickson 1995). Minimum time
problems are of particular interest, especially for trajectory
planning problems, and many approaches have been estab-
lished (Ata 2007). In (Berger, Ioslovich, and Gutman 2015)
a solution for second order and third order models with con-
trol and state constraints for a time-optimal criterion, with
drag proportional to the sign of the velocity was presented.
An SOCP approach for combined criteria was introduced
in (Verscheure et al. 2008) for dynamics with a quadratic
term without path constraints. A numerical toolbox for solv-
ing optimal control problems which was developed at the
Institute of Flight System Dynamics at TUM is FALCON
(Rieck et al. 2016), which, by using the non-linear interior
point optimizer IPOPT (Wächter and Biegler 2006), solves
complex optimal control problems. FALCON will be used
for comparison of the results in this work. The solution pre-
sented here for the minimum time criterion for a second-
order system with quadratic drag and velocity constraints is
given here explicitly, and in closed form, based on the pa-
rameters of the problem. As far as the authors know, this
explicit solution has not been published previously.

An overview of the whole planning approach, and where
this work fits is provided in the next section.

Background
We now review some necessary background.

Planning Formalism
We consider planning problems formulated in a language
similar to PDDL-S (Fernandez-Gonzalez, Williams, and
Karpas 2018), the language used as input for the Scotty plan-
ner. However, we assume our system is a second-order sys-
tem, and thus we directly control accelerations rather than
velocities, which requires some changes we highlight below.

We address a hybrid (mixed continuous-discrete) plan-
ning task, which is given by the tuple

〈
P,X,A, I,G,C, J

〉
,

where

• P is a set of propositions, which define the discrete com-
ponent of the task.

• X is a set of real-valued variables, which define the con-
tinuous component of the task. Since our system is a
second-order system, we also keep track of the veloc-
ities (first derivatives) of each state variables, denoted
Ẋ = {ẋ1, ..., ẋn} of dotted variables.

• A is the set of hybrid durative activities.
Each activity a is associated with two time points: its start
and its end. Each time point can have both discrete and
continuous conditions (which must hold at that exact time
point), and discrete effects.
Additionally, each action has an invariant condition which
must hold throughout its execution, and continuous ef-
fects, which continuously modify the values of the contin-
uous variables X throughout the execution of the action.
Like Scotty (Fernandez-Gonzalez, Williams, and Karpas

2018), these continuous effects are controlled by control
variables (U , below). However, unlike Scotty, we do not
control the velocities directly, but rather the accelerations.

• I is the initial state , which is a complete assignment to
the propositional variables p0 = p(0) and state variables
x0 = x(0) at the beginning, I =

〈
p0, x0

〉
.

• G is the goal set, which is a partial assignment to the
propositional variables PG whose value needs to be true
at the end of the plan, and a set of state constraints
XG , which have to be satisfied at the end of the plan,
G =

〈
PG, XG

〉
.

• C is the tuple
〈
U,UC

〉
, where U is the vector of control

variables (accelerations), and UC is the set of constraints
operating on the control variables.

• J is the objective function.

The solution to the hybrid planning task is the schedule
of durative activities, and the trajectory and control signal of
the system during each activity. This solution is referred to
in the frame of this work as the hybrid grounded plan for the
system.

Definition 1 (hybrid grounded plan). A hybrid grounded
plan is a tuple T , ut : R→ Rm , where

• T is the activity schedule, which denotes when each ac-
tivity should start. T is given by a list of triplets

〈
a, τs, d

〉
where a ∈ A is an activity, τs is the activity’s start time,
and d is the activity’s duration. The makespan of the plan
is denoted by T .

• ut :
[
0, T

]
→ Rm is the control trajectory, which assigns

values to all the inputs (control variables) at every time
point t between 0 and T .

A valid hybrid grounded plan is a hybrid plan which
reaches a goal state from the initial state of the problem
while satisfying all the constraints of the problem, defined
by the bounds on the continuous components of the system,
and the preconditions of the durative activities.

In this context we also define the plan skeleton and the
event which comprise it

Definition 2 (Event). An event is the term used to describe
the switch between control modes. Events are the time hap-
penings of the beginnings and ends of the discrete actions,
the durative activities.

Definition 3 (Hybrid plan skeleton). The plan skeleton S is
the ordered list of events S =

(
e0, e1, ...en

)
, which are the

start and end happenings of the durative actions,

Note that the plan skeleton is merely the order of events
without the assignment of all the continuous variables (in-
cluding timers), which are not concurrent, and separated by
at least an ε time constant (Fox and Long 2003). A plan
skeleton and assignment of all the continuous variables and
durations (timers) is a hybrid grounded plan.

Hybrid planners use some model to express the contin-
uous part of the problem, the most common usage is with
a linear rate of change which in control terms is the equiv-
alent to a single integrator (Fernandez-Gonzalez, Williams,



and Karpas 2018; Coles et al. 2012). Thus between the j and
j + 1 events the continuous variables evolve according to

ẋj = cj

which is the linear change described by xj+1 = xj +
cj(tj+1 − tj). The constant cj is the assigned velocity and
is also bounded cl ≤ cj ≤ cu.

In this paper, on the other hand, we assume that the sys-
tem can be described sufficiently well by a second order in-
tegrator with drag, which is more realistic since it imposes
velocity continuity, and flexible enough to bound more com-
plex behaviors due to the drag. Constraints on the velocity (a
state) and the input (force) are also imposed on the model,

ẋ1 = x2

ẋ2 = u− 1

2
kx22

|u| ≤ U, |x2| ≤ V
We do not assume that u should be constant between events,
it is a general force input. U, V are constraints, and k is the
drag coefficient.

Optimal Control
We consider a standard optimal control formulation in con-
tinuous time. The goal is to minimize a performance cri-
terion under some system dynamics, and control and state
constraints with known starting and final conditions. The op-
timization problem is of the following general form

minimize
u,tf

∫ tf

t0

l
(
x, u

)
dt

subject to

ẋ(t) = f
(
x, u

)
x(t0) = x0

x(tf ) = xf

Cuu ≤ U t ≥ t0
Cx ≤ X t ≥ t0.

(1)

Here x ∈ Rn is the state vector, ẋ ∈ Rn is the derivative
function of x(t) with respect to time t, and u ∈ Rm is the
control input to the system, all are functions of time. The
function f

(
x, u

)
is the system dynamics, and U and X give

the component-wise constraints on the control and state vec-
tor, respectively.

The Hamiltonian of the system is defined as

Ho

(
x, p, u

)
= pT f(x, u)− l

(
x, u) (2)

where p ∈ Rn is the vector of co-states. When state vector
constraints are present the augmented Hamiltonian is used,

H
(
x, p, u, λ

)
= pT f(x, u)− l

(
x, u)− λT

(
Cx−X

)
(3)

where λ ≥ 0 is a vector of time-dependent Lagrange mul-
tipliers which are non-zero only when the respective state
constraint is active. The optimal solution x∗, u∗, p∗ must sat-
isfy three conditions. The first is the system dynamics,

dx∗

dt
=
∂H
(
x∗, p∗, u∗, λ∗

)
∂p

. (4)

The second is the co-states dynamics,

dp∗

dt
= −

∂H
(
x∗, p∗, u∗, λ∗

)
∂x

, (5)

and the third condition is for the control vector,

H
(
x∗, p∗, u∗, λ∗

)
= max

u
H
(
x∗, p∗, u, λ∗

)
. (6)

According to the transversality condition for free final time
(Kirk 2012)

H(tf ) = 0. (7)

Finally, when the Hamiltonian is not explicitly time depen-
dent, it holds that ∂H/∂t = 0, (Kirk 2012), and hence the
Hamiltonian is constant through the whole process, with the
value given in (7),

H(t) = 0. (8)

The Ricatti Equation
The Riccati equation is a first-order differential equation that
is quadratic in the unknown (Bittanti, Laub, and Willems
2012). It is an equation of the form

ẏ(t) = q0(t) + q1(t)y(t) + q2(t)y2(t), (9)

where q0(t) 6= 0 and q2(t) 6= 0. This non-linear first order
ODE can be reduced (Bittanti, Laub, and Willems 2012) to
the following linear homogeneous second order ODE,

ζ̈(t)−R(t)ζ̇(t) + S(t)ζ(t) = 0 (10)

with R(t) = q1(t) + q̇2(t)
q2(t)

and S(t) = q0(t)q2(t). The solu-
tion of (10) gives the solution of (9) as

y(t) = − ζ̇(t)

q2(t)ζ(t)
. (11)

Statement of the Control Problem
Consider the same system as in (Taitler et al. 2019b), i.e. a
second-order integrator with quadratic drag, under accelera-
tion/control constraint and velocity/state constraint,

ẋ1(t) = x2(t)

ẋ2(t) = u(t)− 1

2
kx22(t)

|u| ≤ U t ≥ t0
|x2| ≤ V t ≥ t0
x1(t0) = x10, x2(t0) = x20

x1(tf ) = x1f , x2(tf ) = x2f .

(12)

Here x1 [m] is the distance, x2 [m/s] is the velocity,
u [m/s2] is the acceleration, k is the drag coefficient, U
and V are the bounds on the acceleration and the velocity
respectively. The initial and final conditions are fixed, and if
given from a hybrid plan, the problem is to find a trajectory
between two following events.

In (Taitler et al. 2019b) the performance measure was
a combination of completion time and consumed energy,



whereby the trade-off between the two components in the
criterion is tuned with a weight parameter α.

minimize
u,tf

∫ tf

t0

(
1 + α

1

2
u2(t)

)
dt , α > 0. (13)

In (Taitler et al. 2019a) it was shown analytically that the
explicit solution of (12), (13) approaches, for α > 0, and
α → 0, as a singular limit, the bang-bang structure of the
minimum time solution. A comparison was done with the
numerically computed minimum time solution. In this pa-
per the analytic solution of the minimum time problem is
derived, i.e. for α = 0,

minimize
u,tf

∫ tf

t0

1 · dt (14)

For simplicity, and without loss of generality, we set t0 =
0 in the sequel of the paper.

Optimization
Let us consider the problem (12), (14). We assume that the
upper constraint on the velocity might become active and
that its lower bound may be omitted. The appropriate Hamil-
tonian of the problem is then

H = p1x2 + p2

(
u− 1

2
kx22

)
− 1− λ2

(
x2 − V

)
. (15)

According to the transversality condition for free final time,
we have that

H(t) ≡ 0. (16)
The time dependent value λ2 is a Lagrange multiplier for the
constraint on the upper bound of the velocity x2. Note that
λ2 ≥ 0, and may be nonzero only when the velocity con-
straint is active, i.e., x2 = V . At all other times λ2 must be
zero. The co-states equations are ṗ(t) = −∂H/∂x, specifi-
cally,

ṗ1(t) = 0

ṗ2(t) = −p1(t) + p2(t)kx2(t) + λ2(t).
(17)

At this point, we make an intelligent assumption on the
structure of the solution, inspired by the structure of (Taitler
et al. 2019b). It is assumed that at the beginning of the mo-
tion, the co-state p2 is positive and its derivative ṗ2 is nega-
tive, when the system encounters the velocity bound at time
t = t1, p2 becomes zero, and the Lagrange multiplier λ2 will
ensure that for the duration of the interval t = [t1, t2], where
t2 is the time the velocity leaves the bound, ṗ2 is also zero.
During the last interval, from t = t2 to the end, x2 < V as
the solution moves to the final values, p2 is negative and its
derivative is again negative. If the system does not encounter
the velocity bound, then p2 is always decreasing and ṗ2 is
negative.

The solution is divided into two cases, distinguished by
the status of the constraint on the velocity along the tra-
jectory. The same assumption as in (Taitler et al. 2019b) is
used, that the velocity is not reversed during the process and
that the velocity constraint satisfies V ≤

√
2U/k, since oth-

erwise the upper-velocity constraint cannot become active
with the given control constraint.

Active Upper Bound Velocity Constraint
It is assumed that the constraint on the velocity will be active
at some interval along the trajectory, and also that the lower
bound on x2 can be omitted.

Maximization of the Hamiltonian over the control yields

max
u

p2u+ p1x2 − p2
1

2
kx22 − 1− λ2

(
x2 − V

)
. (18)

Since u is the maximization parameter, which appears only
in one term, it is clear that maximizing H is equivalent to
maximizing that term, i.e., maxu p2u. The solution for that
is u(t) = sgn

(
p2(t)

)
· U . Hence when the system acceler-

ates towards the velocity bound, p2(t) > 0, and u(t) = U .
During the deceleration from the bound to the final condi-
tion, p2(t) < 0 and u(t) = −U . On the bound the acceler-
ation must be zero, so the control cannot be obtained from
the maximization of the Hamiltonian, and the value of p2(t)
must be zero on this singular arc. In order to keep the ve-
locity on the bound V , nature requires that ẋ2(t) = 0. For
ẋ2(t) = 0 to be satisfied, the control must be u(t) = kV 2/2.
Thus the final velocity profile is a pure Bang-Constant-Bang.
Since the control profile is known explicitly now, we can
solve the state equations directly.

The velocity differential equation in the acceleration stage
under u(t) = U is{

ẋ2(t) = U − 1
2kx

2
2(t)

x2(0) = x20
(19)

which is the Riccati equation (9) with q0 = U, q1 = 0, q2 =
− 1

2k. By solving (10), (11) the solution of (19) is obtained,

x2(t) =

√
2U

k

√
2kU(1− e−2

√
2kUt) + x20(1 + e−2

√
2kUt)√

2kU(1 + e−2
√
2kUt) + x20(1− e−2

√
2kUt)

.

(20)
Solving (20) for t with x2(t) = V , yields the time t1 when
the velocity x2(t) reaches the bound V ,

t1 =
1√
2kU

ln
(√2kU − x20√

2kU + x20

√
2kU + V k√
2kU − V k

)
. (21)

To obtain the position at time t1, (20) should be integrated
from zero to time t1, giving

x1(t1) = x10 +
1

k
ln
(2kU − (x20k)2

2kU − (V k)2

)
. (22)

Here, ∆x1 = 1
k ln

(
2kU−(x20k)

2

2kU−(V k)2

)
is the net displacement in

this stage. Note that the time duration of this stage is denoted
∆t1 = t1.

Another important point to remark, is that if V =
√

2U/k
then the time where x2(t) reaches the bound V is t1 → ∞,
so in order for the assumption of three segments trajectory
with active upper bound to be valid we must require that
V <

√
2U/k.

The deceleration stage starts at t = t2 which is the time
where the system leaves the velocity bound V , and the ve-
locity is reduced until reaching the final value, in that stage,
the control is u(t) = −U . Since there is no explicit depen-
dency on the time t we treat every interval separately for



ease of integration, here we set t2 = 0 and the velocity dif-
ferential equation is{

ẋ2(t) = −U − 1
2kx

2
2(t)

x2(0) = V
(23)

which is again the Riccati equation (9) with q0 = −U, q1 =
0, q2 = −k/2. By solving (10), (11) the solution of (23) is
obtained,

x2(t) =

√
2U

k

kV cos
(√

kU
2 t
)
−
√

2kU sin
(√

kU
2 t
)

√
2kU cos

(√
kU
2 t
)

+ kV sin
(√

kU
2 t
) .
(24)

The time period between t2 and tf is denoted as ∆t3, i.e.,
the duration of the third segment. Solving (24) for t with
x2(0) = V , yields the time ∆t3 when the velocity x2(t)
reaches the final value x2f ,

∆t3 =

√
2

kU
tan−1

(√2k3U(V − x2f )

2kU + x2fk2V

)
. (25)

Now, to obtain the net displacement ∆x3 traversed at this
stage we need to integrate (24) from time t2 = 0 to time
tf = ∆t3, giving,

∆x3 =
2

k
ln
( 2kU + (V k)2√(

2kU + k2V x2f
)2

+ 2k3U(V − x2f )2

)
.

(26)
The last stage to compute is the middle segment, the con-

stant velocity part of the motion where the velocity x2(t) is
on the bound V . The displacement required for this stage is
obtained from the difference of the initial and final condi-
tions on x1, and from the sum of ∆x1 and ∆x3,

∆x2 = x1f − x10 −∆x1 −∆x3. (27)

Note that ∆x2 must be positive, so from that a condition for
the system to reach the velocity bound can be obtained,

x1f − x10 −∆x1 −∆x3 ≥ 0. (28)

If the condition in (28) is not satisfied, then the system does
not reach the velocity bound, and the structure of this pro-
file is discussed in the next section . Assuming that the con-
dition in (28) is satisfied, then the system exhibit a con-
stant velocity segment, thus during this segment ẋ2(t) = 0,
u(t) = kV 2/2 and the time interval for this stage is

∆t2 =
∆x2
V

. (29)

The explicit expression for the velocity and displacement are
x2(t) = V and x1(t) = V t + ∆x1 + x10. The total value
of the performance criterion and the time for the complete
motion is

tf = ∆t1 + ∆t2 + ∆t3. (30)
Thus, we obtained the solution in the case where the velocity
bound is reached. Also, necessary and sufficient conditions
for the structure of the profile are derived, given in state-
ment 1.

This solution was obtained according to the intelligent as-
sumption that p2(t) is positive at first and monotonically
decreasing, while zero when the profile is on the velocity
bound. It yet has to be verified that this assumption does
indeed hold. Specifically, p2(t) should be positive on the in-
terval [0, t1], zero on the interval [t1, t2] and negative on the
interval [t2, tf ]. Since there are analytical expressions for
x2(t) we can solve (17) for p2(t). The first co-state p1(t)
can be obtained from (15), H(t) = 0, p2(t1) = 0 and
x2(t1) = V . Combining these facts results in p1(t) = 1/V ,
and that p2(t) satisfies

ṗ2(t)− kx2(t)p2(t) = − 1

V
. (31)

This is a non-homogeneous ODE (Arnold 1973), and µ(t) =

e−
∫
kx2(s)ds is the integration multiplier. The solution of

(31) for p2(t), t ∈ [t2, tf ] is

p2(t) = − 1

µ(t)

(∫
µ(s)

1

V
ds+ C0

)
. (32)

When looking at the third segment, i.e. when the velocity
x2(t) is decreasing towards the final condition, we have that
x2(t) is positive so the integral over it is increasing, and the
integration multiplier µ(t) is positive and decreasing with
time. Thus for p2(t) in (32) we can see that when the so-
lution does not reside on the bound,p2(t) is a function of
−1/µ(t) which is negative (µ(t) is positive), multiplied by∫
µ(s)/V ds + C0 which is decreasing from zero value at

t = t2. Thus p2(t) is negative on [t2, tf ]. The C0 constant
is such that at time t2 we have p2(t2) = 0. On the first seg-
ment when t ∈ [0, t1] and the velocity is increasing towards
the bound, we look at the reverse time equation of (31) and
integrate it from zero on the bound at t1 to zero, i.e. reverse
time integration. The equation now becomes

ṗ2(t) + kx2(t)p2(t) =
1

V
(33)

and the integration multiplier is now µ(t) = e
∫
kx2(s)ds,

which is an increasing positive function. The explicit solu-
tion for p2 now becomes,

p2(t) =
1

µ(t)

(∫
µ(s)

1

V
ds+ C0

)
. (34)

In (34), p2(t) is a multiplication of 1/µ(t) which is positive,
and

∫
µ(s)/V ds + C0 which is increasing from zero value

at t = t1. Therefore p2(t) is positive on [t1, 0] and increas-
ing, so it is positive and decreasing on [0, t1]. Here C0 is
such that p2(t1) = 0. It has been shown so far that during
the acceleration segment p2 is positive and decreasing while
during the deceleration segment it is negative and decreas-
ing. On the bound p2(t) is zero, and λ2(t) = 1/V in order
to maintain ṗ2(t) = 0, t ∈ [t1, t2]. This verifies that the
structure of the co-states is indeed satisfied by the velocity
trajectory that was calculated.
Theorem 1. For a system described in (12) with the mini-
mum time criterion in (14), the solution is comprised of three
segments with a Bang-Constant-Bang structure iff the fol-
lowing two conditions are satisfied:



1. V <
√

2U
k

2. ∆xa + ∆xd < x1f − x10
∆xa = 1

k ln
(

2kU−(x20k)
2

2kU−(V k)2

)
,

∆xd = 2
k ln

(
2kU+(V k)2√

(2kU+k2V x2f )2+2k3U(V−x2f )2

)
Otherwise the solution is comprised of two segments only,
with a Bang-Bang structure.

Note, that if x20 (x2f ) is on the bound V , the solution
collapses to a Constant-Bang (Bang-Constant) structure or
even Constant all the way if x2f = x2f = V .

Non-active Upper Bound Velocity Constraint
If the conditions in statement 1 are not satisfied, then the
solution does not reach the velocity bound, and the mo-
tion profile is comprised of two segments only where now
t1 = t2 is the single switching point, i.e., an acceleration
stage and a deceleration stage. We denote the maximum ve-
locity reached during the acceleration stage as Ṽ and the
time of the switching of the control from u(t) = U to
u(t) = −U as t1. The expressions for t1, x1(t1) are the
same as in the previous section but with the unknown veloc-
ity x2(t1) = Ṽ . The expression for the time of the switching
point t1 according to (21) is given by

t1(Ṽ ) =
1√
2kU

ln
(√2kU − x20√

2kU + x20

√
2kU + Ṽ k√
2kU − Ṽ k

)
(35)

and the position according to (22) is

x1(t1, Ṽ ) = x10 +
1

k
ln
(2kU − (x20k)2

2kU − (Ṽ k)2

)
. (36)

Thus, the net displacement in the acceleration stage is

∆x1(Ṽ ) =
1

k
ln
(2kU − (x20k)2

2kU − (Ṽ k)2

)
. (37)

The second stage is the deceleration stage where the
system decelerate from the unknown maximum velocity
reached Ṽ at time t = t1 to the final conditions at time
t = tf . The total time for this movement, i.e., ∆t2 = tf − t1
is according to (25),

∆t2(Ṽ ) =

√
2

kU
tan−1

(√2k3U(Ṽ − x2f )

2kU + x2fk2Ṽ

)
. (38)

The expression for the net displacement in this stage is given
be (26), with the unknown maximum velocity Ṽ ,

∆x2(Ṽ ) =
2

k
ln
( (Ṽ k)2 + 2kU√

(2kU + k2Ṽ x2f )2 + 2k3U(Ṽ − x2f )2

)
.

(39)
In order to find Ṽ it is required to solve the following

equation for the Ṽ parameter,

∆x1(Ṽ ) + ∆x2(Ṽ ) = x1f − x10. (40)

Equation (40) can be formulated after some mathematical
smoothing into a quartic function in Ṽ of the form,

aṼ 4 + bṼ 2 + c = 0 (41)

where

a = (2k3U)(1 + k̃) + k6(k̃x22f − x220)

b = (4k3U)
(
2kU − (kx20)2

)
c = (2kU)2

(
2kU(1− k̃)− k2(k̃x22f + x220)

)
k̃ = ek(x1f−x10)

Defining Vm = Ṽ 2, results in a quadratic function in Vm.
Thus, (41) has four roots, described by

Ṽ1−4 = ±

√
−b±

√
b2 − 4ac

2a
. (42)

Since k̃ = ek(x1f−x10) ≥ 1 assuming x1f ≥ x10 (when not
the case the directions can be adjusted), it is easily observed
that c < 0, a > 0. Thus the determinant must satisfy

4ac < 0 →
√
b2 − 4ac >

∣∣b∣∣ (43)

Hence, there is only one positive real-valued root. Therefore
the explicit solution for Ṽ is given by

Ṽ =

√
−b+

√
b2 − 4ac

2a
. (44)

The final time and value of the performance criterion in this
case is

tf =
1√
2kU

ln
(√2kU − x20√

2kU + x20

√
2kU + Ṽ k√
2kU − Ṽ k

)
+

√
2

kU
tan−1

(√2k3U(Ṽ − x2f )

2kU + x2fk2Ṽ

)
.

(45)

The optimality of this solution is proved identically as is
done for Theorem 1 for the three segments case.

Empirical Evaluation
Solutions were obtained for the different cases, and com-
pared to FALCON (Rieck et al. 2016). The drag coefficient
is taken to be k = 0.05 in all the examples, representing a
standard aircraft coefficient. In all simulations, three graphs
are presented, the distance, velocity and control profiles as
computed by the two algorithms, one on top of the other to
show the agreement and difference between the two.

In Case 1 the velocity reaches the bound, and the condi-
tions in statement 1 are satisfied for a three segments tra-
jectory. The bounds were chosen as V = 10, U = 10,
the initial condition x0 = [0, 1]T , and the final condition
xf = [20, 4]T , see Fig. 1. The solution reached the veloc-
ity bound, and the structure was of a Bang-Constant-Bang
profile. The motion time was 2.729 [sec], and FALCON’s
calculation time was 19.21 [sec]. Note that on the singular
arc, FALCON struggles with the singular control and oscil-
lates around it.



Figure 1: Three segments Bang-Constant-Bang profile with
conditions satisfying the conditions in statement 1.

Figure 2: Two segments Bang-Bang profile, with second
condition in statement 1 not being satisfied.

In Case 2 condition 2 in statement 1 is not satisfied,
while condition 1 is satisfied. The bounds were chosen to
be V = 10, U = 10, the initial condition x0 = [0, 1]T , and
the final condition xf = [5, 2]T , see Fig. 2. The difference
from the previous simulation is the distance to travel, the
system did not have enough distance to accelerate in order
achieve the velocity bound. The solution, in this case, exhib-
ited a Bang-Bang profile. The motion time was 1.15 [sec],
and FALCON’s calculation time was 10.4 [sec].

For completeness, a third case is presented, where con-
dition 1 in statement 1 is not satisfied, while the condi-
tion 2 is satisfied. The bounds were chosen to be V = 20,
U = 10, the initial condition x0 = [0, 1]T , and the fi-
nal condition was chosen to be far away (distance meaning)
xf = [100, 4]T , see Fig. 3. It is clear that even though there
is a very long distance to travel, the solution did not reach
the bound, but asymptotically tended to it while never reach-
ing it, and the maximal velocity attained was V̄ = 19.87.

Figure 3: Two segments Bang-Bang profile with velocity ap-

proaching V =
√

2U
k .

Thus, the solution exhibits a Bang-Bang profile. The com-
plete time for the motion was 6.8 [sec], and FALCON’s cal-
culation time was 10.45 [sec]. Note that FALCON’s time of
motion was 6.97 [sec] in this case, larger by 2.5% than the
analytical time.

Conclusion and Future Work
We have addressed the problem of minimum time optimality
for a second-order system with quadratic drag with control
and velocity constraints which can be used to describe many
general systems for the purpose of trajectory planning. The
solution for the optimal time trajectory was found in ana-
lytical form, and necessary and sufficient conditions for the
structure of the solution are also given.

These conditions are required in order to validate a given
grounded plan. They also serve as tight lower bounds for the
existence of any solution between an initial and final condi-
tion, as a function of the variables’ start and end conditions
at each event. We argue that finding these conditions is an-
other step towards our long-term objective of producing a
hybrid task planner that can find plans that are guaranteed to
be physically feasible.

To achieve our long-term objective, we propose an itera-
tive planning process, which is illustrated in Figure 4. First,
we will use a planner to find a grounded plan based on a
simple (first-order dynamical) model. Scotty is an ideal can-
didate for such a planner, but the scheme we propose below
is agnostic to the choice of planner.

Then this grounded plan is validated with constraints that
come from the more complex underlying dynamics of the
problem. If all the constraints are satisfied, a trajectory can
be computed for the complex model and returned as the solu-
tion for the problem. If the constraints (or a subset of them)
are not satisfied, the problem should be modified to elimi-
nate that solution and the whole process can be repeated for
the modified problem. This final part is future work.



Figure 4: Flow of the hybrid planning algorithm combining
optimal control and Scotty.
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