
29th International Conference on
Automated Planning and Scheduling

July 11-15, 2019, Berkeley, CA, USA

IntEx 2019
Proceedings of the 3rd Workshop on

Integrated Planning, Acting, and Execution

Edited by:

Mark Roberts, Tiago Vaquero, Tim Niemueller, and Simone
Fratini

Organization

Mark Roberts, Naval Research Laboratory, USA

Tiago Vaquero, Jet Propulsion Laboratory, USA

Tim Niemueller, RWTH, Aachen University, Germany

Simone Fratini, European Space Agency, Germany

Program Committee

Ron Alford, Mitre Corporation, USA

Michael Cashmore, King’s College London, UK

Alessandro Cimatti, FBK

Jeremy Frank, NASA Ames, USA

Dan Magazzeni, Kings College London, UK

Fabio Mercorio, University of MilanBicocca, Italy

Reuth Mirsky, Ben Gurion University

Bob Morris, NASA Ames, USA

Vikas Shivashankar, Amazon Robotics, USA

Roni Stern, Ben Gurion University, Israel

ii

Foreword

Automated planners are increasingly being integrated into online execution systems. The integration may, for exam-
ple, embed a domain-independent temporal planner in a manufacturing system (e.g., the Xerox printer application)
or autonomous vehicles. The integration may resemble something more like a ”planning stack” where an automated
planner produces an activity or task plan that is further refined before being executed by a reactive controller (e.g.,
robotics). Or, the integration may be a domain-specific policy that maps states to actions (e.g., reinforcement learn-
ing). Online learning may or may not be involved, and may include adjusting or augmenting the model, determining
when to repair versus replan, learning to switch policies, etc. A specific focus of these integrations involves online
deliberation, bringing to the foreground concerns over how much computational effort planning should invest over
time. But reality rarely proceeds according to the plan or the model. Planning, plan execution, diagnosis, and causal
explanation have each been examined by various research efforts, but discussion of the linkages between them in the
literature is still somewhat sparse. When considering how to integrate these functions, at least three questions must
be considered: (1) System integration: how to integrate planning, plan execution, diagnosis, and causal explanation
in a single system? (2) Model / Belief updates: when the unexpected happens, how does the system change its
internal representation so future plans are effective? (3) Replanning: what to do now that the unexpected has
happened?

Performing diagnosis while executing a plan gives a planning and execution agent an opportunity to recover
from failures; however, it also raises many new issues. These include sharing reasoning time between planning and
diagnosis, trading off execution resources between goal achievement and diagnostic testing (for active diagnosis), and
how to act in the presence of multiple competing diagnoses.

The Third IntEx workshop aims to provide a forum for discussing the challenges of integrating planning with
execution, emphasize the role of diagnosis in online planning and execution, and raise awareness, promote discussion,
and encourage cross-fertilization of ideas from the following topics:

• Integration of planning and plan execution

– Theory (e.g. flexibility vs uncertainty, replanning vs contingent planning algorithms)

– Practice (technologies, architectures, system integration)

• Integration of planning and fault management (diagnosis, prognostics, anomaly detection) technologies:

– Planning to Diagnose (active diagnosis)

– Planning and Fault Model Integration (impact of diagnosis algorithms on plan model revision, level of
abstraction of models)

• Integration of planning and causal explanation (state/event estimation and prediction) technologies:

– Improving or revising plans based on inferred causal explanations

– Revising long-term models based on causal explanation

In addition to the above special focus areas, we encourage short or long papers on past topics of interest to this
workshop including: benchmarks or challenge problems for integrated execution; improving planning performance
from execution experience; plan dispatching or plan executives; anytime or incremental planning; execution monitor-
ing, comparing replanning, plan repair, regoaling, or plan merging; managing open worlds with closed-world planners;
model learning from experience or determining an observation policy; policy switching or applying incremental policy
adjustment.

Mark Roberts, Tiago Vaquero, Tim Niemueller, and Simone Fratini
June 2019

iii

Contents

Enabling Limited Resource-Bounded Disjunction in Scheduling
Jagriti Agrawal, Wayne Chi, Steve Chien, Gregg Rabideau, Stephen Kuhn and Daniel Gaines 1

On Expected Value Strong Controllability
Jeremy Frank 10

Dynamic Controllability with Single and Multiple Indirect Observations
Paul Morris and Arthur Bit-Monnot 19

Executing Contingent Plans: Addressing Challenges in Deploying Artificial Agents
Christian Muise, Miroslav Vodolan, Shubham Agarwal, Ondrej Bajgar, Luis Lastras and Josef Ondrej 28

A Hybrid Planning and Execution Approach Through HTN and MCTS
Xenija Neufeld, Sanaz Mostaghim and Diego Perez-Liebana 37

Interleaving Acting and Planning Using Operational Models
Sunandita Patra, Malik Ghallab, Dana Nau and Paolo Traverso 46

Executing Multi-Goal Mission Plans for Coordinated Mobile Robots
Marlyse Reeves, Enrique Fernandez Gonzalez and Brian Williams 55

Monitoring Numeric Expectations in Goal Reasoing Agents
Noah Reifsnyder and Hector Munoz-Avila 63

Automated Verification of Social Laws Robustness for Reactive Agents
Alexander Tuisov and Erez Karpas 71

iv

Enabling Limited Resource-Bounded Disjunction in Scheduling

Jagriti Agrawal, Wayne Chi, Steve Chien, Gregg Rabideau, Stephen Kuhn, and Dan Gaines
Jet Propulsion Laboratory

California Institute of Technology
4800 Oak Grove Drive
Pasadena, CA 91109

{firstname.lastname}@jpl.nasa.gov

Abstract
We describe three approaches to enabling an extremely com-
putationally limited embedded scheduler to consider a small
number of alternative activities based on resource availabil-
ity. We consider the case where the scheduler is so compu-
tationally limited that it cannot backtrack search. The first
two approaches precompile resource checks (called guards)
that only enable selection of a preferred alternative activity if
sufficient resources are estimated to be available to schedule
the remaining activities. The final approach mimics back-
tracking by invoking the scheduler multiple times with the
alternative activities. We present an evaluation of these tech-
niques on mission scenarios (called sol types) from NASA’s
next planetary rover where these techniques are being eval-
uated for inclusion in an onboard scheduler.

Introduction
Embedded schedulers must often operate with very limited
computational resources. Due to such limitations, it is not
always feasible to develop a scheduler with a backtracking
search algorithm. This makes it challenging to perform even
simple schedule optimization when doing so may use re-
sources needed for yet unscheduled activities.

In this paper, we present three algorithms to enable such a
scheduler to consider a very limited type of preferred ac-
tivity while still scheduling all required (hereafter called
mandatory) activities. Preferred activities are grouped into
switch groups, sets of activities, where each activity in the
set is called a switch case, and exactly one of the activities
in the set must be scheduled. They differ only by how much
time, energy, and data volume they consume and the goal is
for the scheduler to schedule the most desirable activity (co-
incidentally the most resource consuming activity) without
sacrificing any other mandatory activity.

The target scheduler is a non-backtracking scheduler to
be onboard the NASA Mars 2020 planetary rover (Rabideau
and Benowitz 2017) that schedules in priority first order and
never removes or moves an activity after it is placed during
a single run of the scheduler. Because the scheduler does
not backtrack, it is challenging to ensure that scheduling a
consumptive switch case will not use too many resources

Copyright c© 2019, California Institute of Technology. Govern-
ment Sponsorship Acknowledged.

and therefore prevent a later (in terms of scheduling order,
not necessarily time order) mandatory activity from being
scheduled.

The onboard scheduler is designed to make the rover
more robust to run-time variations by rescheduling multiple
times during execution (Gaines et al. 2016a). If an activity
ends earlier or later than expected, then rescheduling will al-
low the scheduler to consider changes in resource consump-
tion and reschedule accordingly. Our algorithms to schedule
switch groups must also be robust to varying execution du-
rations and rescheduling.

We have developed several approaches to handle schedul-
ing switch groups. The first two, called guards, involve re-
serving enough sensitive resources (time, energy, data vol-
ume) to ensure all later required activities can be scheduled.
The third approach emulates backtracking under certain con-
ditions by reinvoking the scheduler multiple times. These
three techniques are currently being considered for imple-
mentation in the Mars 2020 onboard scheduler.

Problem Definition
For the scheduling problem we adopt the definitions in (Ra-
bideau and Benowitz 2017). The scheduler is given

• a list of activities
A1〈p1, d1, R1, e1, dv1,Γ1, T1, D1〉 . . .
An〈pn, dn, Rn, en, dvn,Γn, Tn, Dn〉

• where pi is the scheduling priority of activity Ai;

• di is the nominal, or predicted, duration of activity Ai;

• Ri is the set of unit resources Ri1 . . . Rim that activity Ai

will use;

• ei and dvi are the rates at which the consumable resources
energy and data volume respectively are consumed by ac-
tivity Ai;

• Γi1 . . .Γir are non-depletable resources used such as se-
quence engines available or peak power for activity Ai;

• Ti is a set of start time windows [Tij start
, Tij preferred

,
Tij end

]. . . [Tik start
, Tik preferred

, Tik end
] for activity Ai.

1 ;

1If a preferred start time, Tij preferred is not specified for win-
dow j then it is by default Tij start

1

• Di is a set of activity dependency constraints for activity
Ai where Ap → Aq means Aq must execute successfully
before Ap starts.

The goal of the scheduler is to schedule all mandatory
activities and the best switch cases possible while respecting
individual and plan-wide constraints.

Each activity is assigned a scheduling priority. This prior-
ity determines the order in which the activity will be consid-
ered for addition to the schedule. The scheduler attempts to
schedule the activities in priority order, therefore: (1) higher
priority activities can block lower priority activities from
being scheduled and (2) higher priority activities are more
likely to appear in the schedule.

Mandatory Activities are activities, m1 . . .mj ⊆ A, that
must be scheduled. The presumption is that the problem as
specified is valid, that is to say that a schedule exists that in-
cludes all of the mandatory activities, respects all of the pro-
vided constraints, and does not exceed available resources.

In addition, activities can be grouped into Switch Groups.
The activities within a switch group are called switch cases
and vary by how many resources (time, energy, and data vol-
ume) they consume. It is mandatory to schedule exactly one
switch case and preferable to schedule a more resource in-
tensive one, but not at the expense of another mandatory ac-
tivity. For example, one of the Mars 2020 instruments takes
images to fill mosaics which can vary in size; for instance we
might consider 1x4, 2x4, or 4x4 mosaics. Taking larger mo-
saics might be preferable, but taking a larger mosaic takes
more time, takes more energy, and produces more data vol-
ume. These alternatives would be modeled by a switch group
that might be as follows:

SwitchGroup =

Mosaic1x4 d = 100 sec
Mosaic2x4 d = 200 sec
Mosaic4x4 d = 400 sec

(1)

The desire is for the scheduler to schedule the activ-
ity Mosaic4x4 but if it does not fit then try scheduling
Mosaic2x4, and eventually try Mosaic1x4 if the other two
fail to schedule. It is not worth scheduling a more consump-
tive switch case if doing so will prevent a future, lower pri-
ority mandatory activity from being scheduled due to lack
of resources. Because our computationally limited scheduler
cannot search or backtrack, it is a challenge to predict if a
higher level switch case will be able to fit in the schedule
without consuming resources that will cause another lower
priority mandatory activity to be forced out of the schedule.

Consider the following example in Figure 1 where the
switch group consists of activities B1, B2, and B3 and dB3

> dB2 > dB1. Each activity in this example also has one
start time window from Tistart to Tiend

.
B3 is the most resource intensive and has the highest pri-

ority so the scheduler will first try scheduling B3. As shown
in Figure 1a, scheduling B3 will prevent the scheduler from
placing activity C at a time satisfying its execution con-
straints. So, B3 should not be scheduled.

The question might arise as to why switch groups cannot
simply be scheduled last in terms of scheduling order. This is
difficult for several reasons: 1) We would like to avoid gaps

(a) Scheduling B3 first prevents activity C from
being scheduled within its start time window.

(b) B2 can be successfully scheduled without
dropping any other mandatory activities.

Figure 1: Challenge to Schedule Switch Cases.

in the schedule which is most effectively done by scheduling
primarily left to right temporally, and 2) if another activity
is dependent on an activity in a switch group, then schedul-
ing the switch group last would introduce complications to
ensure that the dependencies are satisfied.

The remainder of the paper is organized as follows. First,
we describe several plan wide energy constraints that must
be satisfied. Then, we discuss two guard approaches to
schedule preferred activities, which place conditions on the
scheduler that restrict the placement of switch cases under
certain conditions. We then discuss various versions of an
approach which emulates backtracking by reinvoking the
scheduler multiple times with the switch cases. We present
empirical results to evaluate and compare these approaches.

Energy Constraints
There are several energy constraints which must be satisfied
throughout scheduling and execution. The scheduling pro-
cess for each sol, or Mars day, begins with the assumption
that the rover is asleep for the entire time spanning the sol.
Each time the scheduler places an activity, the rover must be
awake so the energy level declines. When the rover is asleep
the energy level increases.

Two crucial energy values which must be taken into ac-
count are the Minimum State of Charge (SOC) and the Min-
imum Handover State of Charge. The state of charge, or
energy value, cannot dip below the Minimum SOC at any
point. If scheduling an activity would cause the energy value
to dip below the Minimum SOC, then that activity will not
be scheduled. In addition, the state of charge cannot be be-
low the Minimum Handover SOC at the Handover Time, in
effect when the next schedule starts (e.g., the handover SOC
of the previous plan is the expected beginning SOC for the
subsequent schedule).

In order to preserve battery life, the scheduler must also
consider the Maximum State of Charge constraint. Exceed-
ing the Maximum SOC hurts long term battery performance
and the rover will perform shunting. To prevent it from ex-
ceeding this value, the rover may be kept awake.

2

Guard Approaches
First we will discuss two guard methods to schedule switch
cases, the Fixed Point guard and the Sol Wide guard. Both
of these methods attempt to schedule switch cases by re-
serving enough time and energy to schedule the remaining
mandatory activities. For switch groups, this means that re-
sources will be reserved for the least resource consuming
activity since it is mandatory to schedule exactly one ac-
tivity in the switch group. The method through which both
of these guard approaches reserve enough time to schedule
future mandatory activities is the same. They differ in how
they ensure there is enough energy. While the Fixed Point
guard reserves enough energy at a single fixed time point -
the time at which the least resource consuming switch case
is scheduled to end in the nominal schedule, the Sol Wide
guard attempts to reserve sufficient energy by keeping track
of the energy balance in the entire plan, or sol.

In this discussion, we do not attempt to reserve data vol-
ume while computing the guards as it is not expected to be
as constraining of a resource as time or energy. We aim to
take data volume into account as we continue to do work on
this topic.

Both the time and energy guards are calculated offline be-
fore execution occurs using a nominal schedule. Then, while
rescheduling during execution, the constraints given by the
guards are applied to ensure that scheduling a higher level
switch case will not prevent a future mandatory activity from
being scheduled. If activities have ended sufficiently early
and freed up resources, then it may be possible to resched-
ule with a more consumptive switch case.

Guarding for Time
First, we will discuss how the Fixed Point and Sol Wide
guards ensure enough time will be reserved to schedule re-
maining mandatory activities while attempting to schedule a
more resource consuming switch case.

If a preferred time, Tij preferred
, is specified for an activ-

ity, the scheduler will try to place an activity closest to its
preferred time while obeying all other constraints. Other-
wise, the scheduler will try to place the activity as early as
possible.

Each switch group in the set of activities used to create
a nominal schedule includes only the nominal, or least re-
source consuming switch case, and all activities take their
predicted duration. First, we generate a nominal schedule
and find the time at which the nominal switch case is sched-
uled to complete, as shown in Figure 2.

Figure 2: A, B1, C, and D are all mandatory activities in
the nominal schedule. TNominal is the time at which B1 is
scheduled to end.

We then manipulate the execution time constraints of the

more resource intensive switch cases, B2 and B3 in Figure
2, so that they are constrained to complete by TNominal as
shown in Equation 2. Thus, a more (time) resource consum-
ing switch case will not use up time from any remaining
lower priority mandatory activities. If an activity has more
than one start time window, then we only alter the one which
contains TNominal and remove the others. If a prior activ-
ity ends earlier than expected during execution and frees up
some time, then it may be possible to schedule a more con-
sumptive switch case while obeying the time guard given by
the altered execution time constraints.

TBij end
= TNominal − dBi

(2)

Since we found that the above method was quite con-
servative and heavily constrained the placement of a more
resource consuming switch case, we attempted a preferred
time method to loosen the time guard. In this approach, we
set the preferred time of the nominal switch case to its lat-
est start time before generating the nominal schedule. Then,
while the nominal schedule is being generated, the sched-
uler will try to place the nominal switch case as late as
possible since the scheduler will try to place an activity as
close to its preferred time as possible. As a result, TNominal

will likely be later than what it would be if the preferred
time were not set in this way. As per Equation 2, the lat-
est start times, TBij end

, of the more resource consuming
switch cases may be later than what they would be using
the previous method where the preferred time was not al-
tered, thus allowing for wider start time windows for higher
level switch cases. This method has some risks. If the nomi-
nal switch case was placed as late as possible, it could use up
time from another mandatory activity with a tight execution
window that it would not otherwise have used up if it was
placed earlier, as shown in Figure 3.

Figure 3: Scheduling B1 at its latest start time prevents C
from being scheduled within its start time window.

Guarding for Energy
Fixed Point Minimum State of Charge Guard The
Fixed Point method attempts to ensure that scheduling a
more resource consuming switch case will not cause the en-
ergy to violate the Minimum SOC while scheduling any fu-
ture mandatory activities by reserving sufficient energy at
a single, fixed point in time, TNominal as shown in Fig-
ure 4. The guard value for the Minimum SOC is the state
of charge value at TNominal while constructing the nominal
schedule. When attempting to schedule a more resource in-
tensive switch case, a constraint is placed on the scheduler so
that the energy cannot fall below the Minimum SOC guard
value at time TNominal. If an activity ends early (and uses

3

fewer resources than expected) during execution, it may be
possible to satisfy this guard while scheduling a more con-
sumptive switch case.

Figure 4: A, B1, C, and D, are mandatory activities in the
nominal schedule. A constraint is placed so that the energy
cannot dip below Min SOC Guard V al at time TNominal

while trying to schedule a higher level switch case.

Fixed Point Handover State of Charge Guard The
Fixed Point method guards for the Minimum Handover SOC
by first calculating how much extra energy is left over in the
nominal schedule at handover time after scheduling all ac-
tivities, as shown in Figure 5.

Figure 5: A, B1, C, and D, are mandatory activities in the
nominal schedule. A constraint is placed so that the extra
energy a higher level switch case consumes cannot exceed
Energy Leftover.

Then, while attempting to place a more consumptive
switch case, a constraint is placed on the scheduler so that
the extra energy required by the switch case does not exceed
Energy Leftover from the nominal schedule as in Figure 5.
For example, if we have a switch group consisting of three
activities, B1, B2, and B3 and dB3 > dB2 > dB1 and each
switch case consumes e Watts of power, we must ensure that
the following inequality holds at the time the scheduler is
attempting to schedule a higher level switch case:

(dBi
× eBi

)− (dB1
× eB1

) ≥ Energy Leftover (3)

There may be more than one switch group in the sched-
ule. Each time a higher level switch case is scheduled, the
Energy Leftover value is decreased by the extra energy re-
quired to schedule it. When the scheduler tries to place a
switch case in another switch group, it will check against
the updated Energy Leftover.

Sol Wide Handover State of Charge Guard The Sol
Wide handover SOC guard only schedules a more resource
consumptive switch case if doing so will not cause the en-
ergy to dip below the Handover SOC at handover time. First,
we use the nominal schedule to calculate how much en-
ergy is needed to schedule remaining mandatory activities.

Having a Maximum SOC constraint while calculating this
value may produce an inaccurate result since any energy that
would exceed the Maximum SOC would not be taken into
account. So, in order to have an accurate prediction of the
energy balance as activities are being scheduled, this value is
calculated assuming there is no Maximum SOC constraint.
8. The Maximum SOC constraint is only removed while
computing the guard offline to gain a clear understanding
of the energy balance but during execution it is enforced

As shown in Figure 6, the energy needed to schedule the
remaining mandatory activities is the difference between the
energy level just after the nominal switch case has been
scheduled, call this E1, and after all activities have been
scheduled, call this energy level E2.

(a) E1 is the energy level of the nominal schedule with
no Maximum SOC constraint after all activities up to
and including the nominal switch case (A, D, B1) have
been scheduled.

(b) E2 is the energy level of the nominal schedule with
no Maximum SOC constraint after all activities in the
nominal schedule have been scheduled. The activities
were scheduled the following order: A, D, B1, C, E.

Figure 6: Calculating Energy Needed to Schedule Remain-
ing Mandatory Activities.

Energy Needed = E1− E2 (4)
Then, a constraint is placed on the scheduler so that the

energy value after a higher level switch case is scheduled
must be at least:

Energy Level ≥Minimum Handover SOC

+Energy Needed
(5)

By placing this energy constraint, we hope to prevent
the energy level from falling under the Minimum Handover
SOC by the time all activities have been scheduled.

Sol Wide Minimum State of Charge Guard While we
ensure that the energy will not violate the minimum Han-
dover SOC by keeping track of the energy balance, it is pos-
sible that scheduling a longer switch case will cause the en-
ergy to fall below the Minimum SOC. To limit the chance
of this happening, we run a Monte Carlo of execution of-
fline while computing the sol wide energy guard. We use
this Monte Carlo to determine if a mandatory activity was

4

not scheduled due to a longer switch case being scheduled
earlier. If this occurs in any of the Monte Carlos of execu-
tion, then we increase the guard constraint in Equation 5.
We first find the times at which each mandatory activity was
scheduled to finish in the nominal schedule. Then, we run
a Monte Carlo of execution with the input plan containing
the guard and all switch cases. Each Monte Carlo differs in
how long each activity takes to execute compared to its orig-
inal predicted duration in the schedule. If a mandatory activ-
ity was not executed in any of the Monte Carlo runs and a
more resource consuming switch case was executed before
the time at which that mandatory activity was scheduled to
complete in the nominal schedule, then we increase the Sol
Wide energy guard value in Equation 5 by a fixed amount.
We aim to compose a better heuristic to increase the guard
value as we continue work on this subject.

Multiple Scheduler Invocation Approach
The Multiple Scheduler Invocation (MSI) approach em-
ulates backtracking by reinvoking the scheduler multiple
times with the switch cases. MSI does not require any pre-
computation offline before execution as with the guards and
instead reinvokes the scheduler multiple times during ex-
ecution. During execution, the scheduler reschedules (e.g.,
when activities end early) with only the nominal switch case
as shown in Figure 7a until an MSI trigger is satisfied. At
this point, the scheduler is reinvoked multiple times, at most
once per switch case in each switch group. In the first MSI
invocation, the scheduler attempts to schedule the highest
level switch case as shown in Figure 7b. If the resulting
schedule does not contain all mandatory activities, then the
scheduler will attempt to schedule the next highest level
switch case, as in 7c, and so on. If none of the higher level
switch cases can be successfully scheduled then the sched-
ule is regenerated with the nominal switch case. If activities
have ended early by the time MSI is triggered and resulted
in more resources than expected, then the goal is for this
approach to generate a schedule with a more consumptive
switch case if it will fit (assuming nominal activity durations
for any activities that have not yet executed).

There are multiple factors that must be taken into consid-
eration when implementing MSI:

When to Trigger MSI There are two options to trigger
the MSI process (first invocation while trying to schedule
the switch case):

1. Time Offset. Start MSI when the current time during exe-
cution is some fixed amount of time, X , from the time at
which the nominal switch case is scheduled to start in the
current schedule (shown in Figure 8).

2. Switch Ready. Start MSI when an activity has finished ex-
ecuting and the nominal switch case activity is the next
activity scheduled to start (shown in Figure 9).

Spacing Between MSI Invocations If the highest level
switch case activity is not able to be scheduled in the first in-
vocation of MSI, then the scheduler must be invoked again.
We choose to reschedule as soon as possible after the most
recent MSI invocation. This method risks over-consumption

(a) MSI has not yet begun. Currently, the
nominal switch case, B1, is scheduled.

(b) MSI begins. Scheduling the highest
level switch case, B3, prevents D from
being scheduled. Therefore, try B2.

(c) B2 is successfully scheduled along with the
other mandatory activities so MSI is complete.

Figure 7: Order of MSI Invocations.

Figure 8: MSI Time Offset.

of the CPU if the scheduler is invoked too frequently. To
handle this, we may need to rely on a process within the
scheduler called throttling. Throttling places a constraint
which imposes a minimum time delay between invocations,
preventing the scheduler from being invoked at too high of a
rate. An alternative is to reschedule at an evenly split, fixed
cadence to avoid over-consumption of the CPU; we plan to
explore this approach in the future.

Switch Case Becomes Committed In some situations, the
nominal switch case activity in the original plan may be-
come committed before or during the MSI invocations as
shown in Figure 10. An activity is committed if its scheduled
start time is between the start and end of the commit window
(Chien et al. 2000). A committed activity cannot be resched-
uled and is committed to execute. If the nominal switch case
remains committed, the scheduler will not be able to elevate
to a higher level switch case.

There are two ways to handle this situation:

1. Commit the activity. Keep the nominal switch case activ-
ity committed and do not try to elevate to a higher level
switch case.

2. Veto the switch case. Veto the nominal switch case so that
it is no longer considered in the current schedule. When
an activity is vetoed, it is removed from the current sched-
ule and will be considered in a future invocation of the
scheduler. Therefore, by vetoing the nominal switch case,

5

(a) B1 is the nominal switch case. Since
an activity has not finished executing and
B1 is not the next activity, MSI cannot
begin yet.

(b) Since A finished executing early, and
B1 is the next activity, the MSI process
can begin.

Figure 9: MSI Switch Ready.

Figure 10: Switch case is committed during MSI. Tcurr is
the current time during execution. MSIstart is the time at
which MSI begins. The nominal switch case, B1, is commit-
ted when MSI begins.

it will no longer be committed and the scheduler will con-
tinue the MSI invocations in an effort to elevate the switch
case.

Handling Rescheduling After MSI Completes but before
the Switch Case is Committed After MSI completes,
there may be events that warrant rescheduling (e.g., an activ-
ity ending early) before the switch case is committed. When
the scheduler is reinvoked to account for the event, it must
know which level switch case to consider. If we successfully
elevated a switch case, we choose to reschedule with that
higher level switch case. Since the original schedule gener-
ated by MSI with the elevated switch case was in the past
and did not undergo changes from this rescheduling, it is
possible the schedule will be inconsistent and may lead to
complications while scheduling later mandatory activities.
An alternative we plan to explore in the future is to disable
rescheduling until the switch case is committed. However,
this approach would not allow the scheduler to regain time
if an activity ended early and caused rescheduling.

Empirical Analysis
In order to evaluate the performance of the above meth-
ods, we apply them to various sets of inputs comprised of
activities with their constraints and compare them against
each other. The inputs are derived from sol types. Sol types
are currently the best available data on expected Mars 2020
rover operations (Jet Propulsion Laboratory 2017a). In order
to construct a schedule and simulate plan execution, we use
the Mars 2020 surrogate scheduler - an implementation of
the same algorithm as the Mars 2020 onboard scheduler (Ra-

bideau and Benowitz 2017), but intended for a Linux work-
station environment. As such, it is expected to produce the
same schedules as the operational scheduler but runs much
faster in a workstation environment. The surrogate scheduler
is expected to assist in validating the flight scheduler imple-
mentation and also in ground operations for the mission (Chi
et al. 2018).

Each sol type contains between 20 and 40 activities. Data
from the Mars Science Laboratory Mission (Jet Propulsion
Laboratory 2017b; Gaines et al. 2016a; 2016b) indicates that
activity durations were quite conservative and completed
early by around 30%. However, there is a desire by the mis-
sion to operate with a less conservative margin to increase
productivity. In our model to determine activity execution
durations, we choose from a normal distribution where the
mean is 90% of the predicted, nominal activity duration.
The standard deviation is set so that 10 % of activity exe-
cution durations will be greater than the nominal duration.
For our analysis, if an activity’s execution duration chosen
from the distribution is longer than its nominal duration,
then the execution duration is set to be the nominal dura-
tion to avoid many complications which result from activ-
ities running long (e.g., an activity may not be scheduled
solely because another activity ran late). Detailed discussion
of this is the subject of another paper. We do not explicitly
change other activity resources such as energy and data vol-
ume since they are generally modeled as rates and changing
activity durations implicitly changes energy and data volume
as well.

We create 10 variants derived from each of 8 sol types by
adding one switch group to each set of inputs for a total of
80 variants. The switch group contains three switch cases,
Anominal, A2x, and A4x where dA4x

= 4 × dAnominal
and

dA2x = 2× dAnominal
.

In order to evaluate the effectiveness of each method, we
have developed a scoring method based on how many and
what type of activities are able to be scheduled successfully.
The score is such that the value of any single mandatory
activity being scheduled is much greater than that of any
combination of switch cases (at most one activity from each
switch group can be scheduled).

Each mandatory activity that is successfully scheduled,
including whichever switch case activity is scheduled, con-
tributes one point to the mandatory score. A successfully
scheduled switch case that is 2 times as long as the original
activity contributes 1/2 to the switch group score. A suc-
cessfully scheduled switch case that is 4 times as long as
the original, nominal switch case contributes 1 to the switch
group score. If only the nominal switch case is able to be
scheduled, it does not contribute to the switch group score
at all. There is only one switch group in each variant, so
the maximum switch group score for a variant is 1. Since
scheduling a mandatory activity is of much higher impor-
tance than scheduling any number of higher level switch
case, the mandatory activity score is weighted at a much
larger value then the switch group score. In the follow-
ing empirical results, we average the mandatory and switch
groups scores over 20 Monte Carlo runs of execution for
each variant.

6

We compare the different methods to schedule switch
cases over varying incoming state of charge values (how
much energy exists at the start) and determine which meth-
ods result in 1) scheduling all mandatory activities and 2)
the highest switch group scores. The upper bound for the
theoretical maximum switch group score is given by an om-
niscient scheduler- a scheduler which has prior knowledge
of the execution duration for each activity. Thus, this sched-
uler is aware of the amount of resources that will be available
to schedule higher level switch cases given how long activ-
ities take to execute compared to their predicted, nominal
duration. The input activity durations fed to this omniscient
scheduler are the actual execution durations. We run the om-
niscient scheduler at most once per switch case. First, we try
to schedule with only the highest level switch case and if
that fails to schedule all mandatory activities, then we try
with the next level switch case, and so on.

First, we determine which methods are able to success-
fully schedule all mandatory activities, indicated by the
Maximum Mandatory Score in Figure 11. Since schedul-
ing a mandatory activity is worth much more than schedul-
ing any number of higher level switch cases, we only com-
pare switch group scores between methods that successfully
schedule all mandatory activities.

Figure 11: Mandatory score vs Incoming SOC for various
Methods to Schedule Switch Cases

In order to evaluate the ability of each method to schedule
all mandatory activities, we also compare against two other
methods, one which always elevates to the highest level
switch case while the other always elevates to the medium
level switch case. We see in Figure 11 that always elevat-
ing to the highest (3rd) level performs the worst and drops
approximately 0.25 mandatory activities per sol, or 1 activ-
ity per 4 sols on average while always elevating to the sec-
ond highest level drops close to 0.07 mandatory activities
per sol, or 1 activity per 14 sols on average. For comparison,
the study described in (Gaines et al. 2016a) showed that ap-
proximately 1 mandatory activity was dropped every 90 sols,
indicating that both of these heuristics perform poorly.

We found that using preferred time to guard against time

Figure 12: Switch Group Score vs Incoming SOC for Meth-
ods which Schedule all Mandatory Activities

caused mandatory activities to drop for both the fixed point
and sol wide guard (for the reason described in the Guarding
for Time section) while using the original method to guard
against time did not. We see in Figure 11 that the preferred
time method with the fixed point guard drops on average
about 0.04 mandatory activities per sol, or 1 activity every
25 sols while the sol wide guard drops on average about
0.1 mandatory activities per sol, or 1 activity every 10 sols.
We also see that occasionally fewer mandatory activities are
scheduled with a higher incoming SOC. Since using pre-
ferred time does not properly ensure that all remaining ac-
tivities will be able to be scheduled, a higher incoming SOC
can allow a higher level switch case to be scheduled, pre-
venting future mandatory activities from being scheduled.

The MSI approaches which veto to handle the situation
where the nominal switch case becomes committed before
or during MSI drop mandatory activities. Whenever an ac-
tivity is vetoed, there is always the risk that it will not be
able to be scheduled in a future invocation, more so if the sol
type is very tightly time constrained, which is especially true
for one of our sol types. Thus, vetoing the nominal switch
case can result in dropping the activity, accounting for this
method’s inability to schedule all mandatory activities. The
MSI methods that keep the nominal switch case committed
and do not try to elevate to a higher level switch case suc-
cessfully schedule all mandatory activities, as do the guard
methods.

We see that the Fixed Point guard, Sol Wide guard, and
two of the MSI approaches are able to successfully sched-
ule all mandatory activities. As shown in Figure 12, the Sol
Wide guard and MSI approach using the options Time Offset
and Commit result in the highest switch group scores clos-
est to the upper bound for the theoretical maximum. Both
MSI approaches have increasing switch group scores with
increasing incoming SOC since a higher incoming energy
will result in more energy to schedule a consumptive switch
case during MSI. The less time there is to complete all MSI

7

invocations, the more likely it is for the nominal switch case
to become committed. Since we give up trying to elevate
switch cases and keep the switch case committed if this oc-
curs, fewer switch cases will be elevated. Because our time
offset value, X , in Figure 8 is quite large (15 minutes), this
situation is more likely to occur using the Switch Ready ap-
proach to choose when to start MSI, explaining why using
Switch Ready results in a lower switch score than Time Off-
set.

The Fixed Point guard results in a significantly lower
switch case score because it checks against a state of charge
constraint at a particular time regardless of what occurs dur-
ing execution. Even if a switch case is being attempted to
be scheduled at a completely different time than TNominal

in Figure 2, (e.g., because prior activities ended early), the
guard constraint will still be enforced at that particular time.
Since we simulate activities ending early, more activities
will likely complete by TNominal, causing the energy level
to fall under the Minimum SOC Guard value. Unlike the
Fixed Point guard, since the the Sol Wide guard checks if
there is sufficient energy to schedule a higher level switch
case at the time the scheduler is attempting to schedule it,
not at a set time, it is better able to consider resources re-
gained from an activity ending early.

We also see that using the Fixed Point guard begins to re-
sult in a lower switch group score with higher incoming SOC
levels after the incoming SOC is 80% of the Maximum SOC.
Energy is more likely to reach the Maximum SOC constraint
with a higher incoming SOC. The energy gained by an ac-
tivity taking less time than predicted will not be able to be
used if the resulting energy level would exceed the Maxi-
mum SOC. If this occurs, then since the extra energy cannot
be used, the energy level may dip below the guard value in
Figure 4 at time TNominal while trying to schedule a higher
level switch case even if an activity ended sufficiently early,
as shown in Figure 13.

Figure 13: Fixed Point Guard Schedules Fewer Mandatory
Activities with Higher Incoming SOC

Related Work
Just-In-Case Scheduling (Drummond, Bresina, and Swan-
son 1994) uses a nominal schedule to determine areas where
breaks in the schedule are most likely to occur and produces
a branching (tree) schedule to cover execution contingen-
cies. Our approaches all (re) schedule on the fly although the
guard methods can be vewied as forcing schedule branches
based on time and resource availability.

Kellenbrink and Helber (Kellenbrink and Helber 2015)
solve RCPSP (resource-constrained project scheduling

problem) where all activities that must be scheduled are not
known in advance and the scheduler must decide whether
or not to perform certain activities of varying resource con-
sumption. Similarly, our scheduler does not know which of
the switch cases to schedule in advance, using runtime re-
source information to drive (re) scheduling.

Integrated planning and scheduling can also be consid-
ered scheduling disjuncts (chosen based on prevailing con-
ditions (e.g., (Barták 2000))) but these methods typically
search whereas we are too computationally limited to search.

Discussion and Future Work
There are many areas for future work. Currently the time
guard heavily limits the placement of activities. As we saw,
using preferred time to address this issue resulted in drop-
ping mandatory activities. Ideally analysis of start time win-
dows and dependencies could determine where an activity
could be placed without blocking other mandatory activities.

Additionally, in computing the guard for Minimum SOC
using the Sol Wide Guard, instead of increasing the guard
value by a predetermined fixed amount which could result in
over-conservatism, binary search via Monte Carlo analysis
could more precisely determine the guard amount.

Currently we consider only a single switch group per
plan, the Mars 2020 rover mission desires support for mul-
tiple switch groups in the input instead. Additional work is
needed to extend to multiple switch groups.

Further exploration of all of the MSI variants is needed.
Study of starting MSI invocations if an activity ends early
by at least some amount and the switch case is the next ac-
tivity is planned. We would like to analyze the effects of
evenly spacing the MSI invocations in order to avoid relying
on throttling and we would like to try disabling rescheduling
after MSI is complete until the switch case has been commit-
ted and understand if this results in major drawbacks.

We have studied the effects of time and energy on switch
cases, and we would like to extend these approaches and
analysis to data volume.

Conclusion
We have presented several algorithms to allow a very com-
putationally limited, non-backtracking scheduler to consider
a schedule containing required, or mandatory, activities and
sets of activities called switch groups where each activity
in such sets differs only by its resource consumption. These
algorithms strive to schedule the most preferred, which hap-
pens to be the most consumptive, activity possible in the set
without dropping any other mandatory activity. First, we dis-
cuss two guard methods which use different approaches to
reserve enough resources to schedule remaining mandatory
activities. We then discuss a third algorithm, MSI, which
emulates backtracking by reinvoking the scheduler at most
once per level of switch case. We present empirical anal-
ysis using input sets of activities derived from data on ex-
pected planetary rover operations to show the effects of us-
ing each of these methods. These implementations and em-
pirical evaluation are currently being evaluated in the con-
text of the Mars 2020 onboard scheduler.

8

Acknowledgments
This work was performed at the Jet Propulsion Laboratory,
California Institute of Technology, under a contract with the
National Aeronautics and Space Administration.

References
Barták, R. 2000. Conceptual models for combined planning
and scheduling. Electronic Notes in Discrete Mathematics
4(1).
Chi, W.; Chien, S.; Agrawal, J.; Rabideau, G.; Benowitz, E.;
Gaines, D.; Fosse, E.; Kuhn, S.; and Biehl, J. 2018. Em-
bedding a scheduler in execution for a planetary rover. In
ICAPS.
Chien, S. A.; Knight, R.; Stechert, A.; Sherwood, R.; and
Rabideau, G. 2000. Using iterative repair to improve the
responsiveness of planning and scheduling. In Artificial In-
telligence Planning and Schedling, 300–307.
Drummond, M.; Bresina, J.; and Swanson, K. 1994. Just-
in-case scheduling. In AAAI, volume 94, 1098–1104.
Gaines, D.; Anderson, R.; Doran, G.; Huffman, W.; Justice,
H.; Mackey, R.; Rabideau, G.; Vasavada, A.; Verma, V.; Es-
tlin, T.; et al. 2016a. Productivity challenges for mars rover
operations. In Proceedings of 4th Workshop on Planning
and Robotics (PlanRob), 115–125. London, UK.
Gaines, D.; Doran, G.; Justice, H.; Rabideau, G.; Schaffer,
S.; Verma, V.; Wagstaff, K.; Vasavada, A.; Huffman, W.; An-
derson, R.; et al. 2016b. Productivity challenges for mars
rover operations: A case study of mars science laboratory
operations. Technical report, Technical Report D-97908, Jet
Propulsion Laboratory.
Jet Propulsion Laboratory. 2017a. Mars 2020 rover mission
https://mars.nasa.gov/mars2020/ retrieved 2017-11-13.
Jet Propulsion Laboratory. 2017b. Mars science laboratory
mission https://mars.nasa.gov/msl/ 2017-11-13.
Kellenbrink, C., and Helber, S. 2015. Scheduling resource-
constrained projects with a flexible project structure. Euro-
pean Journal of Operational Research 246(2):379–391.
Rabideau, G., and Benowitz, E. 2017. Prototyping an on-
board scheduler for the mars 2020 rover. In International
Workshop on Planning and Scheduling for Space.

9

On Expected Value Strong Controllability

Jeremy D. Frank
NASA Ames Research Center

jeremy.d.frank@nasa.gov

Abstract

The Probabilistic Simple Temporal Network (PSTN) gener-
alizes Simple Temporal Networks with Uncertainty (STNUs)
by introducing probability distributions over the timing of un-
controllable timepoints. PSTNs are controllable if there is a
strategy to execute the controllable timepoints while mini-
mizing or bounding the risk of violating any constraint. If
the risk is too high, PSTNs are not considered controllable.
We introduce the Expected Value Probabilistic Simple Tem-
poral Network (EPSTN), which extends PSTNs by includ-
ing a benefit to the satisfaction of temporal constraints. We
study the problem of Expected Value Strong Controllabil-
ity (EvSC) of EPSTNs, which seeks a schedule maximiz-
ing the expected value of satisfied constraints. We solve the
EvSC problem using a mixed integer linear program (MILP),
combined with search over constraints to violate at execu-
tion time. The MILP bounds below the probability of satisfy-
ing constraints; we quantify the error of the lower bound. We
then show how to search for constraints to discard, using the
MILP at the core of the search. While the general problem is
shown to be exponential, we conclude by providing methods
to bound the complexity of search.

1 Introduction
Since its introduction by (Vidal and Ghallab 1996) and (Vi-
dal and Fargier 1999), there has been considerable research
in the area of controllability of temporal networks in the
presence of uncertainty. Controllability asks: can events be
executed while satisfying temporal constraints in the pres-
ence of uncertain outcomes? Many previously studied so-
lutions to this problem use the notion of controllability of
Simple Temporal Networks under Uncertainty (STNUs) at
their core. The solutions to such problems are strategies to
execute all events that ensure no constraints are violated, re-
gardless of the outcomes of uncertain events. More com-
plex problems combine temporal constraints, uncertainty,
and preferences. Tractability of these problems is ensured
due to the simplicity of the constraints and preferences pro-
vided as inputs. Uncertainty can be generalized so that al-
gorithms must handle probabilities over when events occur;
these networks are referred to as Probabilistic Simple Tem-
poral Networks (PSTNs). This leads to new risk-bounded
and chance-constrained problems. If the solution is still un-
satisfactory, these constraints can be relaxed using a cost
functions on the constraints and risk bound.

What happens when it is almost certain that a constraint
will be violated? A review of the recent PSTN literature
shows that many instances in current benchmarks are ei-
ther not controllable, or are controllable but with high risk.
For instance, consider the CAR-SHARING benchmark of
(Fang, Yu, and Williams 2014): only 184 of 1800 instances
are strongly controllable, about 10%. For the ROVERS
benchmark of (Santana et al. 2016): optimistically, 2840 of
4380 instances are strongly controllable, but in 911 of these
cases, at least one probabilistic duration squeezed to a sin-
gle value. A more accurate assessment is that 1929 of of the
instances are strongly controllable, or about 44%. Finally, if
we consider the PSTNs analyzed in (Lund et al. 2017), less
than 20% of the 540 instances are strongly controllable.

Current approaches, particularly risk-bounding, do not
adequately address the problem of uncontrollable PSTNs.
If the risk bound is too low, no strategy can be produced. If
a risky strategy is produced, then an undesirable outcome
at execution time will violate a constraint, causing unex-
pected execution-time (e.g. ’freezing’ execution, damaging
the system, etc.). When the existing set of constraints can-
not be satisfied to produce control strategies, relaxing some
constraints up-front may ensure controllability, but with a
loss of insight into the original problem. An alternative so-
lution to such over-constrained problems is to let the execu-
tion strategy try to satisfy as many constraints as possible,
assuming that at least one constraint will be violated during
execution. If some constraints are more important than oth-
ers, then a natural optimization criterion for the strategy is
to maximize the expected value of satisfied constraints. This
new, unexplored problem blends several notions explored in
the controllability literature to date. Accepting risk implies
accepting outcomes that violate some constraints. Applying
preferences to satisfied constraints suggests control of ex-
pected schedule quality based on past information and the
probability and cost of future constraint violations.

In this paper we define the Expected Value Probabilis-
tic Simple Temporal Network EPSTN (EPSTN). We for-
malize the problem of finding a fixed schedule maximiz-
ing the expected value of satisfied constraints, the Expected
Value Strong Controllability (EvSC) problem. We adapt
algorithms from the controllability literature to solve this
problem, and provide soundness and completeness results.
Solving the general problem is shown to require exponen-

10

tial time; we conclude by providing methods to bound the
complexity of search.

2 Notation and Definitions
In this section we will define controllability problems previ-
ously considered in the literature. These definitions will set
the stage for the formalization of our new class of problem.

Definition 1 (STNU). (Vidal and Ghallab 1996) (Vidal and
Fargier 1999) (Muscettola, Morris, and Vidal 2001) Sim-
ple Temporal Networks with Uncertainty (STNUs) consist
of Controllable time-points, A = ∪iai, i.e. those assigned
by the agent, and Uncontrollable time-points, R = ∪iri, i.e.
those assigned by the external world. The set of timepoints
T= A ∪ R. The domain of ti ∈ T= R. Denote by v(ri)
the observed value of ri during execution. Requirement con-
straints c(ti, tj) have the form (tj−ti) ∈ [lti,tj , uti,tj]. LetC
= ∪ti,tj c(ti, tj). Contingent constraints g(ai, rj) have the
form (rj − ai) ∈ [lai,rj , uai,rj] where ai ∈ A, rj ∈ R; the
semantics is that ∃ v(ri) ∈ [lai,rj , uai,rj] | rj − ai = v(ri),
but v(ri) is only observed during execution. Let G = ∪ai,rj
g(ai, rj). An STNU is a 4-tuple <A,R,C,G >.

Definition 2 (Strong Controllability). (Vidal and Fargier
1999) Let P be an STNU. Let V = ×gai,rj [lai,rj , uai,rj]

(the cross product of all possible outcomes of all contingent
constraints). A schedule s is an assignment to ai ∈ A. De-
note the value of ai in s by s(ai). P is Strongly Controllable
(SC) if there is a schedule s such that ∀v ∈ V , s satisfies all
constraints c(ti, tj).

Definition 3 (PSTN). (Tsamardinos 2002) Let a probabilis-
tic duration constraint d(ai, rj) have the form rj−ai = ωi ∈
Ωai,rj where ai ∈ A, rj ∈ R, and Ωai,rj is a random vari-
able with probability distribution function P (Ωai,rj). Let
D= ∪ai,rjd(ai, rj). A Probabilistic Simple Temporal Net-
works (PSTN) is a 4-tuple <A,R,C,D>.

In the sequel, we will assume w.l.o.g. that there is a 1-1
mapping between probabilistic duration constraints and con-
trollable timepoints, i.e. ∀{d(ai, rk), d(aj , rm)}, ai 6= aj ,
allowing us to say rj − ai ∈ Ωj , and also allowing us to
write the bounds as [lrj , urj] (but see Section 4.4).

Risk as introduced by (Fang, Yu, and Williams 2014) de-
scribes the probability that, given a schedule or strategy,
an outcome v ∈ V violates some constraint. Typical ap-
proaches transform a PSTN into an STNU and then evaluate
controllability. To compute risk for an STNU, we measure
how much probability mass on each uncertain duration is
not covered after ‘squeezing’ to transform it into a contin-
gent link, i.e. transforming d(ai, rj) to g(ai, rj), in a man-
ner similar to (Santana et al. 2016). The definitions below
bound above the risk, because our definition of PSTNs does
not assume that the probabilities are independent.

Definition 4. Let ρd:D⇒G transform a duration constraint
into a contingent link by choosing a compact subset [lrj , urj]
⊂ Ωj . Let ρD = {ρd}. Let P be a PSTN. Then ρD(P) = U
where U is the STNU derived from P .

Definition 5. Let P be a PSTN. Let U = ρD(P) be an
STNU derived from P . Let ρd(d(ai, ri)) = g(ai, ri). Let

[lri , uri] be the contingent constraint interval defined by
g(ai, ri). Let Φg = ω ∈ Ωi|ω ≤ lri . Let Θg = ω ∈
Ωi|ω ≥ uri . The risk of d(ai, ri) relative to ρd, denoted
δ(ρd, d(ai, ri)), is

∫
ω∈Φg∪Θg

P (Ωi). The risk of P rela-
tive to ρD, denoted δ(P, ρD), is bounded above by 1 −(∏

d∈D(1− δ(ρd, d(ti, tj)))
)
.

Definition 6. P is SC with risk ≤∆ if ∃P ′ = ρD(P), P ′ is
SC, and δ(P, ρD) =∆.

g(a1,r1)=[50,60], c(a1,a5)=[60,70],Δ50:Controllable

g(a1,r1)=[55,65], c(a1,a5)=[60,70],Δ55:Uncontrollable

g(a1,r1)=[55,65], c(a1,a5)=[60,70],Δ55:Controllable

r1a1

a2 10,10
a3 a4 a5

Drive

Take-Image

Ideal Lighting
10,10

60,70

0,∞

0,10

Δ55

Dust Devil
Duration

50,55
Take-Image

50 55 60 65 70

50 55 60 65 70

Δ50

Figure 1: Sample Problem showing how sacrificing a con-
straint can reduce risk.

3 A Running Example and Previous Work
Consider a planetary exploration rover with two imaging
goals: one is a dynamic phenomenon of uncertain dura-
tion (a dust devil), and the second is an image of a static
target, but with a constraint driven by ideal lighting con-
ditions. The images take 10 minutes to collect. The dust
devil is expected to last 50 − 70 minutes after the drive
starts, and the drive to a position from which the dust
devil can be imaged can be planned for between 50 and
55 minutes. The ideal lighting for the second image oc-
curs between 60 to 70 minutes after starting the drive. The
PSTN is shown in Figure 1. As in Definition 1, denote
the observed value of r1 by v(r1). If g(a1, r1) = [50, 60]
then the resulting STNU is strongly controllable; the sched-
ule s(a2)=s(a1)+50, s(a3)=s(a1)+60, s(a4)=s(a1)+60,
s(a5)=s(a1)+70 is valid for any value of r1 ∈ [50, 60].
In order to transform this PSTN into an STNU, we search
over ρ(d(a1, r1)) = g(a1, r1) to satisfy an initially aggres-
sive risk bound, ∆50. Suppose we deem the resulting risk of
v(r1) > s(a3), which violates c(r1, a3), to be too high; we
prefer a lower risk option, e.g. s(a2)= 55 satisfying ∆55, al-
lowing g(a1, r1) = [55, 65]. Unfortunately, any assignment
s(a2)> 50 ultimately violates c(a1, a5); with the lower risk
bound, the resulting STNU is not strongly controllable.

One previously explored approach for such problems is
to search over relaxations for a problem that can be trans-
formed into a controllable STNU with some bounded risk;
(Yu, Fang, and Williams 2015) use this approach for condi-
tional STNUs. The search is guided by costs of relaxations
of either the requirement constraints or the risk bound. In the
example above, a relaxed constraint c(a1, a5) = [60, 75] (not

11

shown) would lead to a controllable STNU with s(a2)= 55.
While this approach bounds the likelihood of violating the
relaxed constraints in the transformed STNU at execution
time, the original constraints are lost, so there is no infor-
mation to guide generation of the strategy to avoid violat-
ing constraints unnecessarily. Modeling allowable constraint
violations could be addressed by first relaxing the bounds
on the requirement constraints, and adding preferences that
value satisfying the original constraint more than the relaxed
bounds. This could be done using simple semi-convex pref-
erence functions, combined with ‘min’, to achieve tractabil-
ity, as in (Rossi, Venable, and Yorke-Smith 2006). However,
this approach is too limiting; in particular, the ‘min’ function
will report the worst preference achieved for any constraint,
which could be 0 (representing a ‘violated’ constraint).

In our example, we would like to evaluate trading sat-
isfaction of the lighting constraint c(a1, a5) with the dust
devil observation constraint, c(r1, a3). The right strategy
depends on the relative importance of satisfying c(r1, a3)
and c(a1, a5), and the probability of satisfying c(r1, a3),
which requires formulating the expected value of a sched-
ule or strategy. The expected value formulation is common
in MDPs; while the relaxation approach in (Yu, Fang, and
Williams 2015) minimizes the cost of relaxations, it does
not maximize the expected value of the controllability strat-
egy. The continuous time nature of the state space precludes
using formulations such as time-dependent MDPs (Boyan
and Littman 2000); the desire to express state spaces rep-
resenting violated constraints makes other time-based MDP
approaches e.g. (Weld and Mausam 2006) inappropriate.

4 The EPSTN
We now formalize the Expected Value Probabilistic Simple
Temporal Network (EPSTN) by adding constraint valuations
qc(ti, tj), to a PSTN. We then formalize the Expected Value
Strong Controllability (EvSC) problem on EPSTNs.
Definition 7 (EPSTN). Let qc(ti, tj): c(ti, tj) ⇒ R+ and
let Q be the set of all qc(ti, tj). An Expected Value Prob-
abilistic Simple Temporal Network (EPSTN) is a 5-tuple
<A,R,C,D,Q>.
Definition 8. Let Pe be an EPSTN. Let s be a schedule. Let
σc(ti, tj , s, v)⇒ {0, 1} be 1 if c(ti, tj) is satisfied by (v, s)
(by extracting v(ri) for ti = ri or s(aj) for ti = ai and
evaluating the bounds) and 0 otherwise. Then fPe(s, v) =∑
c∈C qc(ti, tj) (σc(ti, tj , s, v)) is the value of a schedule

s combined with a set of outcomes v ∈ V . The expected
value of s is then E(fPe(s, V)) =

∫
v∈V (P (v)fPe(s, v)).

Given an EPSTN, the Expected Value Strong Controllability
(EvSC) problem is to find s maximizing E(fPe(s, V)).

While a similar Dynamic Controllability problem can also
be formalized, for the remainder of the paper, we will focus
on Expected Value Strong Controllability.

EPSTNs are a variant of the Disjunctive Temporal Prob-
lem with Preferences (DTPP) (Peinter, Moffitt, and Pollack
2005), in which not all constraints can be satisfied, and the
’best’ set must be found by search. Each requirement con-
straint can be expressed as a disjunction where satisfying the
‘trivial’ constraint has zero value and satisfying the original

constraint has value qc(ti, tj). The EPSTN is a strict gener-
alization of the DTPP; while the value of satisfying c(ai, aj)
is captured by qc(ai, aj), the expected value of satisfying
c(ri, aj) is a nontrivial function of timepoint assignments,
rather than a constant associated with the disjunctive deci-
sions. EPSTNs are also similar to the Controllable Condi-
tional Temporal Problem with Uncertainty (CCTPU) of (Yu,
Fang, and Williams 2015), in that we can choose which con-
straints to satisfy. EPSTNs are more general than CCTPUs
in that they include preferences, but are more limited in that
every timepoint of an EPSTN must be scheduled.

We now look deeper at the fundamental tradeoff in EvSC:
sacrificing a constraint to improve the overall expected value
of a schedule. In Figure 1 above, there is only one require-
ment constraint over an uncontrollable timepoint, namely
c(r1, a3). If 50 ≤ v(r1) ≤ 55 we can construct a schedule
violating a single constraint, namely, c(a1, a5), in order to
satisfy c(r1, a3) and ensure all other constraints are satisfied.
Committing to a schedule up-front that violates c(a1, a5)
lets us increase the probability c(r1, a3) is satisfied, poten-
tially increasing the expected value of the schedule. We can
determine the relative values of qc(r1, a3) and qc(a1, a5)
that make violating c(a1, a5) maximize the expected value.
Assume s(a1)= 0. Let s be a schedule in which s(a2)= 50
and s′ be a schedule in which s(a2)= 55. For s′ to be pre-
ferred, we would need
qc(r1, a3)

∫ 50

0
P (Ω1)+ qc(a1, a5) < qc(r1, a3)

∫ 55

0
P (Ω1)

⇒ qc(a1, a5) < qc(r1, a3)
(∫ 55

0
P (Ω1)−

∫ 50

0
P (Ω1)

)

⇒ qc(a1, a5) < qc(r1, a3)
∫ 55

50
P (Ω1)

If
∫ 55

50
P (Ω1) is ‘small’, the inequality above is only sat-

isfied if qc(r1, a3) is ‘large’. Put another way, qc(r1, a3)
needs to be a factor of 1∫ 55

50
P (Ω1)

larger than qc(a1, a5).
Committing to bounds on contingent links that maximize
the expected value for a high-value constraint on an uncon-
trollable may violate other constraints. We may intuitively
view this as creating a cycle that must be broken by delet-
ing a low-value constraint. It may be necessary to remove
multiple constraints to increased coverage of a single high-
value uncontrollable duration. Breaking each cycle may re-
veal another cycle involving another requirement constraint,
as shown in Figure 2 (left). In this example, it is obvious that
breaking the minimum cost edge unexpectedly decreases the
expected value. Even if removing a series of constraints de-
creases the risk, the expected value can still decrease, un-
til removing enough constraints leads to an eventual net in-
crease in the expected value. This scenario is shown in Fig-
ure 2 (right). The situation becomes more complex when we
consider that removing a single constraint might lead to de-
creased risk, and therefore expected value, of multiple high-
value constraints.

Our roadmap for EvSC is as follows. We first describe
how to bound below the expected value of an EPSTN while
enforcing all requirement constraints over two controllable
timepoints. These are referred to as the Simple Temporal
Network (STN) constraints, since they are constraints found
in STNs. We solve the more general EPSTN problem by
searching over subsets of the STN constraints to enforce;

12

r1

a1 a2…

qc(ai,aj)=ε

qc(ak,al)=ε

…
qc(ay,az)=ε

qc(r1,a2)= 1000

qc(ai,aj)>

qc(ak,al)>

…
qc(ax,ay)=ε

qc(r1,a2)= 1000

40,50
40,50

40,50

-10,1030 40 50

30 40 50
r1

a1 a2…

40,50
40,51

40,60

-10,10

Figure 2: Multiple constraints may need to be removed to
ultimately increase expected value, leading to a series of re-
ductions in expected value before it improves after all cycles
are broken (left). Removing a constraint and decreasing the
risk may still reduce the expected value (right).

as we saw above, the value of the STN constraints must
be traded against the expected value of satisfying At-Risk
(AR) requirement constraints on an uncontrollable time-
point. Along the way, we provide some insights into algo-
rithm complexity, soundness and completeness of these ap-
proaches, which shed light on the difficulty of addressing
expected controllability.

4.1 Semi-Simple EPSTNs
We begin with some definitions:

Definition 9 (Simple and Semi-Simple EPSTN). Let Pe be
an EPSTN. Denote the STN constraints c(ai, aj) by Cs.
Denote the At-Risk (AR) constraints c(ri, aj) by Cu. Pe is
Semi-Simple if ∃ s that satisfies all constraints in Cs. Pe is
Simple if it is Semi-Simple and if, ∀P ′e defined by Cs’ ⊂ Cs,
maxsE(fPe(s, V)) ≥ maxsE(fP ′

e
(s, V)).

The EPSTN in Figure 1 is Semi-Simple, because the
STN constraints alone (all requirement constraints except
c(r1, a3)) are satisfiable. If 1∫ 55

50
P (Ω1)

qc(r1, a3)<qc(a1, a5),
then the original EPSTN is also Simple, because removing
any set of STN constraints does not increase the expected
value; otherwise, removing c(a1, a5) makes the resulting
EPSTN Simple.

Suppose we fix, or are otherwise given, a set of STN con-
straints over controllable timepoints Cs that can all be satis-
fied. We start with an EPSTN Pe and generally don’t know
the set Cs’ that will lead to optimality, nor do we know the
schedule of maximum value. Thus it appears two simultane-
ous searches are required: a subsetCs’ leading to optimality,
and the best SC schedule (that is, the one maximizing the ex-
pected value of satisfied constraints) for P ′.

SREA (Lund et al. 2017) uses a series of linear programs
(LPs) that are constructed and solved in order to minimize
the risk of a PSTN; a feasible LP is guaranteed to be SC.
However, we can’t use the SREA LP formulation. First,
it does not explicitly represent the risk. Second, we don’t
merely want to minimize the risk that the outcomes don’t
respect the bounds of the contingent constraints, but rather

maximize the expected value of a schedule. Specifically, we
need to explicitly represent the probability that an uncontrol-
lable event’s actual time v(ri) = s(ai) + ωi ∈ Ωi leads to
a violation of AR constraint c(ri, aj). This means we can’t
directly use δ(ρd, d(ai, ri)) from Definition 5, because this
definition computes the risk by measuring how much of the
probability mass of d(ai, ri) is covered by ρd(d(ai, ri)).

When computing the expected values, it is helpful to
imagine a triangle of two requirement constraints c(ai, aj),
c(ri, aj), and a duration constraint d(ai, ri). Since we have
assumed Pe is Semi-Simple, we know there is a schedule s
satisfying c(ai, aj). Ideally, v(ri) and s(aj) will satisfy the
constraint c(ri, aj). But an outcome v(ri) may be unlucky,
either violating the lower bound lri,aj , because ai and aj
are scheduled close together to satisfy c(ai, aj) and ωi is too
large, or violating the upper bound uri,aj , because ai and aj
are scheduled far apart and ωi is too small.

We exploit the fact that for a specific assignment
s(ai), s(aj), the probability of satisfying the constraint
c(ri, aj), and obtaining value qc(ri, aj), is
∫ s(aj)−s(ai)−lri,aj
s(aj)−s(ai)−uri,aj

P (Ωi)

This may appear backwards, but it isn’t. Consider the
lower bound of the integral, s(aj) − s(ai) − uri,aj . The
smallest value of ωi satisfying c(ri, aj) is s(aj) − s(ai)−
uri,aj . The later v(ri) = s(ai) + ωi occurs, the smaller
s(aj) − s(ai) − ωi is, therefore it is the lower bound of the
integral. Similarly, the largest value of ωi satisfying c(ri, aj)
is s(aj)− s(ai)− lri,aj . The earlier v(ri) = s(ai) + ωi oc-
curs, the larger s(aj)−s(ai)−ωi is, therefore it is the upper
bound of the integral.

Fij(x)=

P()Ωi

𝜆ij
𝛼ij

P()Ωi

x-lriaj
x-uriaj

𝛼ij x

1

s(aj)-s(ai)-lriajs(aj)-s(ai)-uriaj

riai ajlriaj uriaj

ωi

ij ijmk(x) +ck

Fij
∧

𝜆’ij

Figure 3: Bounding the probability to construct an MILP.
In general, we must search over many possible schedules,

meaning s(aj) − s(ai) will vary, and so will the value of
the integral defining the probability of success. We want a
declarative representation of the possible values of this inte-
gral to use during search; in particular, we would prefer not
to perform integrals in the inner loop of this search. For a
probabilistic duration d(ai, ri) and linked requirement con-

straint c(ri, aj) the function Fij(x) =
∫ x−lri,aj
x−uri,aj P (Ωi) has

as its only ‘free’ variable the distance x = s(aj) − s(ai);
the bounds from c(ri, aj) are, effectively, constant parame-
ters. If P (Ωi) is unimodal, then Fij(x) is unimodal and rep-

13

resents all possible probability masses we might encounter
during search. We would like solve the maximum expected
value problem using an MILP; given the nonlinearity of
Fij(x), we must in practice use a linear approximation. We
choose to approximate from below to get a conservative es-
timate on the probability of constraint satisfaction. While
Fij(x) is not concave over its entire range, we can bound its
concave region (which will include its mode) below with a
series of linear inequalities defined by functions mij

k x+ cijk
that collectively underestimate the probability of obtaining
value qc(ri, aj). The free variable λij in the MILP repre-
sents the probability of satisfying c(ri, aj) given a specific
distance s(aj)−s(ai), and is bound above by this piecewise
linear approximation. The construction is shown in Figure
3. We must construct at most |Cu| functions Fij , one per
AR constraint. It appears we must perform many integrals to
construct each Fij . Once we have decided how many points
each piecewise linear approximation will have, however, we
can limit the number of integrals. We also have the benefit
of being able to do definite integrals, which is often easy for
‘nice’ families (e.g. normal distributions.)

As shown in Figure 3, the piecewise linear bound will
cross the x axis at points where Fij(x) > 0. We enforce
λij = 0 when x falls on the left-hand or right-hand side of
the “good” (i.e. concave) region using a single binary vari-
able bij . If we let αij and αij represent the lower and upper
bounds, respectively, on the “good” region, we can choose
a sufficiently large constant M > 0 and add the constraints
αij −M(1 − bij) ≤ s(aj) − s(ai) ≤ αij + M(1 − bij),
bound λij above by bij , and augment the right-hand sides of
all constraints (6) by M(1− bij). The values for αij and αij
that yield the widest “good” region are the x-intercepts of
the lines tangent to Fij at the left- and right-hand bounds of
the region in which it is concave (i.e. its inflection points),
but these may prove difficult to compute analytically and are
thus approximated instead.

We construct the functions mij
k x + cijk and compute the

values for αij and αij as follows. We first evaluate Fij(x) at
a given number of equally spaced x-values in its range (the
more evaluations, the better the approximation) and draw
line segments between consecutive points. Then, starting
from the left and moving right, we choose the left endpoint
of the first line segment whose slope is not larger than that of
its predecessor, and, starting from the right and moving left,
we choose the right endpoint of the first line segment whose
slope is not smaller (i.e. steeper) than that of its predeces-
sor. These points will serve as our approximate left and right
inflection points, and we use the x-intercepts of the lines tan-
gent to Fij at these points as our αij and αij values. Further-
more, the equations of the lines defining the segments found
between these points together with those two tangent lines
will serve as our set of bounding functions mij

k x+ cijk . With
a fine enough discretization, these functions collectively de-
fine a good lower approximation of the concave part of Fij .

The MILP is shown in Figure 4. The constants (indicated
in bold in the MILP) are the qc(ri, aj), the requirement
constraint bounds [lai,aj , uai,aj], M , αij and αij , and the
slopes and intercepts of the piecewise linear approximation

max
∑

c(ri,aj)

λijqc(ri, aj)

s.t. a0 = 0 (1)

aj − ai ≤ uai,aj
∀c(ai, aj) ∈ Cs (2)

aj − ai ≥ lai,aj ∀c(ai, aj) ∈ Cs (3)

aj − ai ≤ αij + M(1− bij) ∀c(ri, aj) ∈ Cu (4)

aj − ai ≥ αij −M(1− bij) ∀c(ri, aj) ∈ Cu (5)

λij ≤ m
ij
k
(aj − ai) + c

ij
k

+ M(1− bij) ∀c(ri, aj) ∈ Cu
∀k = 1, . . . , yij (6)

λij ≤ bij ∀c(ri, aj) ∈ Cu (7)

bij ∈ {0, 1} ∀c(ri, aj) ∈ Cu (8)

Figure 4: MILP to maximize the expected value of a Semi-
Simple EPSTN.

of Fij(x). The variables are the ai representing the schedule
for the controllables, λij representing the probability of sat-
isfying constraint c(ri, aj), and bij representing whether the
probability is forced to zero by dint of being to the left or
right of the concave approximation of Fij(x). The objective
function is now simply max

∑
c(ri,aj)

λijqc(ri, aj).

4.2 Quality of the MILP Solution
As described in the previous section, the piecewise linear
functions in constraints (6) and the binary variables bij to-
gether serve to bound the true probability of the schedule
satisfying a given contingent constraint from below. Thus,
the optimal solution to the MILP will generally lead to er-
ror in the expected value. To see that nontrivial error in so-
lutions can occur, we observe that if the piecewise linear
approximation is flat, leading to the same probability λij
in many MILP solutions, the true curve Fij(x) may yield
better solutions only found by nonlinear optimization start-
ing at the arbitrary solution found using the piecewise linear
approximation. Note this will generally occur below αij or
above αij , but it could also occur near the mode of Fij(x)
if it is approximated by only a small number of pieces. Let
Ĝij = maxx Fij(x) − (mij

k x + cijk) be the largest differ-
ence between the true value of Fij(x) and its piecewise lin-
ear lower bound. The worst-case error of any solution to any
Semi-Simple EPSTN is Ê =

∑
c(ri,aj)

qc(ri, aj)Ĝij .
Given a schedule s, let λsij be the probabilities of suc-

cess for the schedule. The error Ê(s) of this schedule
is
∑
c(ri,aj)

qc(ri, aj)
(
Fij (s(aj)− s(ai))− λsij

)
. Suppose

that the true optimal schedule o with value O is found when
we only enforce the subset Cos of STN constraints from Pe.
Let Ô = O − Ê(o), that is, the quality of the schedule
according to the MILP. Let qoc =

∑
c(ai,aj)∈Cos qc(ri, aj).

Suppose b is the optimal solution for the MILP over Cos ,
and B̂ is the quality of b according to the MILP. We have
O ≥ B̂ ≥ Ô. Then
O = qoc +

∑
c(ri,aj)

qc(ri, aj)Fij (o(aj)− o(ai))
= qoc +

∑
c(ri,aj)

qc(ri, aj)λ
o
ij + Ê(o)

14

≤ qoc +
∑
c(ri,aj)

qc(ri, aj)λ
b
ij + Ê(o)

= B̂ + Ê(o) ≤ B̂ + Ê.
If our algorithm finds the overall best solution (a, Â) by

removing some other subset C ′s 6= Cos of STN constraints,
then B̂ ≤ Â, and therefore O ≤ Â + Ê. In general, com-
puting this worst-case error Ê requires computing Ĝij for
all at-risk constraints c(ri, aj). Given enough pieces, the ap-
proximation inside the concave region will be good enough
that the error is maximized at the tails, and therefore we only
need to compute the difference at αij and αij to find Ĝij .

4.3 Complexity, Soundness and Incompleteness
The resulting MILP has |A| continuous variables ai for
controllable timepoint assignments, |Cu| continuous vari-
ables λij approximating the probabilities of satisfying at-
risk constraints, and |Cu| binary variables bij to enforce
appropriate upper bounding of these λij values, for totals
of |A| + |Cu| continuous and |Cu| binary variables. It has
2|Cs| constraints enforcing the lower and upper bounds of
requirement constraints, 2|Cu| constraints checking whether
or not aj − ai values fall within their “good” regions,
|Cu| constraints bounding λ values from above within their
“bad” regions, and no more than y∗|Cu| constraints bound-
ing λij values from above within their “good” regions,
where y∗ = maxc(ri,aj) yij , for a total of no more than
2|Cs|+(3+y∗)|Cu| constraints. Solving MILPs is known to
be NP-complete, but it is difficult to formally characterize
the complexity of solving this MILP as it depends not only
on the number of binary variables in the formulation but also
on the tightness of the lower bound provided by solving its
LP relaxation (which in our case won’t be great since we’re
using “big-M” constraints). Nevertheless, we have the fol-
lowing result:

Lemma 1. Given an EPSTN Pe, a schedule b satisfying all
constraints in Cs whose expected value B̂ is within Ê of
the true optimal expected value over Cs can be found in
O(2|Cu||T |3).

Given a Semi-Simple EPSTN Pe, there must exist a Sim-
ple EPSTN P oe with Cos ⊆ Cs (even if Cos = ∅). Clearly,
the optimal solution can be found by removing every sub-
set of the set of requirement constraints Cs in turn and us-
ing the MILP described above as a sub-solver after each
removal. If we enumerate each of the exponentially many
subsets of STN constraints and solve the MILP for the re-
sulting EPSTN as described above, we can simply perform
an exhaustive search, always keeping track of the best solu-
tion and corresponding expected value found so far and up-
dating when necessary. The objective function in the MILP
omits the value of the STN constraints since any feasible so-
lution will satisfy them. Thus to properly compare solutions
with different sets of active STN constraints we must sim-
ply add the values of all active STN constraints to the value
we get from solving the MILP. This is consistent, in general,
with results for DTPPs (Peinter, Moffitt, and Pollack 2005).
In conjunction with the error bound, the discussion above
proves the following:

Theorem 1. Given an EPSTN Pe, with (unknown) maximum
expected valueO. Our algorithm returns a solution (a, Â) in
O(|T |32|C|) time such that O ≤ Â+ Ê.

Thus, the exponential search described above is sound in
that it will return a feasible schedule bounding below the
maximum expected value, and complete insofar as it will
return the best such solution given our piecewise linear ap-
proximation of the distributions of uncontrollable durations
of the EPSTN.

4.4 Applicability of the Algorithm
We have not explicitly assumed that any pair of probabili-
ties P (Ωi) and P (Ωj) in an EPSTN are conditionally inde-
pendent. If the uncertain durations are not independent, then
the allocation of risk will generally increase the optimality
gap. To see this, note that a schedule captures risk in an n-
dimensional box, while correlated risk distributions could be
covered by other ‘shapes’ with less restrictive constraints.

Handling the requirement constraints on two uncon-
trollables, c(ri, rj), requires generalizing the Fij(x) to∫ x−lri,rj
x−uri,rj P (Ωj)−P (Ωi). Even if P (Ωi) and P (Ωj) are uni-

modal, the composition in general is not (Ibragimov 1956),
and thus free constraints c(ri, rj) are not permitted in our
EPSTNs 1. The same proviso applies when reformulating
linked duration constraints d(ai, ri) and d(ri, rj)

2. We must
replace d(ri, rj) with d(ak, rk) such that P (Ωk) = P (Ωi)+
P (Ωj) and [lai,ak , uai,ak] = [0, 0] 3.

We also note that while our function bounding the prob-
ability of satisfaction from below does not define a concave
region (and thus requires that a binary “on-off” variable be
added to what was a nice LP), it gives us the power to con-
sider situations in which all possible outcomes v(ri) for an
uncontrollable must fall entirely on one side of its mode µi.
This was one of the difficulties in dealing with unimodal dis-
tributions that the authors in (Santana et al. 2016) did not ad-
dress, as their choice of functions used to approximate risk
required that the bounds for acceptable outcomes for an un-
controllable fall on either side of its mode. Our increased
coverage comes at a price: the PARIS algorithm in (Santana
et al. 2016) is polynomial-time, while even our ‘inner-loop’
algorithm for semi-simple EPSTNs is exponential (we must
solve O(2|Cs|) MILPs.)

5 Testing for Simplicity
The search described above can be implemented as a tree
search over sets of requirement constraints to exclude from
our EPSTN in the quest for the schedule maximizing the

1The sum, and thus difference, of two independent nor-
mally distributed variables is a normal, and thus unimodal; under
these and similar conditions the formulation provided works and
c(ri, rj) are permitted. Otherwise, constraints c(ri, rj) and pref-
erences qc(ri, rj) can be modeled, with some difficulty, by two
constraints c(ak, ri) and c(ak, rj).

2Allowed by (Santana et al. 2016) but not (Tsamardinos 2002).
3If we have d(ai, rk) and d(ai, rm), we can replace

these constraints with d(ai, rk), d(aj , rm) and c(ai, aj) with
[lai,aj , uai,aj] = [0, 0], which causes no difficulty.

15

expected value. An inexpensive test for simplicity can be
used to terminate the exponential search described above,
and potentially reduce search time. This test leverages the
existence of an optimal solution for a Semi-Simple EPSTN.

Consider an optimal schedule b for a Semi-Simple EP-
STN Pe, and consider the triangle formed by constraints
g(ai, ri), c(ri, aj) and c(ai, aj). From the construction of
the MILP, we know the expected value of AR constraint
c(ri, aj) in b is qc(ri, aj) λbij , where λbij is bounded above by
Fij(x). Let λ′ij = maxx Fij(x). This is the maximum pos-
sible probability of obtaining qc(ri, aj) and can be obtained
as we construct Fij(x). (A tight constraint c(ri, aj) com-
bined with a large variance on P (Ωi) will lead to λ′ij < 1.)
The sacrifice of any STN constraint can only improve the
expected value of this AR constraint by at most qc(ri, aj)
(λ′ij − λbij). Is it possible for the removed constraint to be
‘accidentally’ satisfied by a schedule s′ maximizing the ex-
pected value for the relaxed problem, while the expected
value on the AR constraints is increased? If so, then this hy-
pothetical schedule s′ would have larger value for the orig-
inal EPSTN than the optimal schedule b, which is a contra-
diction. This leads to the following definition:
Definition 10 (Gain). Given a Semi-Simple EPSTN Pe. Let
λbij be the value of λij in the optimal solution b to the
MILP for Pe. We define the gain γ(Pe, b) =

∑
c(ri,aj)∈Cu

qc(ri, aj) (λ′ij − λbij).
By construction, the gain for each possible optimal solu-

tion will be identical. Even so, the values of λbij can vary
across solutions. As we will now see, it is convenient to de-
fine the gain in terms of the values of λbij in the solution b.
A straightforward test for simplicity follows:
Theorem 2. Given a semi-simple EPSTN Pe, and the op-
timal solution b to the MILP forPe. Then Pe is Simple if
γ(Pe, b) ≤ minc(ai,aj)∈Cs qc(ai, aj).

The above test determines whether sacrificing the least
valuable STN constraint can (optimistically) improve the ex-
pected value by all of the gain achievable. If even this opti-
mistic tradeoff is not favorable, then removing more STN
constraints can’t improve the expected value, therefore Pe
is Simple. The test is necessary but not sufficient; the test
may fail when Pe is simple. In particular, if we look at Fig-
ure 1, we see that removing c(a5, a6) cannot relax c(r1, a1)
because the two constraints are not on the same cycle. How-
ever, if qc(a5, a6) ≥ γ(Pe, s), the test would fail, and search
might fruitlessly attempt to relax c(a5, a6).

5.1 Bounding the Search Costs
It is tempting to think that exponential search for the best
subset of Cs in a semi-simple EPSTN is unnecessary. Un-
fortunately, as we saw above in the test for simplicity, in
general this will not be the case; one might need to search
over edges shared between cycles. However, we can use the
gain to evaluate the largest set of STN constraints whose
sacrifice could, possibly, be offset by the gain. The size of
this set can be used to bound the search cost.
Theorem 3. Given a semi-simple EPSTN Pe, and the op-
timal solution b to the MILP for Pe. Let Cs,γ ⊂ Cs

be c(ai, aj) ∈ Cs | qc(ai, aj) ≤ γ(Pe, b). Let M ⊂
Cs,γ be the largest cardinality set such that

∑
c∈M

qc(ai, aj) ≤ γ(Pe, b). Then the search cost cannot exceed

O
(
|T |32|Cu|

∑|M |
k=1

(|Cs,γ |
k

))
.

Proof. Definition 10 allows us to immediately reduce Cs
to Cs,γ . To compute the largest cardinality set M : sort
qc(ai, aj) in increasing order. Begin with an empty set. Add
c(ai, aj) to the set until the next largest qc(ai, aj) would
produce a set M such that

∑
caiaj∈M

qc(ai, aj) > γ(Pe, s).
The gain is non-increasing as search proceeds: each time
we throw an STN constraint away, λij cannot decrease (but
could increase). Further, STN constraints are only removed
from Pe so they can’t ever be added to M above. So M at
the beginning of search is the biggest it will ever get.

The procedure only identifies the largest sized set; there
can be other sets with different constraints (example:
γ(Pe, s) is 1000, there are 1000 constraints of quality 1
and one constraint of quality 500.) The number of sets
whose size is ≤ |M | is

∑|M |
k=1

(|Cs,γ |
k

)
. Since removal of

each set requires solving the MILP, search therefore takes
O(|T |32|Cu|

(∑|M |
k=1

(|Cs,γ |
k

)
)
)

.

We simplify
∑|M |
k=1

(|Cs,γ |
k

)
) as follows: Assume |M | ≤

|Cs,γ |
2 . Then
∑|M |
k=1

(|Cs,γ |
k

)
) ≤ |M |

(|Cs,γ |
|M |

)
) ≤ |M ||Cs,γ ||M |

= |M |(2|M | log |Cs,γ|)

The case of |M | ≥ |Cs,γ |
2 requires bounding above∑|M |

k=1

(|Cs,γ |
k

)
) and subtracting from 2|Cs|, but is similar.

While the bound is loose, this analysis shows that consid-
erable reduction in search cost can be achieved by using the
gain. When γ(Pe, s) is large relative to the average value of
qc(ai, aj), then |M | will be large; when γ(Pe, s) is small,
then |M | will be small. Theorem 3 will generally over-
estimate the exponential costs of search. This is both be-
cause of the loose bound on the number of sets of constraints
whose total value is bounded above by γ(Pe, s), and because
the bound does not take into account whether the require-
ment constraints’ values that contribute to large |M | will ac-
tually lead to increased utility by loosening constraints on an
uncertain duration.

5.2 Search Algorithm
We now present the search algorithm to bound below the
maximum expected value schedule given a Semi-Simple EP-
STN Pe. The algorithm is given in Algorithm 1. The basic
strategy is to perform tree search over the largest cardinality
set M such that

∑
c∈M qc(ai, aj) ≤ γ(Pe, s). This is done

by choosing the minimum preference constraint to consider
for elimination at each search step. Both induced EPSTNs
are generated, one forced to include this constraint and one
with this constraint deleted. To simplify the pseudocode, we
augment the objective function of the MILP to represent the
expected schedule value including the STN constraints; it is
now

∑
c(ai,aj)∈Cs qc(ai, aj)+

∑
c(ri,aj)∈Cu(qc(ri, aj)λij).

16

The recursion terminates when Theorem 2 applies and a
Simple EPSTN is detected, i.e. search continues only when
qcm = minc(ai,aj)∈Cs qc(ai, aj) ≤ γ(Pe, s). A ‘branch and
bound’ test ensures that continued search has a chance of im-
proving on the best expected value found so far, i.e. search
terminates when (Ŝ − qcm + γ(Pe, s) ≥ B̂). This second
test only passes when Theorem 2 applies.

The maximum expected value schedule over all of these
induced EPSTNs is returned when we initialize the algo-
rithm with K = ∅, B̂ = 0, and b an arbitrary schedule
(feasible or infeasible). Preventing needless re-solving of the
MILP on the second recursive call is a minor modification
that can be made to improve efficiency.

Algorithm 1: MaxEPSTN
Input : An EPSTN, Pe
Input : Constraints considered for removal, K
Input : Current Best Schedule / Expected Value (b, B̂)

Output: Best Schedule / Expected Value pair (b, B̂)
Var : LP representation of Pe, LPe
Var : Minimum preference constraint, cm
Var : Temp schedule and value, (s, Ŝ)
(LPe)← MakeLP(Pe) ;
(s, Ŝ)← Solve (LPe) ;
if (Ŝ > B̂) then

(b, B̂)← (s, Ŝ) ;

if ((Cs \K) 6= ∅) then
cm ← argminc(ai,aj)∈(Cs\K) qc(ai, aj) ;
if (Ŝ − qcm + γ(Pe, s) ≥ B̂)) then

K ← K ∪ cm ;
(s, Ŝ)← MaxEPSTN (Pe − cm,K, (b, B̂)) ;
if Ŝ > B̂ then

(b, B̂)← (s, Ŝ) ;

(s, Ŝ)← MaxEPSTN (Pe,K, (b, B̂)) ;
if Ŝ > B̂ then

(b, B̂)← (s, Ŝ) ;

return (b, B̂) ;

6 Conclusions and Future Work
When presented with a control problem on probabilistic
simple temporal networks, the usual strategy of establish-
ing controllability may fail when constraints are too strin-
gent. To address this, we formally define a new type of con-
trollability problem, the Expected Value Probabilistic Sim-
ple Temporal Network (EPSTN), and address the Expected
Value Strong Controllability (EvSC) problem of finding a
schedule maximizing the expected value of satisfied con-
straints. We first formulate an MILP to find a schedule for
a special case in which all STN constraints must be satis-
fied. The expected value of this schedule bounds below the
true expected value using a piecewise linear approximation
of the probability of satisfying the AR constraints in the EP-
STN. This MILP must be solved at each branch of a search
that discards STN constraints to allow covering more and

more probability mass. Search can be pruned using termina-
tion rules that guarantee no favorable cost-benefit tradeoffs
remain to be explored. While this search is exponential in
the number of simple temporal constraints in the EPSTN, we
bound the exponent by reasoning about the tradeoff between
the lost value of each constraint and the expected gain.

The next step in evaluating the EvSC algorithm presented
in this paper is to perform an empirical study. The datasets
described in the introduction will form the basis of such
a study, but they need to be augmented by addition of
qc(ri, aj). The EvSC problem formulation requires careful
choice of preferred STN constraints c(ai, aj), such as coor-
dinated observations or ‘ideal’ constraints on event time.

Our EvSC algorithm can be improved by exploring
heuristics for selecting STN constraints to eliminate; these
heuristics may detect cycles in the constraint graph of the
resulting STN to eliminate even more search candidates. In-
cremental solving of the MILP may also help reduce search
costs. However, the EvSC problem can also be solved by us-
ing a single MILP to handle both STN constraints and AR
constraints. Preliminary results show that this is a promising
approach. A nice benefit of this approach is that it gener-
alizes easily to handle cases in which we must also search
to find a subset of satisfiable STN constraints, as in DTPPs
(Peinter, Moffitt, and Pollack 2005).

The error bound Ê can be reduced once a specific solution
a is found. To see this, realize that the true error Ê(a) can be
found at the cost of a few extra integrations to determine the
true probabilities of success, rather than the piecewise linear
bound. Thus, solution quality is within Ê− Ê(a) of the true
optimal expected value O. Other error bound improvements
possible.

The simple case of fixed-value preferences qc(ti, tj) can
be extended to preferences over intervals, as is done for Sim-
ple Temporal Problems with Preferences (STPPs) (Rossi,
Venable, and Yorke-Smith 2006). By making some reason-
able assumptions on the shape of these preferences, much of
the theory described in this paper can be reused, leading to
similar algorithms and computational complexity results.

The Expected Value Dynamic Controllability (EvDC)
problem on EPSTNs remains open. Solving this problem
will provide executives with the ability to respond dynam-
ically to unexpected outcomes in order to maximize the ex-
pected value of satisfied constraints, which existing risk-
bounding and constraint-relaxing strategies simply cannot
do. The solution to this problem is likely to be quite different
than the techniques described in this work.

References
Boyan, J., and Littman, M. 2000. Exact solutions to time-
dependent MDPs. In NIPS, 1026–1032.

Fang, C.; Yu, P.; and Williams, B. 2014. Chance-constrained prob-
abilistic simple temporal problems. In Proceedings of the National
Conference on Artificial Intelligence, 2264 – 2270.

Ibragimov, I. A. 1956. On the composition of unimodal distribu-
tions. Teor. Veroyatnost. i Primenen. 1(2):283–288.

Lund, K.; Dietrich, S.; Chow, S.; and Boerkoel, J. 2017. Robust

17

execution of temporal plans. In Proceedings of the National Con-
ference on Artificial Intelligence, 3597 – 3604.
Muscettola, N.; Morris, P.; and Vidal, T. 2001. Dynamic control
of plans with temporal uncertainty. In Proceedings of the 17th

International Joint Conference on Artificial Intelligence.
Peinter, B.; Moffitt, M. D.; and Pollack, M. E. 2005. Solving
overconstrained disjunctive temporal problems with preferences.
In Proceedings of the 15th International Conference on Automated
Planning and Scheduling.
Rossi, F.; Venable, K. B.; and Yorke-Smith, N. 2006. Uncertainty
in soft temporal constraint problems: A general framework and
controllability algorithms for the fuzzy case. Journal of Artificial
Intelligence Research 27:617–674.
Santana, P.; Vaquero, T.; Toledo, C.; Wang, A.; and Williams, B.
2016. Paris: A polynomial-time, risk-sensitive scheduling algo-
rithm for probabilistic simple temporal networks with uncertainty.
In Proceedings of the National Conference on Artificial Intelli-
gence, 267 – 275.
Tsamardinos, I. 2002. A probabilistic approach to robust execution
of temporal plans with uncertainty. In Methods and Applications
of Artificial Intelligence, 97 – 108.
Vidal, T., and Fargier, H. 1999. Handling contingency in temporal
constraint networks: from consistency to controllabilities. Journal
of Experimental and Theoretical Artificial Intelligence 11(1):23 –
45.
Vidal, T., and Ghallab, M. 1996. Dealing with uncertain durations
in temporal constraint networks dedicated to planning. In Proceed-
ings of the 12th European Conference on Artificial Intelligence, 48
– 54.
Weld, D., and Mausam. 2006. Probabilistic temporal planning with
uncertain durations. In Proceedings of the National Conference on
Artificial Intelligence, 880 – 887.
Yu, P.; Fang, C.; and Williams, B. 2015. Resolving over-
constrained probabilistic temporal problems through chance con-
straint relaxation. In Proceedings of the National Conference on
Artificial Intelligence, 3425 – 3431.

18

Dynamic Controllability with Single and Multiple Indirect Observations

Paul Morris
NASA Ames Research Center

Moffett Field, CA 94035, U.S.A.

Arthur Bit-Monnot
University of Sassari

Sassari, Italy

Abstract

A recent paper introduced a transformation-based approach
for determining dynamic controllability of Simple Tempo-
ral Networks with Uncertainty (STNUs) extended to have
variably-delayed observations of uncontrolled timepoints. Al-
though the approach correctly determines dynamic control-
lability, it does not always provide the most flexible possi-
ble dynamic strategy. We show how to refine the approach
in a way that improves the flexibility, and further extend it
to a class of Partially Observable STNUs where the hidden
timepoints can be indirectly observed via a chain of contin-
gent links. We show how to construct a labeled distance graph
for these problems, leading to a complete solution. This ap-
proach handles “single-headed” chained contingent links. For
“multi-headed” problems, we prove a theorem characteriz-
ing their dynamic controllability in isolation. This provides a
check on more general networks (and more general methods).
We also consider potential extensions of the single-headed
approach to multi-headed problems and point out some diffi-
culties that arise.

Introduction
The Simple Temporal Network (STN) formalism introduced
by Dechter, Meiri, and Pearl (Dechter, Meiri, and Pearl
1991) has proved very fruitful for reasoning about tempo-
ral plans. It has been extended in various directions includ-
ing the STNU formalism that deals with external events
whose timing is uncertain (Vidal and Fargier 1999; Mor-
ris, Muscettola, and Vidal 2001; Hunsberger 2009; Morris
2014), and effective algorithms have been developed to han-
dle these problems. An additional extension (Moffitt 2007)
introduced the Partially Observable STNU (POSTNU) for-
malism that may include uncontrolled timepoints that can
be observed only indirectly, through their subsequent effects
on other timepoints that are observable. In this paper, the un-
controlled timepoints that cannot be directly observed may
conveniently be called hidden timepoints.

A recent paper (Bhargava, Muise, and Williams 2018) in-
troduces a related extension of STNU, called Variable De-
lay STNU, where an uncontrollable event is determined to
have occurred only after some delay whose duration is itself
uncertain. It was noted that a Variable Delay STNU can be
modeled as a special case of a POSTNU where the obser-
vational delay is represented as a separate contingent link

that is activated by the uncontrollable event that is being ob-
served. Thus, viewed as a POSTNU, the network involves
two chained contingent links. The uncontrolled timepoint
that is observed only indirectly (via the chained link) is a
hidden timepoint. The Variable Delay paper considers net-
works that may have additional requirement constraints on
the hidden timepoints. It introduces novel methods to tran-
form such Variable Delay STNUs into an STNU where con-
tingent timepoints are either instantaneously observable or
never observable. The result is essentially a POSTNU with-
out chained constraints, which allows dynamic controllabil-
ity to be determined by existing methods (Bit-Monnot, Ghal-
lab, and Ingrand 2016). It also presents an execution strategy
for networks that are found to be dynamically controllable.

The method presented in the Variable Delay paper cor-
rectly determines dynamic controllability and presents a
valid execution strategy. However, the strategy presented is
not always the most flexible possible, as we will show by
an example. This can be remedied by a “doubling” strat-
egy where the timepoint following a hidden timepoint is
split in two. We will show how the doubling arises natu-
rally in a first principles analysis. Also, for a Variable De-
lay STNU viewed as a POSTNU, a hidden timepoint acti-
vates at most one chained constraint. This may be described
as a “single-headed” chained constraint. We will consider
“multi-headed” cases where several contingent links are ac-
tivated by the same hidden timepoint, and prove a theorem
relating the dynamic controllability of a multi-headed net-
work fragment to a relationship between the “slack” (upper
bound minus lower-bound) of the requirement and contin-
gent constraints involved. This result can be used as a check
on the validity of transformation methods. Our results ex-
tend the set of cases where algorithms for DC checking of
POSTNU are complete.

STNUs and Extensions
A Simple Temporal Network (STN) (Dechter, Meiri, and
Pearl 1991) is a graph in which the edges are annotated
with upper and lower numerical bounds. The nodes in the
graph represent temporal events or timepoints, while the
edges (refered to as links) correspond to constraints on the
durations between the events. For instance a link A

[2,5]−−−→ B
imposes that at least 2 time units and no more than 5 time

19

units elapse between the occurrence of A and the occurence
of B. Each STN is associated with a distance graph where
each link A

[x,y]−−−→ B is replaced by two edges A
y−→ B and

A
−x←−− B. An STN is consistent if and only if the distance

graph does not contain a negative cycle.
A Simple Temporal Network With Uncertainty (STNU)

is similar to an STN except the links are divided into two
classes, requirement links and contingent links. Requirement
links are temporal constraints that the agent must satisfy,
like the links in an ordinary STN. Contingent links may be
thought of as representing causal processes of uncertain du-
ration, or periods from a reference time to exogenous events;
their finish timepoints, called here contingent timepoints, are
controlled by Nature, subject to the limits imposed by the
bounds on the contingent links. All other timepoints, called
executable timepoints, are controlled by the agent, whose
goal is to satisfy the bounds on the requirement links. The
start timepoint of a contingent link is called its activation
timepoint and can be either contingent or executable. Each
contingent link is required to have non-negative (finite) up-
per and lower bounds. An STNU may be thought of as de-
termining a family of STNs where the contingent links take
on each of their possible durations; the individual STNs in
the family are called projections.

In STNUs, the uncontrolled timepoints are assumed to be
either all unobservable or all observable, giving rise to dif-
ferent execution strategies. An STNU is Strongly Control-
lable if there is a single schedule that satisfies the require-
ments in all of the projections. An STNU is said to be Dy-
namically Controllable if there is a strategy for scheduling
each executable timepoint that depends only on observations
that are available (in the past) at the time it is scheduled.
Whether an STNU is Dynamically Controllable or not can
be determined by an algorithm that runs in cubic time (Mor-
ris 2014). The algorithm tightens some constraints in a way
that makes explicit limitations on the execution strategies
due to the presence of contingent links.

Some of the tightenings involve a temporal constraint
called a wait. Given a contingent link AB and another link
AC, a wait indicates that execution of the timepoint C is
not allowed to proceed until after either B has occurred
or some specified amount of time t has elapsed since A
occurred. More precisely, it corresponds to the constraint
C − A ≥ min(B − A, t). Note that a wait reduces to an
ordinary temporal constraint in a projection, since there the
value of B −A is fixed.

As mentioned, an STN has an alternative representation
as a distance graph (Dechter, Meiri, and Pearl 1991). Sim-
ilarly, there is a representation for an STNU called the la-
beled distance graph (Morris and Muscettola 2005) In the
labeled distance graph, each requirement link A

[x,y]−−−→ B is
replaced by two edges A

y−→ B and A
−x←−− B, just as in an

STN. For a contingent link A
[x,y]
===⇒ B, we have the same

two edges A
y−→ B and A

−x←−− B, but we also have two ad-
ditional edges of the form A b:x−−→ B and A

B:−y←−−− B. These
are called labeled edges because of the additional “b:” and
“B:” annotations indicating the contingent timepoint B with

which they are associated. Note especially the reversal in the
roles of x and y in the labeled edges. We refer to A

B:−y←−−− B

and A b:x−−→ B as upper-case and lower-case edges, respec-
tively. Observe that the upper-case labeled weight B:-y gives
the value the edge would have in a projection where the con-
tingent link takes on its maximum value, whereas the lower-
case labeled weight b:x corresponds to the contingent link
minimum value. An upper case edge A B:−t←−−− C is also used
to represent the wait involving A,B,C considered earlier; it
is consistent with the lower bound on AC that would occur
in a projection where the contingent link has its maximum
value.

A POSTNU (Moffitt 2007) is essentially an STNU that
has both observable and unobservable (hidden) timepoints.
Thus, the controllability problem for a POSTNU may be re-
garded as a combination of Strong and Dynamic Controlla-
bility. Moffitt’s algorithm for checking the controllability of
a POSTNU is complete but not sound in that it might incor-
rectly label a POSTNU as controllable. Another algorithm,
also relying on the compilation to STNUs is provided by
(Bit-Monnot, Ghallab, and Ingrand 2016) that is sound but
only complete for a subclass of POSTNUs. A polynomial
sound and complete algorithm for assessing the controllabil-
ity of general POSTNU remains to be found. It is important
to note one particular point with respect to the semantics. A
contingent link may be activated by a hidden timepoint. In
that case, if the endpoint is observable, the POSTNU seman-
tics specifies that when it is observed, we learn only the time
of the endpoint, not the duration of the link that was acti-
vated by the hidden timepoint. Of course we do learn (or can
easily calculate) the time difference between the observed
endpoint and any previous known time. Other semantics are
possible, and may be useful in some applications, but will
not be considered in this paper.

Variable Delay
The Variable Delay STNU (Bhargava, Muise, and Williams
2018) formalism is an STNU extension that relaxes the con-
dition of instantaneous observation of contingent timepoints.
In this case, the end of a contingent link is not directly ob-
served; instead after some bounded delay (with upper and
lower bounds), it is learned that the contingent timepoint has
occurred. The duration of the delay is not observed, so the
time at which the contingent timepoint occurred is not di-
rectly known. However, bounds on the time of occurrence
can be inferred from the other observations.

A Variable Delay STNU may be regarded as a special
case of a POSTNU where the original contingent link is
chained with a separate contingent link that represents the
delayed observation process. The original contingent time-
point is treated as hidden. An example is shown in figure 1.
Here XE represents the original contingent link, E is hidden,
and EY represents the delayed observation. The link EZ is
a requirement that is imposed on the hidden timepoint. In
the example, X and Z are executable timepoints and Y is an
observable timepoint.

Note that the semantics of Variable Delay STNU im-
plies that Y is a “terminal” timepoint, i.e., the corresponding

20

X E Y

Z

[0, 5]

[0, 10]

[5, 10]

Figure 1: Variable Delay as POSTNU

X E Y

Z

[a,b]

[u, v]

[g−, g+]

Figure 2: Generic Variable Delay

POSTNU may not impose any requirements on the time-
point representing the delayed observation, and it may not
activate a new contingent link. In addition, the delayed ob-
servation is “single-headed” in the sense that the POSTNU
can have only one contingent link that is activated by the hid-
den timepoint. In this paper, we will develop solution meth-
ods that encompass a wider (though still limited) range of
problems.

We now review a somewhat simplified description of the
Variable Delay solution procedure (Bhargava, Muise, and
Williams 2018), as expressed in terms of a POSTNU, for
a generic example (figure 2) that parallels the one used in
the Variable Delay paper. For the following discussion, as a
notational convenience, we define slack(AB) = q-p for any
link AB with bounds [p,q].

The solution procedure starts by checking whether
slack(XE) ≤ slack(EY). If so, it replaces EY by an infinite
delay, which essentially discards the EY observation from
the POSTNU.

Otherwise it applies the transformations in table 1, which
effectively moves the requirement from the unobservable E
to an observable Y’ as indicated in figure 3. We have rewrit-
ten Y as Y’ because, as we will see, it is not really the same
timepoint as Y. (More on this later.)

The iterated transformation process converts a Variable
Delay problem into one in which timepoints are either unob-
servable or have zero delays. This is essentially a POSTNU
in which all the activation timepoints are observable. These
are problems for which dynamic controllability can be
checked by previous methods (Bit-Monnot, Ghallab, and In-
grand 2016).

Original edges Replacement edge
X

[a,b]
===⇒ E

[p,q]
===⇒ Y X

[a+q,b+p]
======⇒ Y′

Z
[a,b]←−−− E

[p,q]
===⇒ Y Z

[a−p,b−q]←−−−−−− Y′

Table 1: Variable Delay transformations involving a hidden
timepoint E

X Y’

Z

[a + g+,b + g−]

[u− g−, v − g+]

Figure 3: Transformed Variable Delay

X E Y

Z

[0, 5]

[0, 10]

[0, 1000]

Figure 4: Suboptimal Strategy Example

The Variable Delay paper presents arguments that the
transformed problem is dynamically controllable if and only
if the original is also, which extends dynamic controllability
checking to a wider class of problems.

The paper also presents an execution strategy for the
transformed problem. The timepoint designated Y’ in fig-
ure 3 is treated as though it corresponds to an observation
of

(t ≥ a + g+) ∧ (Y ∨ t ≥ b + g−)

where t is the time as measured since X was executed. That
is, if Y was observed earlier than time a + g+, then Y’ is
considered to be observed at time a + g+. If Y is observed
between time a + g+ and time b + g−, then Y’ is observed
when Y is observed. If Y is not observed until after time
b+g−, then Y’ is considered to be observed at time b+g−.
We say Y’ is an observable derived from Y.

Improved Dynamic Strategy
The Variable Delay paper does correctly determine the dy-
namic controllability of a Variable Delay problem (as we
will later confirm by a different analysis), and it does present
a valid dynamic strategy. However, the dynamic strategy ob-
tained is not always the most general possible (in the sense
of preserving the greatest flexibility). Consider the example
in figure 4. The Variable Delay procedure would essentially
discard the Y observation as one that is “highly uncertain,”
and treat E as totally unobservable. Then, from XE and EZ,
we infer an XZ requirement of [5,10]. Notice however that
with the original network, if Y is observed at any time in
[0,5] we can immediately infer that E has happened, and so
it is safe to go ahead with Z. If Y is not observed, we can
nevertheless proceed with Z in [5,10]. This is more flexible
than [5,10] only.

As another example, suppose the EZ link had bounds
[990,1000] instead. Compiling away E would then impose
an XZ requirement of [995,1000]. However, if Y has not
finished at time 1000, it is nevertheless safe in the original
network to hold off on executing Z until Y finishes (since E
must still be within the allowed range), which is more flexi-
ble and potentially might not happen until 1005 after X.

21

X
Y’

Z
Y”

y : (a + g+)

v − g+ −(u− g−)

Y : −(b + g−)

Figure 5: Doubled Y Timepoint

For execution purposes, discarding the Y observation is
overly drastic since it can make a contribution to the dy-
namic strategy even though it is “highly uncertain.” How-
ever, if the Variable Delay paper did not perform this pre-
liminary step when slack(XE) < slack(EY), then the first
transformation in table 1 could produce a paradoxical con-
tingent link where the lower bound is greater than the upper
bound. (Note (b+g−)− (a+g+) = (b− a)− (g+− g−).)

As it turns out, there is an alternative way of resolving
this issue that does not require discarding the Y observation.
The basic idea is to replace Y by two new timepoints Y’
and Y”, in which we separate the upper and lower bounds.
Otherwise, the transformation is essentially the same as in
the Variable-Delay paper. Here, we just indicate how this re-
solves the flexibility issue; later on, we will show how these
timepoints arise in a principled analysis.

Figure 5 shows the transformed network as a labeled
distance graph. This is semi-reducible if either Y’→Z or
Y’→Z→Y” is negative, i.e., if either v < g+ or (v − u) <
(g+ − g−). We then have a semi-reducible negative cycle if
the whole cycle is negative, i.e., if (v − u) < (b − a). (The
g+ and g− terms cancel.) This gives the same gross determi-
nation of dynamic controllability as the previous (Bhargava,
Muise, and Williams 2018) procedure but differs in terms of
the specific dynamic strategy. For the example, we get

X
Y’

Z
Y”

y : 1000

−990 0

Y : −5

and then, applying the usual STNU reductions, we end up
with X

10−→ Z and X
Y:−5←−−− Z edges, which corresponds to

a dynamic strategy of “Wait for Y until time 5 after X, and
then execute Z before time 10 after X,” which is the more
flexible strategy we discussed earlier.

For the example where EZ has bounds [990,1000], the
Y’Z and ZY” bounds are the only ones affected, and we get
the situation depicted in the following figure.

X
Y’

Z
Y”

y : 1000

0 −990

Y : −5

Here, Y” observes the “Wait for Y until time 5 after X” con-
dition, and then Z is released 990 units later. We will see
later that the y:1000 bound on XY’ can be interpreted as an

upper bound of “Y or 1000 after X, whichever comes later,”
and then the same upper bound applies to Z. This strategy
also matches our intuition.

These examples underscore our understanding that Y’ and
Y” are NOT the same timepoint as Y, although they are de-
rived from it. The original Y timepoint in figure 2 has bounds
of [a+ g−,b+g+] and these would need to be used, for ex-
ample, if we were to consider placing requirements on Y it-
self. (This is apparently not within the scope of the Variable
Delay formalism.)

In this section, to facilitate comparisons, we have used
variable names that approximate those used in the Variable
Delay paper. However, from now on we will adopt the con-
vention, in most cases, of using bounds [q−, q+] for any
link whose endpoint is Q. We hope this will be useful as
a mnemonic aid.

Single-Headed POSTNUs
The hidden timepoints in a POSTNU may be partitioned into
separate groups whose elements are connected to each other
by contingent links. A group is thus a connected component
of the undirected graph obtained by (i) removing all require-
ment links from the POSTNU and (ii) replacing contingent
links by their undirected variant. Since the STNU definition
does not permit two contingent links to have the same end-
point, each group, together with an activation timepoint, will
form a tree-like structure.

We now turn our attention to the special case where the
hidden timepoints occur in groups consisting of linear chains
of contingent links with a single non-hidden entrance and
single non-hidden exit. We will call these Single-Headed
POSTNUs.

For instance in a network A ⇒ E1 ⇒ E2 ⇒ B, E1 and
E2 are hidden timepoints that belong to the same hidden
group. (Notation convention: any Ei timepoint is hidden.)

Without loss of generality we may assume the entrance
timepoint is controllable since otherwise it could be replaced
by a controllable with a [0, 0] link to the original entrance.
The exit timepoint is necessarily observable.

In this paper, we exclude direct requirement links be-
tween two hidden timepoints,1 but otherwise the hidden
timepoints (and entrance and exit) may participate in re-
quirement links to other timepoints in the network. We then
assume without loss of generality that timepoints directly
linked to hidden timepoints are controllable, using [0, 0] link
replacement if necessary.

As shown in figure 2, the Variable Delay problems may
be regarded as a special case of Single-Headed POSTNUs,
with limitations on the hidden groups and requirement links.

Analysis From First Principles
In our analysis we will first restrict our attention to simple
Single-Headed POSTNUs, where the hidden groups each
contain only one hidden timepoint, and later relax that re-
striction.

In an earlier section, we described a “doubling” strategy
that enhanced the flexibility of execution. We now present

1For simplicity—the consequence of allowing them is unclear.

22

X E Y

Z

[e−, e+]

[z−, z+]

[y−, y+]

Figure 6: Generic Simple Problem

a first principles analysis in which the doubling arises nat-
urally. The analysis focuses on mathematical equivalences
that are independent of context. This eliminates some of the
contextual restrictions that applied in the Variable Delay set-
ting. As a side-benefit, the analysis sheds some additional
light on the semantics of the upper-case and lower-case la-
beled edges used in the STNU work (Morris 2014).

For a POSTNU, we may divide the projections into
groups that have the same values for their observable time-
points. We will call these groups macro-projections. The full
projections that also specify the hidden timepoint values will
be called micro-projections. Thus, each macro-projection
consists of a set of micro-projections. In effect, each macro-
projection, considered in isolation, may be regarded as a sep-
arate Strong Controllability problem whose projections are
its micro-projections. Then each hidden timepoint will have
a range of values within a particular macro-projection, and
this range will depend on the values of the observables in the
macro-projection.

For example, with the POSTNU (where E is hidden)

X
[0,10]
===⇒ E

[0,10]
===⇒ Y

the macro-projection where XY = 15 consists of all the
micro-projections where XE and EY sum to 15, such as
6 + 9, 10 + 5, etc. Within this set of micro-projections,
E can range from 5 to 10 (after X). Notice while E can
vary, the lower and upper bounds of the range, Elo and
Ehi, are fixed within the macro-projection. As we will see,
their values can be expressed in terms of formulas involv-
ing the observables. Thus, we may regard them as virtual
timepoints that live within the macro-projection, or virtual
observables (although we only know their values after the
relevant real observables have been observed). If we now im-
pose a [z−, z+] requirement on EZ, where Z is an executable
timepoint, a worst-case analysis suggests we should enforce
that by adding constraints Z ≥ Ehi + z− and Z ≤ Elo + z+.
In contrast to the case for virtual observables, for the exe-
cutable timepoint Z, we do need to know these constraints
are satisfied by the time Z is scheduled.

Redirected Requirements We now consider this analy-
sis in more detail for the simple generic problem shown in
figure 6 (similar to Variable Delay). Here, X and Y are non-
hidden timepoints. Both of these give us information bound-
ing the occurrence of E as follows:

E-X ≥ e−

E-X = (Y-X)-(Y-E)
≥ (Y-X)− y+

Thus,
E-X ≥ max(e−, (Y-X)− y+)

Similarly,
E-X ≤ e+

E-X = (Y-X)− (Y-E)
≤ (Y-X)− y−

so
E-X ≤ min(e+, (Y-X)− y−)

It is not hard to see that these are tight bounds; they rep-
resent the minimum and maximum extent of E-X within the
macro-projection determined by X and Y. As discussed in
the example, we will designate the lower and upper virtual
observables by Elo and Ehi respectively.

It is convenient to simplify the formulas by writing Ẏ for
Y-X. Thus, the X to E link has inferred bounds of

[max(e−, Ẏ − y+),min(e+, Ẏ − y−)]

Given a particular macro-projection, a dynamic strategy will
need to specify a value for Z that works for all the associ-
ated micro-projections, i.e., for all the values of E within this
range. Thus, we require Z−E ≥ z− for each such E. It is not
hard to see 2 that this is true if and only if it is true for the
upper bound of the range, i.e., Z− Ehi ≥ z−. Similarly, the
lower-bound requirement is equivalent to Z− Elo ≤ z+.

We can rewrite these requirements as supplying a lower
bound for XZ of Ehi + z− or

min(e+ + z−, Ẏ + z− − y−)

and an upper bound of Elo + z+ or

max(e− + z+, Ẏ + z+ − y+)

Notice the min/max modifiers have become reversed with
respect to the lower and upper bounds. One consequence is
that the bounds now represent implicit disjunctions rather
than implicit conjunctions. However, we will see that the two
alternatives can be processed together in a way that avoids
an exponential blowup.

Observability Tightening These derived bounds may not
be directly observable. For example, (z− − y−) may be
negative in which case the value of Ẏ + (z− − y−) is un-
known until the later time when (Y-X) is actually observed.
If (z−−y−) is non-negative, then Ẏ +(z−−y−) is observ-
able and can be left unchanged. Otherwise, when executing
Z we must replace Ẏ +(z−−y−) by the observable Ẏ , which
gives a strictly tighter lower bound that guarantees the actual
bound will be satisfied. We call this process observability
tightening. It is important to note that we only apply it to
executable timepoints, which is where the dynamic strategy
applies.

When executing Z, the upper-bounds also need “observ-
ability tightening” but the process is different because of the
asymetry of observation with respect to time. For example, if
(z+−y+) is negative, then the strictly tighter bound derived

2Z−E ≥ z− for each E, implies Z−Ehi ≥ z−. Conversely, if
Z− Ehi ≥ z− then Z− E ≥ Z− Ehi ≥ z− for each E.

23

X
Y’

Z
Y”

y : (e
− + y+)

z+− y+ −(z− − y−)

Y : −(e+ + y−)

Figure 7: Distance Graph

X E Y

Z

[0, 20]

[0, 10]

[0, 5]

−1

Figure 8: Cross Requirement Example

from Ẏ +(z+−y+) is “minus infinity”, which is equivalent
to dropping the Ẏ + (z+ − y+) term from the max expres-
sion. If (z+ − y+) is non-negative, then the term can be left
unchanged.

Derived Observables Rather than interpreting the bounds
on Z directly, we will pursue an alternative approach here,
and decompose them by introducing intermediates with re-
spect to the Elo and Ehi values. Although Elo and Ehi are
only virtual observables whose values may not be known un-
til later, we can form real observables from them by adding
approriate delay terms. For example, Ehi+y− = min(e++

y−, Ẏ) corresponds to an observation of “Y or e++y− after
X, whichever is earlier,” and Elo + y+ = max(e−+ y+, Ẏ)
may be paraphrased as “Y or e− + y+ after X, whichever
is later.” We will designate these derived observables as Y”
and Y’, respectively.

This motivates us to expand the lower bound for Z as

min(e+ + y−, Ẏ) + (z− − y−)

and the upper bound as

max(e− + y+, Ẏ) + (z+ − y+).

We will identify −min(u, Ẏ) with the upper-case la-
beled weight Y:−u and max(v, Ẏ) with the lower-case la-
beled weight y:v, as used in an STNU labeled distance
graph. (Morris 2014). (This will be justified later, but note
that semantically, min(u, Ẏ) is the same as the Wait for Y
until u after X condition in an STNU.)

Introduction of the intermediate Y’ and Y” thus produces
the labeled distance graph shown in figure 7. This may be
compared with figure 5.

Example We reiterate that the Y timepoint is distinct from
the added Y’ and Y” timepoints. The correlation between
them is captured by the labeled weights in the distance
graph. Consider, for example, the network shown in figure 8.
If the YZ edge was not there, the network would be Dynami-
cally Controllable, since Z could be executed between 0 and

X

Y

Z

Y’ Y”

y :
5

5 0

Y
: −20

y : 0 Y : −25

−1

Figure 9: Cross Distance Graph

5 after Y is observed. However, the YZ edge prevents that
strategy by requiring Z to come before Y, so the full net-
work is not Dynamically Controllable. The distance graph
after the transformations is shown in figure 9. Notice the
Lower-Case reduction applied to XYZ produces an XZ edge
of weight−1, which then forms a semi-reduced negative cy-
cle with the ZY”X path.

Hidden Timepoint Elimination After the requirement
edges between Z and E are replaced by the correspond-
ing edges between Z and X, E will be free of “side” links.
At that point, the XE link can be composed with the EY
link, giving a combined contingent link of XY with bounds
[e− + y−, e+ + y+], and E can be eliminated.

Now we return to the general case where there is a chain
of hidden timepoints

X =⇒ E1 =⇒ . . . =⇒ En =⇒ Y

between X and Y. Consider the first timepoint E1. The anal-
ysis that produced Elo and Ehi depended only on knowing
the contingent bounds for XE and EY. Viewing E1 as if it
were E, we know the bounds for XE directly, and we can
compute bounds for EY by composing the contingent links
in the E1 =⇒ . . . =⇒ Y path. 3 We can then proceed as in the
single E case to eliminate E1. This process can be repeated
with the other hidden timepoints in the chain until they are
all eliminated.

At this point, what remains is a labeled distance graph
with no hidden timepoints, which is a form suitable for in-
put to a standard cubic Dynamic Controllability checking
algorithm for STNUs (Morris 2014). This leads us to the
following theorem.
Theorem 1 For the given class of Single-Head POSTNUs,
the transformation process followed by the standard cu-
bic Dynamic Controllability checking algorithm provides a
complete decision procedure.

Proof: We have seen that the first transformation step re-
places the original requirement constraints with equivalent
ones. Because of the equivalence, this necessarily leaves the
set of valid dynamic strategies unchanged. The observabil-
ity tightening step does restrict the network, but any strate-
gies eliminated by the step would be non-dynamic since they

3Requirements do not affect the domains of contingent links.

24

would depend on unobserved values. Thus, the set of dy-
namic strategies before and after the transformation process
is the same. (This may be empty if the network is not dy-
namically controllable.)

Next we justify the identification of the max/min expres-
sions with the labeled weights by showing they behave the
same with respect to the key reductions used by the Dynamic
Controllability checking algorithm. In the following, we as-
sume u > 0 and v ≥ 0 and W 6= Y .

Upper-Case Reduction
−min(u, Ẏ) + v = −min(u− v, Ẏ − v)

= −min(u− v, Ẏ)
Lower-Case Reduction
−u+max(v, Ẏ) = max(v − u, Ẏ − u)

= v − u
Cross-Case Reduction
−min(u, Ẇ) + max(v, Ẏ) = v −min(u, Ẇ)

= −min(u− v, Ẇ)
Label Removal
−min(−v, Ẏ) = v

Note the use of the applicable observability tightening in
the Upper and Lower cases. The Cross-Case reduction ap-
plies the Lower and Upper derivations in succession. 4 Label
Removal follows from min simplification since Ẏ ≥ 0.

The theorem then follows from the completeness of
the (Morris 2014) algorithm. 2

Note that this result extends and unifies the previous
classes of POSTNU for which complete and tractable de-
cision procedures are known (Bit-Monnot, Ghallab, and In-
grand 2016; Bhargava, Muise, and Williams 2018).

Multi-Headed Observations
In the previous sections, we discussed problems where
bounds on the occurrence of a hidden timepoint could be
inferred from a single observation. In this section, we con-
sider the combined effect of multiple relevant observations,
the so-called “Multi-Headed Problem,” where there can be
multiple determinations that a hidden event has occurred,
each of which has its own bounds. This is illustrated in fig-
ure 10 for a two-headed problem.

In the figure, X and Z are executable timepoints, while E
is hidden, and Y and W are observables. The past occurrence
of E can be inferred from an observation of either Y or W,
which also provide (different) bounds on when E occurred.

In this section, we present some partial results concerning
these kinds of problems, and some possible approaches. A
complete solution remains a challenge for future work.

Local Dynamic Controllability
Although the ultimate goal is to develop transformation
methods that apply to POSTNU fragments independent of
context, a useful first step is to characterize Dynamic Con-
trollability for certain fragments in isolation. These can be
used as a check on the validity of more general approaches,

4Hint: first apply the LC derivation using u′ = min(u, Ẇ).

X E

Y

W

Z

[e−, e+]

[z−, z+]

[y−
, y+

]

[w
− ,w

+]

Figure 10: Two-Headed Problem

X E Yi

Z

[e−, e+]

[z−, z+]

[y−i , y
+
i]

Figure 11: Multi-Headed Problem

and thus help to guide further research. Here we prove a re-
sult of this kind. It also illustrates some distinctions between
the problem of checking Dynamic Controllability, and as-
pects regarding flexibility of execution.

The theorem applies to a problem with any number of
“heads.” Consider the generic example in figure 11 where
i is repeated from 1 to n. Here X and Z are executable time-
points, while E is hidden, and the Yi are separate observ-
ables.

Theorem 2 The network in figure 11 is Dynamically Con-
trollable if and only if either slack(EZ) ≥ slack(XE) or
slack(EZ) ≥ slack(EYi) for some i such that z+ ≥ y+i .

Proof: If slack(EZ)≥ slack(XE), then z++e− ≥ z−+e+

and then executing Z in a way that satisfies XZ = [z− +
e+, z++e−] constitutes a dynamic strategy since the EZ re-
quirement will be satisfied no matter the outcome of the XE
contingent link. Note that XZ can be placed as a require-
ment even if z+ + e− and z− + e+ are negative since X is
controllable.

Also, if slack(EZ) ≥ slack(EYi) and z+ ≥ y+i for some
i, then z+ − y+i ≥ z− − y−i , and executing Z in a way that
satisfies Yi Z = [z−−y−i , z+−y+i] will constitute a dynamic
strategy since then the EZ requirement will be satisfied no
matter the outcome of the EYi contingent link. Note Z can
be scheduled to satisfy this YiZ since z+ ≥ y+i and Yi is
observable.

Thus, the “if” direction is satisfied.
Conversely, suppose slack(EZ) < slack(XE) and, for all i,

either slack(EZ) < slack(E Yi) or z+ < y+i .
Let Q be the set of i such that slack(EZ) < slack(E Yi).

Define q = min {slack(E Yi) : i in Q}. Then slack(EZ) < q.
We define two projections P1 and P2 as follows.

• In P1, XE has its maximum extent e+

• In P2, XE has extent e+ − q

• For i ∈ Q:
– In P1, EYi has its minimum extent y−i

25

– In P2, EYi has extent y−i + q

• For i 6∈ Q:
– For both P1 and P2, Yi has its maximum extent y+i
Note that for i ∈ in Q, the observed XYi = XE + EYi has

the same extent e+ + y−i in both P1 and P2.
Also note that for i 6∈ Q, z+ < y+i , so in both P1 and

P2, none of the Yi will have been observed by the time Z
reaches its upper bound, and must have been scheduled.

From the above we see that P1 and P2 cannot be distin-
guished by any dynamic strategy, so Z must be scheduled at
the same time in both projections.

Finally, we note that the value of E in P1 and P2 differs by
an amount q. But slack(EZ) < q and Z is fixed. It follows that
the EZ constraint must be violated in either P1 or P2, which
contradicts the assumption of a dynamic strategy. Thus the
network is not Dynamically Controllable, proving the “only
if” direction. 2

We remark that Theorem 2 is consistent with the Vari-
able Delay transformations, as well as the doubling strategy,
with respect to the determination of Dynamic Controllabil-
ity. A point of interest is that for determining Dynamic Con-
trollability, the property of importance is the existence of at
least one “head” (or activation “tail”) with less slack (i.e.,
uncertainty) than the requirement. However, we have seen
that flexibility of execution can be enhanced by opportunis-
tic use of observations whose slack may exceed that of the
requirement.

Global Dynamic Strategy
In this section, we explore a first principles approach similar
to that used in the single-headed case, and see what addi-
tional issues arise. In particular, we consider the two-headed
problem in figure 10.

In this two-headed example, the observables are X, Y, and
W. Each of the observations gives us information bounding
the occurrence of E. We can then derive overall bounds in
a manner similar to that used in the single-head case. This
results in the following inferred bounds for the X to E link.
(Recall that Ẏ abbreviates Y-X, and Ẇ abbreviates W-X.)

[max(e−, Ẏ − y+, Ẇ −w+),min(e+, Ẏ − y−, Ẇ −w−)]

As for the single-head case, we define virtual observables
Elo and Ehi in terms of these bounds, and add constraints
Z ≥ Ehi + z− and Z ≤ Elo + z+ to give an X to Z link with
lower bound

min{e+ + z−, Ẏ + (z− − y−), Ẇ + (z− − w−)}
and upper bound

max{e− + z+, Ẏ + (z+ − y+), Ẇ + (z+ − w+)}.
Observability tightening must again be applied since Z

is an executable timepoint. One difference from the single-
head case is that there are two observables in each bound,
and the tightening needed may be different in each case.
In particular, the upper-bound tightening (which potentially
drops terms from the max expression) may eliminate one
or both of the observable terms. If it eliminates both, this

leaves a single value, which is analogous to an application
of the Lower Case Reduction. If it eliminates only one, this
leaves what is effectively a single-head expression. It may
also drop no terms, leaving an expression with multiple ob-
servable terms.

At this point it is unclear how far the analogy to the single-
head case can be carried further. Considering just the lower-
bound expression, the values (z− − y−) and (z− − w−)
added to the Y and W observables may be different, so there
is no one term that we can “take outside,” leaving a “bare”
observable, as we did for the single-headed case. This makes
the approach of introducing intermediate observables un-
clear, and even if we did, the double-observable expressions
cannot be identified with conventional STNU labels. 5

However, if we could sidestep the problem of checking
Dynamic Controllability, the multi-observation bounds on
executable timepoints could in fact be interpreted in ac-
cordance with a dynamic strategy. For example, consider a
lower bound of min(10, Ẏ +5, Ẇ). (Note that after observ-
ability tightening, any quantities added to an observable will
be non-negative.) This can be interpreted as an observation
of “Y+5 or W or 5 after X, whichever is earlier.” Similarly,
an upper bound of max(20, Ẏ , Ẇ + 10) corresponds to “Y
or W+10 or 20 after X, whichever is later.”

Closing Remarks
We have built on previous work in the area of STNUs, espe-
cially Variable Delay, and extended it to a POSTNU setting.
By means of a detailed First Principles analysis, we have
shown how to achieve a more flexible dynamic strategy for
execution. The results provide for additional context in terms
of network configuration. For the “single-headed” class of
problems considered, the determination of Dynamic Con-
trollability is complete and correct, and the dynamic strategy
preserves the full flexibility. We have also explored multi-
headed problems and presented partial results in this area.

Since the Dynamic Controllability and Strong Controlla-
bility problems for STNUs are tractable, and since POST-
NUs are essentially a combination of the two, it is plau-
sible to think that the general POSTNU problem might be
tractable, although a general solution to this problem is un-
known at the present time. It seems to be a difficult problem
to analyze, but a very interesting one, in view of the “arrow
of time” with respect to the observables, but not the unob-
servables. The Variable Delay paper may be regarded as es-
tablishing a beachhead in terms of new approaches to this
problem, and the current paper makes further forays in this
area. We are hopeful that future advances may lead to the
sought-after general solution.

References
Bhargava, N.; Muise, C.; and Williams, B. 2018. Variable-
delay controllability. In International Joint Conference on
Artificial Intelligence (IJCAI’18).

5Of course, one could introduce an explicit disjunction and han-
dle the observables separately, but that seems to abandon the search
for a tractable algorithm.

26

Bit-Monnot; Ghallab, M.; and Ingrand, F. 2016. Which
contingent events to observe for the dynamic controllability
of a plan. In International Joint Conference on Artificial
Intelligence (IJCAI’16).
Dechter, R.; Meiri, I.; and Pearl, J. 1991. Temporal con-
straint networks. Artificial Intelligence 49:61–95.
Hunsberger, L. 2009. Fixing the semantics for dynamic
controllability and providing a more practical characteri-
zation of dynamic execution strategies. In International
Symposium on Temporal Representation and Reasoning
(TIME’09).
Moffitt, M. D. 2007. On the partial observability of temporal
uncertainty. In AAAI Conference on Artificial Intelligence
(AAAI’07).
Morris, P., and Muscettola, N. 2005. Dynamic controllabil-
ity revisited. In AAAI Conference on Artificial Intelligence
(AAAI’05).
Morris, P.; Muscettola, N.; and Vidal, T. 2001. Dynamic
control of plans with temporal uncertainty. In International
Joint Conference on Artificial Intelligence (IJCAI’01).
Morris, P. 2014. Dynamic controllability and dispatchability
relationships. In International Conference on the Integration
of Constraint Programming, Artificial Intelligence, and Op-
erations Research (CPAIOR’14).
Vidal, T., and Fargier, H. 1999. Handling contingency in
temporal constraint networks: from consistency to control-
labilities. Journal of Experimental & Theoretical Artificial
Intelligence (JETAI) 11:23–45.

27

Executing Contingent Plans: Addressing Challenges in Deploying Artificial Agents
Christian Muise

christian.muise@ibm.com
IBM Research

Miroslav Vodolán
MVodolan@cz.ibm.com

IBM Watson

Shubham Agarwal
Shubham.Agarwal@ibm.com

IBM Research

Ondrej Bajgar
ondrej@bajgar.org

Future of Humanity Institute, University of Oxford
(work done while at IBM Watson)

Luis Lastras
lastrasl@us.ibm.com

IBM Research

Josef Ondrej
josef.ondrej@ibm.com

IBM Watson

Abstract

The vast majority of research in automated planning focuses
on generating a plan from an initial problem specification;
from the theoretical properties of this task to the implemen-
tation details required to do so efficiently. While such work
is often motivated by practical applications, there is far less
understanding of the issues associated with executing plans in
online environments. In this work we focus on this understud-
ied area, and the challenges / opportunities that arise when
executing complex plans. Unlike many works in plan execu-
tion, we consider a form of contingent plans as the source for
execution; their complexity stems from the sophisticated rep-
resentation of the action effects used to model the uncertainty
in the world. The key contribution of our work is a proposed
executor that can reason using the sophisticated action effects,
and we demonstrate the impact this can have empirically. In
support of an effective executor, we also consider (1) the con-
nection between the execution context and the planner’s view
of the state of the world; and (2) the separation between the
execution of an action (the aspect that affects the outside en-
vironment) and the realization of its effects (the aspect that
captures what has actually changed).

1 Introduction
The field of automated planning spans the entire pipeline of
developing and deploying a cognitive agent that needs to in-
teract with an environment. From the acquisition of planning
models to the online execution of plans, there is a broad set
of challenges that must be addressed. By far, most of the fo-
cus of the planning research community is directed towards
the generation of plans given a model. The plans themselves
are the end-game of this research. We focus on the crucial
and understudied aspect of executing complex plans, and the
challenges that come with it (we use complex to refer to
the fact that we use contingent plans with a sophisticated
representation of action effects for modeling uncertainty).
The added complexity provides a rich setting for the domain
modeler to capture the world effectively, and further allows
for more efficient implementations.

There is a variety of existing work on plan execution and
execution monitoring, and we discuss its relation to our work
later in Section 6. However, our work is distinct by its focus
on deploying rich plans that deal with uncertainty; i.e., the
challenges and opportunities that arise from execution moni-
toring in a setting of modeled non-determinism. A high-level

𝐴𝐸𝐹𝑎
Action Execution

Function call

Plan

Outcome Determination

Database
state, context, current node

𝐷𝐸𝑇𝑜

blocks until
action is fully
determined

state subset,
relevant context,
action

execution result,
context

new context,
new state,
new node

1

2

3

4

5

Figure 1: Architecture for executing contingent plans.

view of our proposed execution architecture can be seen in
Figure 1, and we highlight the key aspects here with further
details later in Section 3.

We assume that plans take the form of a controller or pol-
icy network, a format used by existing planners that deal
with uncertainty (Geffner and Geffner 2018; Muise, Belle,
and McIlraith 2014), but additionally address the key spec-
ification details external to the planning process that is re-
quired for execution. Effective planning relies on identifying
the right level of abstraction for a target system, and we treat
this abstraction as a first-class citizen in our work. We define
a crisp description of the connection between the planning
model and the context that is maintained as part of the real-
world our agent executes in (referred to as state and context
respectively in Figure 1).

Following a clear mapping between the state and context,
we address the interplay between the execution of an action
and the realization of its effect on the world (points 3 and 4
in Figure 1). This is particularly interesting when an action
can change the world in a non-deterministic manner. For this
work, we assume that the effects of an action, albeit non-
deterministic, are fully observable and accurate. In practice,
we have found using a fully observable setting not to be a
limitation (as opposed to partial observability), as many un-
certain settings can be adequately modeled with pre-existing
low order compilation techniques, e.g., using K1 compila-
tions as in (Palacios and Geffner 2009) or width-1 compila-
tions proposed by (Bonet and Geffner 2014).

28

As for the accuracy of effect determination, this is a sim-
plifying assumption that we make in order to maintain clar-
ity of the current work. It is a separate and important is-
sue to address the detection and handling of inaccurate or
noisy sensing during execution, and we defer these details
to future work on the executor we present in this paper. We
further assume that action execution is blocking and non-
concurrent (i.e., we do not yet extend to the general setting
of contingent temporal plan execution – an area that is quite
understudied, even theoretically).

The largest contribution of our work is to focus on the ex-
ecution of complex non-deterministic effects. With a com-
plex model of uncertainty in how the state of the world can
change as the result of an action, we must consider how best
to embed this complexity in an executing agent (step 4 in
Figure 1). We formalize the complex nesting of action ef-
fects, address some of the challenges in improving the ef-
ficiency of realizing these effects, and empirically demon-
strate the potential of sophisticated effect determination.

After providing the necessary background in Section 2, in
Section 3 we detail our three main contributions in executing
contingent plans: (1) the connection between the execution
context and the planner’s representation of the state of the
world; (2) the separation between the execution of an ac-
tion (the aspect that can actually affect the environment) and
the realization of its effects (the aspect that captures what
has actually changed); and (3) the interplay between com-
ponents of a complex action effect. In Section 4 we present
an evaluation of the impact our proposed approach to ac-
tion determination can have on the efficiency of execution.
In Section 5 we draw the connection between our work and
traditional execution monitors. We follow with a discussion
of related work in Section 6 and conclude in Section 7.

2 Preliminaries
The style of plans we consider are contingent plans
that would be generated from a Fully Observable Non-
Deterministic (FOND) or Fully Observable Probabilistic
(FOP) planner (Muise, McIlraith, and Beck 2012; Camacho,
Muise, and McIlraith 2016). We do not go into details on
how these plans are produced, but instead focus on the plan-
ning problem and solution specifications (the latter being a
core component of the input for execution). Unlike tradi-
tional planning specifications, we assume additional infor-
mation is available to specify how actions are executed and
observed (using callback functions described below).

Here, we review some of the commonly used notation,
and extend it to the rich setting required for effective exe-
cution.1 For simplicity, we will assume a FOND setting, but
all of the techniques work equally well in the probabilistic
setting as well: the key difference between the FOND and
probabilistic setting lays with how the plans are produced, as
the solution form is the same. The execution of a probabilis-
tic plan need not take into account the probabilities assigned
to action effects, and so we do not consider it further.

1For those familiar with non-deterministic formalisms, we do
not assume fairness of the domain model. This, however, is irrele-
vant for the purpose of executing plans.

Definition 1 (Planning Problem). A FOND planning prob-
lem 〈F , I,A,G〉 consists of fluents F that describe what is
true or false in the world, an initial state I ⊆ F where the
planning agent begins execution, a set of actions A that the
agent can do, and a goal G ⊆ F that specifies the partial as-
signment of fluents that must be achieved. A complete state
(or just state) is a subset of the fluents F that are presumed
to be true (all other presumed to be false); a partial state
is similarly defined but without any presumption about the
truth of fluents outside of the set.

Generally, we adopt the standard notation for FOND plan-
ning. The one exception is that we do not make the simplify-
ing assumption that the action effects are just a set of one or
more non-deterministic effects, one of which will be chosen
during execution, as is usually assumed in FOND planning.
In practice, the action effects are a nesting of and and oneof
clauses (the latter referring to the notion that exactly one of
the sub-clauses must be used).

We retain this complexity for two key reasons: (1) the ar-
bitrary nesting gives us a level of sophistication that the plan
executor can tap into (demonstrated in Section 3.3 and the
evaluation later); and (2) it provides a far more natural form
of action specification for the modeler to work with during
design and maintenance of the planning model.

Definition 2 (Complex Actions). Let a ∈ A be an action.
Prea ⊆ F then denotes the precondition of a – the set of
fluents that must hold for a to be applicable (that means a is
applicable in state s iff Prea ⊆ s). Effa denotes the effect
formula of a. An effect (sub)formula is one of the following:

(¬)f : a fluent f ∈ F or its negation∧
ϕ ϕ: a conjunction of effect subformulae⊕
ϕ ϕ: a mutually exclusive disjunction of effect

subformulae (i.e., exactly one is chosen)
The effect of an action can be viewed as an and-or tree. A
realization of the effect consists of all fluents or their nega-
tions that appear in the sub-tree which includes exactly one
child of each or node (here, we refer to them as oneof nodes)
and all children of each and node. Such realization can be
thought of as one possible result of the action’s execution.
We use R(a) to refer to the set of all realizations for action
a, and for each realization r ∈ R(a), we define DELr to be
the set of fluents removed from the state as a result of this
action and ADDr the fluents to be added. We make the non-
standard (but non-restricting) assumption that for all actions
and their realizations, ADDr ∩DELr = ∅.

The arbitrary nesting of fluents,
∧

, and
⊕

operators mir-
ror the common description of FOND problems in PDDL
using and and oneof clauses (Geffner and Bonet 2013).
For execution purposes, we assume that every sub-formula
of an action’s effect is uniquely identifiable, and will use set
notation to refer to those components (e.g., ϕ ∈ Effa). Note
that we only allow negation at the leaf level of the effect,
rather than allow arbitrary negation of sub-formulae. This is
due to the fact that the negation of

⊕
clauses is ill-defined

from the planning perspective, as is the use of or in effects,
which would arise from negating an and clause (this is in
contrast with the arbitrary nesting typically allowed in ac-

29

tion preconditions in the literature).
Solutions to a FOND problem come in two main flavours:

(1) policies mapping each state of the world to an action,
and (2) controllers, where the nodes and edges respectively
correspond to actions and possible outcomes (Geffner and
Bonet 2013). We adopt the latter in this work.
Definition 3 (Contingent Plan). A solution to a FOND plan-
ning problem (or contingent plan) is a graph 〈N , E , n0〉,
where N are the nodes of the graph corresponding to the
actions the agent should take and E are the edges corre-
sponding to the possible outcomes of each action associ-
ated with the nodes. We use n0 ∈ N to refer to the ini-
tial node in which the agent should begin executing. We fur-
ther assume that we have a function mapping nodes to ac-
tions (action : N → A) and functions mapping the realiza-
tions to the successors of a node (nextn : R(action(n))→
successors(n)).

The extra notation for mapping nodes and edges to the
original FOND problem allows us to tie together the gener-
ated plan and its execution. We make no assumptions on the
embodiment of the executing agent, but assume that black-
box callback functions are available for (1) the initial exe-
cution of the action (which affects the world) and (2) the
realization of that action’s impact.
Definition 4 (Callback Functions). We define the action ex-
ecution function AEFa to be the function used to execute
planning action a ∈ A. We define the determiner DETo to
be the function that is used to determine which outcome of
the non-deterministic effect o =

⊕
ϕ ϕ has occurred.

3 Approach
Our aim is to provide a coherent and effective strategy for
deploying agents that are based on the execution of a contin-
gent plan. In this section, we identify some of the key chal-
lenges that arise, and propose a solution to each of them.

The high-level architecture we propose for executing con-
tingent plans can be found in Figure 1. The execution in-
volves the following phases:

1. At every iteration of the execution monitor, we have the
state of the world (planner view), context of variable as-
signments (execution view), and the plan’s current node n
along with the corresponding action a = action(n).

2. The executor retrieves the relevant context and state for
action a (Section 3.2).

3. The AEFa function is called with the filtered context.
4. The action’s effect is determined (Section 3.3).
5. State and context are updated (Section 3.3).

To motivate the type of complex actions we wish to ex-
ecute, consider a home assistant scenario where the virtual
agent can perform common tasks around the household. Fig-
ure 2 shows an example PDDL representation of an action
to prepare the garage for a car to exit, and Figure 3 shows
the accompanying effect structure. Notice that some of the
non-determinism is independent (e.g., the locked status of
the garage door and alarm status), and some of the non-
determinism contains a dependency (e.g., the open status

(:action prepare_garage_car_exit
; garage door is locked and closed,
; and garage lights are off
:precondition (and (garage_door_locked)

(not (garage_door_open))
(not (garage_lights_on)))

:effect (and
; garage lights are turned on
(garage_lights_on)
(oneof
; a visual sensor in garage sets
; off the alarm if car is gone
(garage_alarm_on)
(and

; the car is inside the garage
(not (garage_alarm_on))
(have_fuel_level)))

(oneof
; garage door is malfunctioning
(garage_door_locked)
(and

; door unlocks successfully
(not (garage_door_locked))
(oneof

; garage door is obstructed
; by some object
(not (garage_door_open))
; garage door opens
(garage_door_open))))))

Figure 2: PDDL example for preparing to open a garage
door, which demonstrates the various complexities of nested
non-deterministic effects.

only plays a role when the door is not locked). We address
these points further in the following sections.

As alluded to in the previous section, we can view the
effect of an action as an and-or tree (demonstrated for our
example in Figure 3). While this analogy is useful for some
aspects, such as defining the realizations of an effect asR, it
is important to recognize the distinction from a Boolean for-
mula represented as an and-or tree: the effect of an action is
not a Boolean function to be evaluated. The biggest ram-
ification of this is that we evaluate the effect in a top-down
manner rather than bottom-up with the leaves. We elaborate
on this point further in Section 3.3. Also, note that unlike a
common and-or graph, we cannot simplify it by operations
such as merging parent-child or-or node relations or col-
lapsing seemingly tautological subtrees (such as the bottom
oneof node in Figure 3), as each oneof node has a unique
determiner associated with it.

3.1 State-Context Mapping
In a practical system, contextual information for the execu-
tion, above and beyond the planner’s abstract view of the
world, must be retained. The first key challenge that must be
overcome is the correspondence between the planner’s view
(state) and the information used during deployment (con-
text). The execution state is a set of fluents that hold and
are important for the planner to decide which actions can be
executed. The context C is an aligned assignment of values

30

AND

ONE
OF

ONE
OF garage_lights_on

AND

not garage_alarm_on have_fuel_level

AND

ONE
OF not garage_door_locked

garage_alarm_on garage_door_locked

garage_door_open not garage_door_open

Figure 3: Effect tree of the action in Figure 2.

C : F → Dom, where Dom is an arbitrary (and possibly
open ended) domain.

The alignment can be demonstrated with our running ex-
ample: the state contains a fluent (have fuel level) ∈
F denoting the level of fuel in the car. From the planner’s
viewpoint, the only important result from preparing the car
to exit the garage is whether the system knows the fuel level
or not (regardless of its value). The fuel level itself may play
a role in the execution and determination of other actions,
and so the context value associated with the fluent (e.g.,
C((have fuel level)) = 10L) becomes important.
For example, there may be another action, check fuel
that has a precondition (have fuel level) and non-
deterministically results in either (sufficient fuel)
or (not (sufficient fuel)) (the former of which
could act as a precondition for driving).

The advantage of splitting the execution information is
twofold. First, it situates the planner at the right level of
abstraction with the context maintained separately from the
state. Second, it allows an interconnection between the plan
and complex objects (like a web call result, agent coordi-
nates, etc.) which would be impractical to represent in the
planning domain. Maintaining the context alignment for all
the reachable states is one of the challenges in the outcome
determination, and described further in Section 3.3.

3.2 Action Execution -vs- Determination
The aim of contingent plan execution is running action call-
backs associated with each state to achieve a specified goal
state. However, in a non-deterministic world, an action can
cause one of multiple effects on the state and context. More-
over, in the real world, the effects may not be fully ob-
servable and may be too complex to be modeled perfectly.
Therefore, an essential part of the plan execution is deciding
which of the effects best describes the real world change, i.e.
the process of outcome determination.

This leads us to a natural decomposition of action execu-
tion into two phases (steps 3 and 4 from Figure 1 respec-
tively). First, running the function callback that implements
the real process in the outside world (e.g. calling a web ser-
vice), which gives the system a function call result (e.g., a
response code with a payload of information from a web ser-
vice). Second, the outcome determination, which processes
the function call result to update the execution state and con-
text. Note that the outcome determination is a complex mul-

tistep process described in detail in the following section.At
a high level, the determination process involves running the
appropriate callback functions in the appropriate order to es-
tablish what realization should be used to progress the state
of the world and solution status.

The separation between action execution and outcome de-
termination is not just conceptually attractive from the stand-
point of clearly separating distinct functionality in the im-
plementation; it also provides a natural means of encourag-
ing better declarative models. With the evaluation of an ef-
fect focused on computing what has changed (as opposed to
making additional changes to the real world), complex and
error-prone action models are avoided in lieu of multiple ac-
tions, each with a clearly defined purpose. The core anti-
pattern that is avoided is the strategy of embedding aspects
of an agent policy directly within an action effect (e.g., if a
determiner selects one branch, then further actuation occurs
that influences the environment).

In theory, the callback function and outcome determiners
could be given the entire state and context. However, such
a practice would result in an error-prone and hard to de-
bug system. Therefore, only the context subset claimed in an
action’s precondition is accessible for the action execution:
Ca = {C(f)|f ∈ Prea}. This drastically reduces the po-
tential for model mismatch due to modeling errors between
the planning view of state, and full view of context. Provid-
ing the full context and state would be akin to using global
variables exclusively in software development – a practice
largely viewed to be error-prone and undesirable.

3.3 Complex Outcome Determination
The outcome determination is a fundamental part of action
execution within a contingent plan. The role of determina-
tion is to decide on which realization r ∈ R(a) of the action
a has occurred after the action callback AEFa.

The action realization r is made up of ADDr and DELr

sets. During the outcome determination, those sets are re-
cursively calculated from the action effect tree, and use the
DET callbacks to compute these values for updating both
the execution state and context.

Recursive Effect Processing The effect tree consists of
nodes with two kinds of operators. First, the and operator∧

ϕ with sub-formulae ϕi can be recursively calculated as:

ADD∧
ϕ

=
⋃

ϕi

ADDϕi DEL∧
ϕ

=
⋃

ϕi

DELϕi

Second, the or operator
⊕

ϕ and its selected child ϕj :

ADD⊕
ϕ

= ADDϕj
DEL⊕

ϕ
= DELϕj

The effect tree leaves ϕL directly define the ADDϕL
and

DELϕL
sets. With this recursion defined, the action realiza-

tion update sets are calculated as update sets for the effect’s
top-level root node. The crucial part of outcome determina-
tion is the

⊕
ϕj

selection. In practical systems, the selection
can be a time consuming service call. For instance, the agent
can use an outcome determiner that performs a remote ser-
vice call to a deployed recognition model for detecting en-
tities in a scene; is there an object in the driveway or not,

31

is it dark enough outside to necessitate headlights, etc. Such
calls can take a long time to execute (due to network latency
and complexity of the computation), and therefore exhaus-
tive calculation over the whole tree (which can be full of
such expensive calls) might not be suitable.

Thanks to the tree structure, effects can be processed top-
down, evaluating only the nodes that can contribute to the
realization. For example, each oneof node needs only one
sub-tree to be fully evaluated, and processing of that one
sub-tree will only begin once the determiner for the oneof
node has identified that it is the right one to proceed with. On
the other hand, all of the sub-trees of an and node must be
evaluated, which can be done in parallel (recall that the re-
sulting update sets are not contradicting by definition). This
process is depicted in the following algorithm:

Algorithm 1 Parallel Nested Determination algorithm
1: procedure PARALLELNESTED(node)
2: if node.type = leaf then
3: PROCESSLEAF(node)

4: else if node.type = oneof then
5: child = DETnode() . Run determiner
6: PARALLELNESTED(child)

7: else if node.type = and then
8: apply async(PARALLELNESTED, node.children)

Note that on line 8, the children of an and node are con-
currently processed, while on lines 5-6, the determiner for a
oneof node is run until completion before recursing. Line 3
encapsulates the recursive ADD and DEL computation.

Retaining the full complexity of action effects thus gives
us two key improvements on efficiency: (1) the ability to
avoid evaluating sub-trees that correspond to outcomes a de-
terminer deems did not occur; and (2) the ability to run de-
terminers in parallel when they represent sibling sub-trees of
an and node in the effect graph.

Dependencies Between Effects Some of the determiners
may depend on finished execution of some other determin-
ers. For instance, in our garage example, the status of the
garage door being open or not is only relevant if the door is
unlocked. In more extreme examples, a determiner may not
be executable at all if its parent determiner did not resolve in
a way that enables the child (i.e., having the right outcome
selected). Such dependencies can prevent full parallel exe-
cution of the determiners simultaneously which would make
our recursive tree execution necessary to get any parallelism
and the associated speedup.

State and Context Updates With the realization update
sets prepared, the new state after the action execution can be
calculated as per usual: Si+1 = (Si \DELr) ∪ADDr.

Context C is the other part of execution information that
also has to be updated during the outcome determination.
The new context values are produced by the determination
process directly along the tree traversal described above (i.e.,
as part of the DET callback functions), and can additionally
make use of the AEF action response. Our running exam-

ple demonstrates one possible update: the fuel level will be
set during the determination process given the information
computed by AEFprepare garage car exit. Formally, a real-
ization r ∈ R(a) will have context updates Cr defined as:

{C(f) = val | f ∈ ADDr} ∪ {C(f) = ⊥ | f ∈ DELr}
The assignment of C(f) = val is defined by the deter-

miner callback for the effect tree’s leaf nodes, DETϕf
(not

all fluents have context necessary for execution, in which
case we set C(f) = ⊥). Notice that such updates force the
precise alignment of context and state, which is necessary
for the system to function properly during execution.

Dependencies introduced by real world mechanics can
cause difficulties for context value updates. For instance, flu-
ent (have position) and its context value [x, y] may
represent an agent position (and the validity of its read-
ing). Then, fluents like (have x) and (have y) and
their context values [x] and [y] correspond to separate po-
sition sub-components. An action changing a single sub-
component for fluent (have x) must also update context
value of (have position) which breaks action encap-
sulation and may lead to human errors during development.

Effective modeling of such real world dependencies is an
interesting challenge that we keep for future work.

Completing Determination Once we have completed the
determination process for action a, we are left with a new
state s, context C, and realization r ∈ R(a). Given the cur-
rent node n of the contingent plan, we compute the updated
node as n′ = nextn(r). The final stage of the executor is to
store all of the newly computed information (s, C, n′) in the
centralized database (step 5 in Figure 1).

4 Evaluation
To demonstrate the effectiveness of the proposed effect pro-
cessing, we focus on the time it takes to do the determina-
tion. This speaks directly to the core novelty of our work:
the execution of actions with complex nested effects.

We simulated the time to evaluate the outcome of three
representative effect trees, which are depicted in Figures 4,
5, and 6. The size and the structure of the trees remained ex-
actly the same during the simulation and only the outcomes
and times needed to run the determiners changed.

For the purpose of this section, we will call our approach
the parallel nested algorithm. Recall that it evaluates each
and node in parallel and it uses the nested structure of the
graph so it recursively evaluates only one sub-tree of an
oneof node. We compared it with three naive algorithms:

1. parallel flat: does not care about the tree structure at all
and evaluates all the determiners in parallel and then eval-
uates the outcome (which takes negligible time compared
to the determiners)

2. sequential nested: the same as our proposed approach ex-
cept the and nodes are not evaluated in parallel but se-
quentially (representing the effect a single core machine
would have on computation)

3. sequential flat: the same as parallel flat but evaluates the
determiners sequentially

32

AND

ONE
OF

ONE
OF

AND

ONE
OF

ONE
OF

ONE
OF

ONE
OF

ONE
OF

ONE
OF AND AND ONE

OF

Figure 4: General complex effect tree, which is the most
interesting from the practical application point of view. It
could be, for example, a slightly more advanced version of
the graph in Figure 3.

AND

ONE
OF

ONE
OF

ONE
OF

ONE
OF

ONE
OF

ONE
OF

Figure 5: Flat effect tree that serves as a benchmark for how
well the algorithms scale with growing number of determin-
ers, that could be run in parallel.

ONE
OF

ONE
OF

ONE
OF

ONE
OF

ONE
OF

ONE
OF

Figure 6: Deeply nested effect tree that serves as a bench-
mark for how well the algorithms scale with growing num-
ber of nested determiners.

Let us assume in this section, that all the determiners can
run in an arbitrary order. If running some of the determiners
required other determiners to run before, we could not use
the flat algorithms. In this case, running a determiner in a
node requires all of the determiners in its parent nodes to
run prior, and the nested algorithms are the natural way to

2 1 0 1 2 3 4 5
ln(t)

0.0

0.2

0.4

0.6

0.8

1.0

Re
la

tiv
e

fr
eq

ue
nc

y
of

 ln
(t)

sequential flat (= 2.62)

sequential nested (= 1.57)

parallel nested (= 1.12)

parallel flat (= 1.48)

Figure 7: Distributions of logarithm of time to determine
outcome of effect tree in Figure 4 (means in legend).

1 0 1 2 3 4
ln(t)

0.0

0.2

0.4

0.6

0.8

Re
la

tiv
e

fr
eq

ue
nc

y
of

 ln
(t)

sequential flat (= 2.17)

sequential nested (= 2.17)

parallel nested (= 1.27)

parallel flat (= 1.27)

Figure 8: Distributions of logarithm of time to determine
outcome of effect tree in Figure 5 (means in legend).

4 2 0 2 4
ln(t)

0.0

0.2

0.4

0.6

0.8

Re
la

tiv
e

fr
eq

ue
nc

y
of

 ln
(t)

sequential flat (= 2.17)

sequential nested (= 0.63)

parallel nested (= 0.63)

parallel flat (= 1.27)

Figure 9: Distributions of logarithm of time to determine
outcome of effect tree in Figure 6 (means in legend).

evaluate the tree.
We restrict our attention only to the time it takes to eval-

uate the determiners in oneof nodes since this is the most
expensive operation. We assume these times are all indepen-
dent following LogNormal(0,1) distribution. This was cho-
sen, as it is a reasonable distribution for the time to make
an API call in our experience with the deployed system. To

33

gain a better perspective the actual running time of one de-
terminer can be on the order of milliseconds to seconds. We
also need to simulate the different outcomes. We do this re-
cursively going top down in the tree selecting nodes that will
belong to the outcome. The only decision we have to make
in the process is what child of a previously selected oneof
node to select next. We do this independently on selections
in the previous oneof nodes so that all the child nodes have
equal probability of being selected.

We run 100,000 simulations, sampling the determiner ex-
ecution times and the outcome at each step. Histograms of
the logarithm of simulated times for the different algorithms
are depicted in Figures 7, 8, and 9. We chose to display his-
tograms of ln(t) instead of the actual times for clarity when
comparing them with the histogram of log-times to run a sin-
gle determiner, which would be depicted just as a probability
density function of a standardized normal distribution.

Obviously we would expect the parallel versions to be
faster than their sequential counterparts. The interesting
comparison is between the parallel nested and parallel flat
approaches. It is clear that the parallel flat will have to call
on average more determiners, so it is more computationally
expensive, but it is limited only by the time it takes to run the
slowest determiner in the tree whereas the parallel nested al-
gorithm waits for determiner in an oneof node to finish be-
fore running any determiner in its sub-trees. However, as we
can see from the histograms, the parallel nested approach
still outperforms parallel flat on average since it often does
not have to call the slowest determiner at all. This is perhaps
quite surprising considering all the determiner times were
drawn from independent identical distributions.

In each step of the simulation, we used the same outcome
and sample of determiner times for all the four algorithms,
so it is not a surprise that the histograms of both parallel and
both sequential methods coincide in Figure 8, since the par-
allel flat and parallel nested algorithms are the same for the
graph in Figure 5 as are their sequential counterparts. This is
due to the fact that there is no nested structure in the oneof
nodes which could be exploited by the nested algorithms.
The same thing happens for sequential nested and parallel
nested histograms in Figure 9. This is because there are no
and nodes in the graph, so there is no chance for the algo-
rithms to run them in parallel.

Generally, we find that following the complex effect struc-
ture for determination, and using parallel execution when-
ever possible, represents a clear advantage.

5 General Execution Monitoring
In this paper, we have assumed that the executor adopts a
view of accurate determination and proceeds without a no-
tion of active monitoring on any discrepancies that may ex-
ist between the expected and observed states. However, our
work in no way prohibits the use of a high-level EM that is
capable of detecting full discrepancies with the anticipated
state, and re-adjusting (or re-planning) as necessary. There
is a rich array of work on EM systems (some of which is
discussed in Section 6) that focus on only relevant aspects
of the state in order to ensure the plan remains valid, and we
consider this line of work to be fully complementary to ours.

The most natural place for integration would be in step 5
of the architecture presented in this paper. Rather than sim-
ply updating the database with the new state, context, and
node in the solution graph, we instead defer to an EM system
that is capable of detecting relevant discrepancies and then
adjusting as necessary: either by finding the most appropri-
ate point in the plan from which to continue execution or
replanning entirely. Note, however, that we have inherently
adopted a notion of contingency and modeled uncertainty, as
our plans are fully contingent and not sequential. Thus, dis-
crepancies will only arise if we have indicators aside from
the determiners that are capable of computing the value of
context variables and surfacing any potential discrepancies.

6 Related Work
Much execution monitoring work focuses on the theoreti-
cal properties of the system without diving into the details
of how the physical system should map to the planner’s ab-
straction of the environment, or forgo entirely the notion of
a framework for determining action outcomes. TPOPEXEC
(Muise, Beck, and McIlraith 2013) addresses the theoreti-
cal properties of deterministic temporal partial order plans
(as opposed to the conditional plans we consider). The Kirk
and Drake systems (Block, Wehowsky, and Williams 2006;
Conrad and Williams 2011) similarly focus on partial order
temporal plans, but with choice points in the execution (akin
to contingent solutions). A similar approach is employed by
the Razor system for compiling contingent plans in an infor-
mation gathering setting (Friedman and Weld 1997). How-
ever, these works mainly deal with compiling one form of
plan with unrealized choice points, to an executable or dis-
patchable form: the complexity of non-determinism is trivial
(compared to the full nesting of and and oneof that we con-
sider in Section 3.3), and there is no focus on the mapping to
realized systems (i.e., correspondence between context and
state, and separation of action execution and realization).
Other work extends the notion of uncertainty to temporal
durations (Karpas et al. 2015), but again this is mainly theo-
retical in nature and focuses on a separate set of challenges.

Closer to our work, the IXTET-EXEC system (Lemai and
Ingrand 2004) focuses on some of the challenges an execu-
tor faces when plans are deployed; the key difference being
that their focus is on temporal actions and not contingent
plans with modeled uncertainty (i.e., complementary aspects
of execution). The system is built on the OpenPRS procedu-
ral executor (Ingrand 2015), and unexpected failures to the
execution are handled through replanning and plan repair ap-
proaches. Languages for executors have also been proposed,
such as PLEXIL (Verma et al. 2005) and RMPL (Williams
et al. 2003). Similar to the work cited above, the focus of
these languages is to place temporal-based plans in a dis-
patchable form, with the focus on adhering to the semantics
at the planning level of abstraction and temporal consistency
of the execution.

The languages of PLEXIL and Esterel (Berry and
Cosserat 1984) are programming languages for autonomous
systems. Their relation to our work is in the output format of
the contingent plans we produce, but not in the higher-level
philosophy of declarative modeling. Of the two languages,

34

PLEXIL uses a representation closer to the complex nested
effects we describe (i.e., a graph of nodes with key similar
interpretation). Both PLEXIL and Esterel are well-defined
programming languages with rich expressibility. Our work
aims at addressing a different set of challenges with respect
to execution: namely the specification and handling of com-
plex action effects, and the challenges / opportunities sur-
rounding the connection between state and context.

In terms of the state and context mapping that we pro-
pose, whenever the context C is defined for a fluent f (i.e.,
C(f) 6= ⊥), then we can view f as representing the fact
that we know the value of a particular variable with a rich
domain. This mirrors the idea of the Knows predicate in
(Scherl and Levesque 1993) and KnowIf (KIF) variables
in (Brenner and Nebel 2009). Also related is the recent
work on integrating PDDL plan execution with the CLIPS
rule-based production system (Niemueller, Hofmann, and
Lakemeyer 2018). In this work, various models are de-
fined, including the planner model (which corresponds to
our planning state view) and world model (which corre-
sponds loosely to our context view). Key differences, how-
ever, include our focus on non-deterministic settings and the
direct relation to implementations of action execution and
outcome determination.

The connection between high-level action specifications
and low-level sensor / behaviour modalities is described in
the work focusing on Object-Action Complexes (Krüger et
al. 2011). The connection to our work is in the correspon-
dence between planning actions and the action execution
functions we use to realize them. However, there is little
more to be drawn from the parallel, aside from the proposed
approach of maintaining two views on the world.

Similar approaches can be seen in the robotics community
through works such as the KNOWROB, SkiROS, and ROS-
Plan systems (Tenorth and Beetz 2009; Rovida et al. 2017;
Cashmore et al. 2015). The robotics focused systems simi-
larly solve the task of linking the planning state and the ex-
ecution context. Differences include their focus on temporal
execution and the monolithic view of action execution / de-
termination. Perhaps the most mature of the existing work,
ROSPlan, accepts a variety of input plan specification lan-
guages, including simple sequential plans, the Esterel plan
language (which represents a temporal plan without the un-
certain contingencies we aim to support), contingent plans
represented as state-to-action policies, and Petri Net Plans
(Ziparo et al. 2008). Both the contingent plan and Petri Net
Plan representations fail to capture much of the sophistica-
tion we introduce in this paper, including the separation of
action execution / determination, and the nested function-
ality of non-deterministic effects. Conversely, aspects such
as temporal action execution, loops, and interrupts are com-
ponents that the various ROSPlan interfaces are capable of
expressing that we forgo in our present work.

Similar to the discussion in Section 5 on embedding our
work into a larger EM framework, there is potential for us
to extend a system such as ROSPlan to capture our method-
ology for the robotic setting. The advantage would largely
come in the form of the improved expressivity in action ef-
fects for the declarative specification of robot behaviour.

7 Summary
We have presented a high-level architecture for executing
contingent plans containing actions with complex nested ef-
fects to model uncertainty, and empirically demonstrated
the improvements that our method can bring. In support
of defining an effective execution agent, we also detailed a
crisp connection between the abstraction used by a planner
and the real-world view, and introduced a method for ef-
fective modeling by distinguishing the process by which an
agent affects the world from the process which updates its
understanding as a result. Our work fills a critical gap in the
pipeline of using automated planning in practical settings.
The principles we put forward in this work stem from the
lessons learned in developing and deploying virtual agents
driven by contingent plans on prototype applications in an
industrial setting. In particular, the need for complex action
effects, and the effective determination of them, was crit-
ical to the successful execution of the plans. We plan to
open source a generalized version of our execution frame-
work along with the publication of this work. We conclude
by detailing some of our plans for future work in the area.

7.1 Future Work
There are many directions that we would like to explore,
now that we have introduced a foundation for the effective
execution of contingent plans. Here, we list two of the most
compelling avenues for future work.

Imperfect Models Following on the connection to more
general execution monitors, there is an interesting discon-
nect between modeled uncertainty, and observed discrepan-
cies. If monitors detect that the execution results in a de-
termination that is incorrect relative to the true context val-
ues, then either the modeled abstraction of uncertainty or
the determination process must be erroneous. Rather than
simply following the standard EM practice of continuing the
execution of another part of the plan (or replanning in the
worst case), we have the opportunity to repair the model di-
rectly. This would include one of two options: (1) changing
the model directly to account for new possible uncertainties
in the action effect (and thus requiring new determiners to
be introduced); or (2) improving the determination process
directly so that incorrect outcome predictions are improved
over time. We have begun to explore the latter possibility and
have seen promising results for certain types of determiners.

Advanced State-Context Mapping A major area of fu-
ture work is the connection between state and context, where
some of the key challenges are identified in (Frank 2015).
Currently, we only consider a subset of the fluents to have
expressive domains associated with them. However, in gen-
eral execution, fluents in the planning model could repre-
sent a complex function of context (e.g., an inequality over
real-valued variables). Conversely, a single context variable
could yield multiple fluents (e.g., (low fuel level)
and (high fuel level) for our running example). The
mapping between context and state becomes substantially
more difficult in this setting, but addressing it is an impor-
tant step towards creating a more powerful executive.

35

References
Berry, G., and Cosserat, L. 1984. The ESTEREL syn-
chronous programming language and its mathematical se-
mantics. In Seminar on Concurrency, Carnegie-Mellon Uni-
versity, Pittsburg, PA, USA, July 9-11, 1984, 389–448.
Block, S. A.; Wehowsky, A. F.; and Williams, B. C. 2006.
Robust execution on contingent, temporally flexible plans.
In AAAI, volume 2006, 802–808.
Bonet, B., and Geffner, H. 2014. Belief tracking for plan-
ning with sensing: Width, complexity and approximations.
J. Artif. Intell. Res. 50:923–970.
Brenner, M., and Nebel, B. 2009. Continual planning and
acting in dynamic multiagent environments. Autonomous
Agents and Multi-Agent Systems 19(3):297–331.
Camacho, A.; Muise, C.; and McIlraith, S. A. 2016. From
fond to robust probabilistic planning: Computing compact
policies that bypass avoidable deadends. In 26th Interna-
tional Conference on Automated Planning and Scheduling.
Cashmore, M.; Fox, M.; Long, D.; Magazzeni, D.; Ridder,
B.; Carrera, A.; Palomeras, N.; Hurtós, N.; and Carreras,
M. 2015. Rosplan: Planning in the robot operating system.
In Proceedings of the Twenty-Fifth International Confer-
ence on Automated Planning and Scheduling, ICAPS 2015,
Jerusalem, Israel, June 7-11, 2015., 333–341.
Conrad, P. R., and Williams, B. C. 2011. Drake: An efficient
executive for temporal plans with choice. J. Artif. Intell. Res.
42:607–659.
Frank, J. 2015. Reflecting on planning models: A chal-
lenge for self-modeling systems. In Autonomic Computing
(ICAC), 2015 IEEE International Conference on, 255–260.
IEEE.
Friedman, M., and Weld, D. S. 1997. Efficiently executing
information-gathering plans. In Proceedings of the Fifteenth
International Joint Conference on Artificial Intelligence, IJ-
CAI, 785–791.
Geffner, H., and Bonet, B. 2013. A Concise Introduction
to Models and Methods for Automated Planning. Synthesis
Lectures on Artificial Intelligence and Machine Learning.
Morgan & Claypool Publishers.
Geffner, T., and Geffner, H. 2018. Compact policies for fully
observable non-deterministic planning as SAT. In Proceed-
ings of the Twenty-Eighth International Conference on Au-
tomated Planning and Scheduling, ICAPS 2018, Delft, The
Netherlands, June 24-29, 2018., 88–96.
Ingrand, F. 2015. Open procedural reasoning systems (open-
prs). https://git.openrobots.org/projects/
openprs. Accessed: 2018-07-23.
Karpas, E.; Levine, S. J.; Yu, P.; and Williams, B. C.
2015. Robust execution of plans for human-robot teams.
In Proceedings of the Twenty-Fifth International Confer-
ence on Automated Planning and Scheduling, ICAPS 2015,
Jerusalem, Israel, June 7-11, 2015., 342–346.
Krüger, N.; Geib, C. W.; Piater, J. H.; Petrick, R. P. A.;
Steedman, M.; Wörgötter, F.; Ude, A.; Asfour, T.; Kraft, D.;
Omrcen, D.; Agostini, A.; and Dillmann, R. 2011. Object-
action complexes: Grounded abstractions of sensory-motor

processes. Robotics and Autonomous Systems 59(10):740–
757.
Lemai, S., and Ingrand, F. 2004. Interleaving temporal
planning and execution in robotics domains. In Proceedings
of the Nineteenth National Conference on Artificial Intelli-
gence, Sixteenth Conference on Innovative Applications of
Artificial Intelligence, July 25-29, 2004, San Jose, Califor-
nia, USA, 617–622.
Muise, C. J.; Beck, J. C.; and McIlraith, S. A. 2013. Flexible
execution of partial order plans with temporal constraints.
In IJCAI 2013, Proceedings of the 23rd International Joint
Conference on Artificial Intelligence, Beijing, China, August
3-9, 2013, 2328–2335.
Muise, C.; Belle, V.; and McIlraith, S. A. 2014. Comput-
ing contingent plans via fully observable non-deterministic
planning. In The 28th AAAI Conference on Artificial Intelli-
gence.
Muise, C.; McIlraith, S. A.; and Beck, J. C. 2012. Improved
Non-deterministic Planning by Exploiting State Relevance.
In The 22nd International Conference on Automated Plan-
ning and Scheduling, The 22nd International Conference on
Automated Planning and Scheduling.
Niemueller, T.; Hofmann, T.; and Lakemeyer, G. 2018.
Clips-based execution for pddl planners. In Workshop on
Integrated Planning, Acting, and Execution (IntEx’18).
Palacios, H., and Geffner, H. 2009. Compiling uncertainty
away in conformant planning problems with bounded width.
J. Artif. Intell. Res. 35:623–675.
Rovida, F.; Crosby, M.; Holz, D.; Polydoros, A. S.; Groß-
mann, B.; Petrick, R. P.; and Krüger, V. 2017. Skirosa
skill-based robot control platform on top of ros. In Robot
Operating System (ROS). Springer. 121–160.
Scherl, R. B., and Levesque, H. J. 1993. The frame problem
and knowledge-producing actions. In Proceedings of the
11th National Conference on Artificial Intelligence. Wash-
ington, DC, USA, July 11-15, 1993., 689–695.
Tenorth, M., and Beetz, M. 2009. KNOWROB - knowl-
edge processing for autonomous personal robots. In 2009
IEEE/RSJ International Conference on Intelligent Robots
and Systems, October 11-15, 2009, St. Louis, MO, USA,
4261–4266.
Verma, V.; Estlin, T.; Jónsson, A.; Pasareanu, C.; Simmons,
R.; and Tso, K. 2005. Plan execution interchange language
(plexil) for executable plans and command sequences. In
International symposium on artificial intelligence, robotics
and automation in space (iSAIRAS).
Williams, B. C.; Ingham, M. D.; Chung, S. H.; and Elliott,
P. H. 2003. Model-based programming of intelligent em-
bedded systems and robotic space explorers. Proceedings of
the IEEE 91(1):212–237.
Ziparo, V. A.; Iocchi, L.; Nardi, D.; Palamara, P. F.; and
Costelha, H. 2008. Petri net plans: a formal model for
representation and execution of multi-robot plans. In 7th
International Joint Conference on Autonomous Agents and
Multiagent Systems (AAMAS 2008), Estoril, Portugal, May
12-16, 2008, Volume 1, 79–86.

36

A Hybrid Planning and Execution Approach Through HTN and MCTS

Xenija Neufeld
Faculty of Computer Science
Otto von Guericke University

Magdeburg, Germany,
Crytek GmbH, Frankfurt, Germany

Sanaz Mostaghim
Faculty of Computer Science
Otto von Guericke University

Magdeburg, Germany

Diego Perez-Liebana
School of Electronic Engineering

and Computer Science
Queen Mary University of London

London, United Kingdom

Abstract

Many planning environments require from an agent to show
a combination of long-term strategical behavior and reactive
short-term tactical behavior. In order to combine planning on
both hierarchy levels and to detect potential failures, they also
require an interleaved planning and execution approach. In
this work, we propose a hybrid planning approach with a Hi-
erarchical Task Network planner being responsible for strate-
gical planning and Monte Carlo Tree Search taking over the
tactical decision-making. We describe a possible way to con-
nect these layers and a monitoring system that is able to detect
failures on higher hierarchy levels during execution. The pro-
posed approach is tested in a Real Time Strategy game that
offers a highly-dynamic and non-deterministic multi-unit en-
vironment.

1 Introduction
Many real-time planning problems such as rescue missions
or collaboration of multiple industrial robots require plan-
ning approaches that combine strategical long-term planning
and micro-action control and execution. Real Time Strat-
egy (RTS) games provide complex simulation and test envi-
ronments for such approaches since they are challenging in
many ways. Not only does an intelligent agent playing such
games need to compute a plan in a very short time (usu-
ally within milliseconds), it also needs to operate in a huge
search space, plan for multiple heterogeneous units that ex-
ecute durative actions and act in a non-deterministic envi-
ronment. The non-determinism comes from the environment
itself and the actions of the agent and its opponent. Addition-
ally, most RTS games provide only partial observability of
the environment.

In order to perform well in RTS games, an agent needs to
incorporate both hierarchy levels: strategical planning (for
example how many buildings and mobile units to build and
when to start an assault) and tactical micro-management on
a unit level (for example how to position units). Addition-
ally, the agent needs to constantly monitor the environment
and stay reactive to its changes and the opponent’s actions
(for example instead of continuing to build new buildings,
defend its own base if the opponent attacks first).

Copyright c© 2019, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Monte Carlo Tree Search (MCTS) approaches have
shown to perform well in big search spaces of several
games (Ishihara et al. 2016; Sironi et al. 2018; Perez, Rohlf-
shagen, and Lucas 2012). However, due to a huge branching
factor in RTS games, MCTS usually can only plan a few
steps ahead. Thus it can be used for one hierarchy level only
(usually the tactical level). On the other hand, Hierarchical
Task Networks (HTN) provide a way to create high-level
strategies decreasing the search space early in the search
process but are not suitable for micro-management due to
large branching factors and the high cost of manual au-
thorship of the planning domain. Furthermore, because of
very high dynamics of an RTS game environment, long-term
HTN plans are very likely to fail during execution whereas
MCTS returns a single action to be executed in the current
step.

In order to profit from the advantages of both approaches
we propose a hybrid approach that allows for strategical
and tactical planning, monitoring, and execution. We use an
HTN planner on a high level, MCTS on the unit-level and
a monitoring system that detects plan failures at execution
time and triggers re-planning. We test the proposed approach
in microRTS1 (Ontañón 2017b; Ontañón et al. 2018), a sim-
plified research RTS environment which takes care of the
execution of the actions provided by MCTS. Although mi-
croRTS provides a partially-observable mode, dealing with
partial observability is out of scope of this paper.

The hybrid planning happens in the following way: the
HTN planner creates a high-level plan, such as collect re-
sources, build barracks, create military units, attack the op-
ponent. Each of these tasks is defined by a function de-
scribing the objectives that are optimized by this task. Af-
terwards, this plan is passed to the agent for execution and
the current task is forwarded to MCTS to search for an opti-
mal move. Since MCTS operates with evaluation functions,
it selects the function of the current HTN task to evaluate the
game states after its rollouts (see Section 2.2). At the same
time, the agent monitors the game environment, re-evaluates
the HTN tasks and triggers re-planning, if needed.

In the approach proposed here, MCTS switches between
different evaluation functions as indicated by the planner.
Our expectation is to see a more complex behavior than us-

1microRTS: https://sites.google.com/site/microRTSaicompetition

37

ing a singe evaluation function. The main contributions of
this work are: a proposal of a way to combine HTN plan-
ning with MCTS, a planning and execution architecture us-
ing this hybrid planning technique and the comparison of
this approach against a pure MCTS agent that uses a single
evaluation function throughout the whole game, a pure HTN
agent and an agent that combines strategical and tactical be-
havior selection.

The rest of the paper is structured as follows: Section 2
gives some insights into the test environment and the ap-
proaches used for our work. Section 3 shows related ap-
proaches followed by Section 4 that describes the hybrid
planning architecture and the interleaved planning, monitor-
ing, and execution processes. Section 5 gives insights into
the experimental work and its results. Finally, Section 6 con-
cludes our findings and outlines future work.

2 Background
2.1 HTN Planner
Similarly to (Höller et al. 2018a; 2018b), we define a Hier-
archical Task Network (HTN) planning problem by the tu-
ple p = (F,C,A,M, sI , cI). F is a set of state variables
or facts. Starting from an initial state sI ∈ 2F , the plan-
ner creates a plan by decomposing the initial compound task
cI ∈ C into further compound or primitive tasks (A). Prim-
itive tasks usually represent actions that an agent can ex-
ecute and thus cannot be further decomposed. Compound
and primitive tasks build a task network which is defined
as tn = (T,≺, α) with T being a set of possibly empty
identifiers and α : T → A ∪ C. When decomposing a
compound task c ∈ C, the planner selects one of the de-
composition methods (m ∈ M) that can decompose the
given task. Methods are defined as a triple (c, pre, tn) with
the compound task c that is decomposed, a network of sub-
tasks tn resulting from the decomposition and preconditions
pre ∈ 2F under which the method can be applied. Simi-
larly, we define primitive tasks by (pre, add, del, post, ef)
with preconditions, effects that add or delete facts from a
state (add ∈ 2F and del ∈ 2F respectively) after execut-
ing a task.

Additionally to the definitions provided in (Höller et al.
2018a; 2018b), we add preconditions to method definitions,
and postconditions and evaluation functions ef to primitive
tasks. Postconditions post ∈ 2F define what facts are re-
quired to hold in the state in which the task finishes. We
use postconditions during the execution phase to detect the
end of a durative task (see Section 4.2). Evaluation func-
tions of primitive tasks are used as an interface between
HTN and MCTS and are described in more detail in Sec-
tion 4.1. The HTN planner implemented in this work is a
total-order planner similar to one of the most known HTN
planners SHOP (Nau et al. 1999) and SHOP2 (Nau et al.
2003).

2.2 MCTS
Monte Carlo Tree Search (MCTS) algorithms search for op-
timal solutions of Multi-armed Bandit (MAB) problems bal-
ancing between exploration and exploitation (Browne et al.

2012). They combine tree search and Monte Carlo simula-
tions. Searching through the space of (game) states, the tree
starts from a root node, selects a leaf node following a tree
policy and expands it executing the corresponding action.
The tree policy consists of selecting and expanding nodes
and is usually performed until reaching a terminal criterion.
Each node s stores the number of times that it was visited
N(s), the number of times that a certain action a was ap-
plied in this node N(s, a), and the average reward Q(s, a)
gained from its visit.

After expanding the tree, a simulation runs from one
of the leaf nodes following a default policy (for example
random selection) until a certain simulation depth or an-
other termination criterion is reached. The leaf node is then
evaluated by an evaluation function and the result is back-
propagated updating the statistics of the nodes that led to this
node. Finally, the action a∗ leading to the optimal child of
the root node is selected. Therefore, most MCTS algorithms
balance between exploration of nodes that were visited less
often and exploitation of the nodes that led to high results of
the evaluation function. A common approach to achieve this
balance is Upper Confidence Bound (USB1) as a tree pol-
icy (Auer, Cesa-Bianchi, and Fischer 2002) that is shown in
equation 1. By increasingK, a higher weight can be given to
the second part of the equation preferring exploration over
exploitation. A detailed survey on further MCTS methods is
given in (Browne et al. 2012).

a∗ = arg maxa∈A(s)

{
Q(s, a) +K

√
ln N(s)

N(s, a)

}
(1)

When using MCTS for an RTS game, the algorithm
needs to find an optimal combination of actions of multi-
ple units and thus it is dealing with a Combinatorial MAB
(CMAB) problem. A detailed description of CMAB sam-
pling techniques for MCTS is given in (Ontanón 2017a).
One of the most effective techniques for microRTS specif-
ically has shown to be naiveMCTS (Ontañón 2013). This
sampling method (naively) assumes that the reward distri-
bution R(x1, ..., xn) of multiple variables xi can be approx-
imated as

∑i=n
i=1 Ri(xi) – the sum of reward functions that

depend on one variable each, breaking the CMAB problem
into a set of MAB problems.

In (Ontañón 2013), naiveMCTS samples over combina-
tions of unit actions. First, it uses an ε-greedy policy π0 to
select between exploration and exploitation (ε is the proba-
bility to select exploration and 1− ε for exploitation). Then,
depending on the choice, it uses either an ε-greedy policy
πl for exploration selecting an action for each unit or a pure
greedy policy πg for exploitation selecting an action combi-
nation. This work has shown that naiveMCTS outperforms
algorithms such as Upper Confidence Tree. We use this im-
plementation in our work without any changes to it.

2.3 MircoRTS
microRTS is a research environment that represents a typical
RTS game. Since 2017 it is used for the microRTS AI com-
petition (Ontañón 2017b). The environment offers the pos-
sibility for AI agents to act as players providing them with

38

information on the game state. Each agent must return the
actions that need to be executed by the player’s units every
frame, which lasts 100 milliseconds. If an agent exceeds this
time while computing its decision, it is disqualified from the
match. microRTS offers a game mode with partial observ-
ability limiting the information known to an agent simulat-
ing a fog of war. Furthermore, it provides a forward model
enabling the use of Monte Carlo algorithms. In compari-
son to commercial games, it is simplified in the sense that
it offers very basic visual representation of the game world.
Additionally, for fast experimental tournaments, it can run
without any visuals at all. Nevertheless, it offers the typical
gameplay possibilities and requirements including resource
gathering, unit creation, and assault resulting in a complex
environment.

microRTS uses symmetric maps of different sizes rang-
ing from an 8× 8 cells map to a 256× 256 cells map. Each
player starts with a fixed number of units (usually a base and
potentially some workers). Additionally, he may build bar-
racks which then may produce the following military units:
light, heavy and ranged. Workers as well as military units
may attack opponent units within a unit-type range but only
workers may gather resources that are initially placed on the
map. Gathered resources must be brought to a base in or-
der to create further units or buildings. Buildings as well as
moving units have a certain amount of hit points which are
decreased by an opponent’s attacks.

An ideal game match would proceed in the following way:
we either have enough resources or we have the possibility to
collect enough resources in order to start building necessary
buildings (in the case of microRTS – barracks). Once we
have the required buildings, we can start creating military
units and, finally, we can move our military units towards
the enemy base and destroy his units.

Thus, on a high strategical level we need an opening (col-
lecting phase), a middle-game (building phase) and an end-
game (attack). Depending on factors like the size of the map
or the reachability of the enemy base we need to refine these
phases in different ways. For example, on a small map, our
opponent will be very close and attack quickly. Thus, in the
opening, we should create many workers and then switch to
the end game. Or if the path to the enemy’s base is blocked
by resources, we need to create a way to walk through (by
collecting the resources) before switching to the end game.

3 Related Work
Monte Carlo algorithms dealing with different hierarchy lev-
els of planning in RTS games have been explored in multiple
works. (Chung, Buro, and Schaeffer 2005) introduced MC-
Plan using MCTS on the strategical level in the free software
OpenRTS. Dealing with an abstract state space, it showed
promising initial results in the area of RTS.

(Balla and Fern 2009) used the Upper Confidence Tree
(UCT) algorithm in the game Wargus. This work focused on
the tactical level of the game. Also using abstract states, the
algorithm reasoned about groups of units where the manage-
ment of individual agents was left to the game engine.

Another UCT approach was introduced by (Soemers
2014) in the more complex RTS game StarCraft. Here, UCT

was used for the tactical battle layer having multiple addi-
tional systems taking care of the strategy, economy develop-
ment and unit actions.

Other works that are based on UCT are (Churchill and
Buro 2013) and (Justesen et al. 2014). The former imple-
mented a UCT Considering Duration (UCTCD) algorithm
which was used for tactical movement in StarCraft. Al-
though this algorithm outperformed the built-in scripted AI
of StarCraft, it did not perform well for big numbers of
units. Two improvements of this approach were described in
(Justesen et al. 2014). Here, the search space was abstracted
first, by dealing with more complex scripts instead of micro-
actions, and second, by assigning those scripts to clusters of
units instead of dealing with single units. This approach out-
performed the original UCTCD when controlling high num-
bers of units.

Further exploration of Monte Carlo algorithms in Star-
Craft has been done by (Uriarte and Ontañón 2014). This
work focused on army maneuvering through MCTS. There-
fore, it used abstract game states, a high-level forward model
and abstract evaluation functions. This approach could not
outperform the scripted built-in AI because it was not al-
ways able to search deep enough to find a winning plan.
However, this work showed that the abstraction of the search
space could reduce the branching factor while still providing
meaningful actions.

The work by (Ontañón 2013; Ontanón 2017a) investi-
gated multiple Monte Carlo techniques in microRTS fo-
cusing on the micro-action level. The results have shown
that especially for problems with large branching factors
the sampling strategy naiveMCTS outperforms other algo-
rithms such as Alpha-Beta search or UCT. For this rea-
son, our work uses naiveMCTS. Further improvements to
naiveMCTS were made in (Ontanón 2016). Here, the tree
search was guided by additionally taking into consideration
a pre-learned probability distribution of unit-actions. The
improved version outperformed the original naiveMCTS.

Another work that used an MCTS agent is described
in (Sironi et al. 2018). Here, the agent was used to play dif-
ferent games of the General Video Game Playing environ-
ment. It is related to our work in that sense that (instead of
using different evaluation functions for MCTS) they tuned
different MCTS parameters, such as the exploration factor or
the search depth, to improve an agent’s performance in the
games. Compared to the baseline agent, the adapted agents
performed similarly or better in different games.

Different hierarchical approaches have been implemented
for various RTS game environments.(Stanescu, Barriga, and
Buro 2014) proposed a combination of hierarchical adver-
sarial search on higher levels and the usage of either Alpha-
Beta or Portfolio search for the generation and execution of
micro-actions. In SparCraft – a StarCraft combat simulator
- this approach outperformed Alpha-Beta search, UCT and
Portfolio Search when dealing with a high number of units
(more than 72).

Adversarial planning with HTNs (AHTN) was introduced
in (Ontañón and Buro 2015). This work combined elements
of game tree search and HTN planning dropping the assump-
tion of a turn-based game and allowing durative and simul-

39

taneous actions. Tested in microRTS, it compared AHTNs
of different hierarchy depths against each other and in-built
agents (3 of them were based on Monte Carlo techniques).
All AHTN agents with a depth higher than 1 (not only
micro-actions) outperformed the in-built agents.

A different approach to planning in RTS with abstracted
actions was introduced as Puppet Search (Barriga, Stanescu,
and Buro 2015). Here, complex scripts forwarded the game
state further than single actions and exposed choice points
to the search algorithm. The scripts could use a local search
or another optimization technique. First tested in StarCraft,
Puppet Search performed similar to the best benchmark
agent. Later, this work was extended with a convolutional
neural network for script selection (Barriga, Stanescu, and
Buro 2017) leaving only the low-level tactics to game tree
search. This approach won the 2017 edition of the microRTS
competition.

Works related to our monitoring part are for example (We-
ber, Mateas, and Jhala 2010) and (Gonzlez Dorado et al.
2018). In (Weber, Mateas, and Jhala 2010), a planning
and monitoring approach for StarCraft (Weber, Mateas, and
Jhala 2010) is described. It was using a Goal oriented Action
Planner (GOAP) (Orkin 2006). The planner was creating ac-
tions and expectations of the world state after an action (sim-
ilar to the post-conditions described in Section 2.1). After
executing an action of a previously created plan, a discrep-
ancy detector compared the expected game state against the
actual game state and, if needed, triggered re-planning. This
part is very similar to the monitoring and re-planning ap-
proach used in our approach. The work by Gonzlez Dorado
et al. describes a three-layer architecture for cobots (robots
that collaborate with humans). It recognizes opportunities
and plan failures on the high level and reschedules tasks at
runtime.

4 Hybrid Approach
Due to the fact that we need to operate with high-level strate-
gies that can be decomposed into different lower-level tac-
tics, HTNs seem to be a suitable approach to plan with in
microRTS. However, the ideal scenario described in Sec-
tion 2.3 is not very likely to happen if we are playing against
a good enemy who either prevents us from building our units
or is well-prepared for our attack. Thus, we need to stay re-
active to changes in the environment and adjust our plan ac-
cordingly. For that reason, we propose interleaving planning
and execution as described in the following sections.

4.1 Hybrid Planning
Additionally to the high dynamics of the environment, the
large search space adds up to the complexity of the plan-
ning approach required for an RTS game. The search space
grows with the map size, the number of units that a plan-
ner needs to plan for, and the number of actions that
each unit can possibly execute. In order to decrease the
search space, many previous works have acknowledged the
need to use either abstract planner states or abstract ac-
tions (Barriga, Stanescu, and Buro 2015; Moraes et al. 2018;
Churchill and Buro 2013; Justesen et al. 2014).

In a similar way, we propose using abstract states, precon-
ditions, and effects in our HTN planner. Each abstract plan-
ner state contains information such as the current number
of friendly units and resources, the number and locations of
enemy buildings but no locations of mobile units since these
might change very fast.

In the beginning of a match, the planner estimates the
minimum desired numbers of units of each type for the given
map size. Afterwards, following a data-driven approach,
these numbers are used in combination with abstract plan-
ner states for precondition checks and effect propagation.
For example the task BuildBarracks requires the agent to
have enough resources to build the desired number of bar-
racks. The exact number of resources can be computed at
plan-time knowing the desired number of barracks and the
cost for building barracks. Thus, the abstract planner state
in which the preconditions for this task are checked, should
have at least this number of resources (and thus the preced-
ing task CollectResources should add this fact to the planner
state.) As an effect of the building task, the planner can set
the actual number of barracks in the following planner state
to the desired one. Similarly, instead of pre-planning the ex-
act position of the new barracks, we can save the abstract fact
that they will be reachable from or close to a base (defining
what distance is considered as close in regards to the map
size).

At this point, we do not reason about the enemy’s actions
when planning on a strategical level. Due to the decreased
size of the search space, the planning is fast enough to be
performed within the time limits (100 milliseconds) set by
microRTS. Instead, we rely on recognizing plan failures at
run-time and re-planning, if necessary, as described in the
next section. For future work, however, we might consider
adding a high-level reasoning and counter-planning mecha-
nism such as for example (Pozanco et al. 2018; Sailer, Buro,
and Lanctot 2007) or (Ontañón and Buro 2015).

Although abstract states might be sufficient for strategi-
cal high-level planning, when it comes to tactical planning
on a unit level, we need to consider the actual game state.
However, performing both levels of planning with an HTN
would first, require a lot of engineering effort when creat-
ing the low-level HTN domain for all possible combinations
of unit actions and second, creating a plan of micro-actions
for each unit would increase the planning time immensely.
For that reason, we propose handing over the micro-action
part to MCTS. That way, the HTN planner can create an
abstract plan up to a certain hierarchy depth, forward the ab-
stract plan steps to MCTS which can find the optimal actions
for all units taking into account the currently executed HTN
task.

In order to combine the high-level tasks of HTN with
MCTS planning, we need to represent the tasks in a way that
could be used by MCTS when searching for an optimal ac-
tion distribution between units. For that reason, we propose
representing each primitive task of the HTN by an evaluation
function ft that describes mathematically the effects of the
task t. For example when executing the BuildBarracks task,
the agent should try to maximize the number of his barracks.
However, in such an environment, the agent would usually

40

need to optimize not only one but multiple objectives. For
example, he would also want to minimize the distance be-
tween each of his mobile units and his buildings (defend-
ing them), to maximize the number of resources (continu-
ing to collect them), and to maximize the hit points of all
his units while minimizing the hit points of the opponent’s
units. For that reason, we propose defining the evaluation
function ft that represents a primitive task of an HTN using
the weighted sum approach weighting the n evaluation func-
tions that aim to optimize n different (possibly conflicting)
objectives xi as shown in equation 2.

ft =

n∑

i=1

wifi(xi) (2)

For this work, we have set the weights manually accord-
ing to our own knowledge of the game and after performing
some prior experiments. For future work, however, we con-
sider learning the weights automatically and optimizing the
effectiveness of the evaluation functions.

4.2 Interleaved Monitoring, Execution, and
Re-planning

The interleaved planning and execution approach of our
agent is shown in algorithm 1. In order to execute an agent’s
action in the game environment, microRTS calls the Get-
PlayerAction method at every time step – a so called frame.
A PlayerAction contains the combination of actions of all
units that can execute any action in this frame. Since unit
actions are durative, a unit can start a new action only when
the previous one is finished (for example when building was
completed). The execution of a single unit action – which in
this case means rendering the correct animation and count-
ing the remaining frames until action end – is performed by
microRTS itself. Our algorithm is responsible for triggering
new unit actions when possible.

The three major parts of the algorithm are 1) updating the
HTN planner’s view of the world state in line 6, 2) creat-
ing the high-level HTN plan in line 25 and 3) assigning and
triggering unit actions according to the current task through
MCTS in line 38. Since the HTN planner uses abstract states
and does not take into consideration actual locations of units,
it is not necessary to update its world state in every frame.
Instead, as shown in lines 5 – 8, aiming to optimize the com-
putation time, we propose updating the world state only at
a certain frequency (in our case, every 10 frames) or when-
ever the agent cannot start a new unit action and thus nei-
ther HTN nor MCTS do require any time for computation.
In those frames where the algorithm needs to run the HTN
planner as well as MCTS, we allow the HTN planner to use
up to 80 out of 100 milliseconds leaving the remaining time
for MCTS. This division of the budget comes from the fact
that the HTN planner runs only if there occur changes in the
game world that trigger a re-planning on a high level. There-
fore, we can afford not giving much time to MCTS in this
frame assuming that it will balance out its decision in the
next frames having more computation time.

In the beginning of a game, the initial plan needs to be
created. There exists no current task in line 13 yet and thus

Algorithm 1 GetPlayerAction()
1: s← current game state
2: π ← current plan
3: t← current task
4: f ← current evaluation function
5: if can’tExecuteAnyUnitAction or isTimeToUpdate

then
6: UpdatePlannerWorldState()
7: if cantExecuteAnyUnitAction then
8: return noAction
9: end if

10: end if
11: decisionMade← false
12: replan← false
13: if t 6= nil then
14: if t finished then
15: {continue in line 20}
16: else if t running and t valid then
17: decisionMade← true {proceed with MCTS}
18: else {t invalid}
19: replan← true
20: end if
21: end if
22: while decisionMade = false and belowTimeBudget

do
23: if π = nil or replan = true then
24: {create a new plan}
25: π ← CreateP lan()
26: if π = nil then
27: continue
28: end if
29: end if

{get next plan task}
30: t← next task in π
31: if t valid then
32: decisionMade← true {proceed with MCTS}
33: f ← ft {evaluation function of t}
34: else {t invalid}
35: π ← nil {continue}
36: end if
37: end while
38: return MCTS(f)

the algorithm proceeds with the loop in lines 22 - 37. As
long as it is within the given time budget, it tries to create
a plan. When a plan π is found, its first task becomes the
current task to execute in line 30. In the next step, the pre-
conditions of this task are checked in line 31 ensuring the
validity of the task given the current game state. If the task
is invalid, the whole plan π is invalidated in line 35 leading
to a re-planning. Otherwise, the task’s evaluation function f
is selected in line 33 and forwarded to the MCTS algorithm
in line 38. MCTS then uses the remaining time budget for
searching and returning an optimal player action.

The next time that any unit can execute an action, the
algorithm first checks whether the current task t has been
reached (by checking its post-conditions in line 14) and, if

41

it has not, whether it is still valid given the current game
state. If the task is still valid and has not been reached,
there is no need to change anything and we can continue
using the current evaluation function (line 17). If the task
has been reached, we can proceed with the next task in
the plan jumping to line 22 (and potentially re-planning).
However, if the task t has not been reached in line 14
but has become invalid given the current game state (sim-
ilarly to failure detection in (Gonzlez Dorado et al. 2018;
Weber, Mateas, and Jhala 2010)), a re-planning is triggered
jumping from line 19 to line 22.

5 Experiments
5.1 Experiment Setup
Aiming to test the hybrid approach in its performance in
microRTS and specifically the combination of strategic and
tactic behavior in comparison to an agent that only incorpo-
rates tactical decision-making, we have compared our agent
with the pure naiveMCTS agent (Ontañón 2013). We have
used exactly the same MCTS parameters for our agent’s
MCTS part and the opponent. The parameters were the de-
fault parameters of the naiveMCTS agent: ε-greedy policies
for π0, πl and πg with ε0 = 0.4, εl = 0.3 and εg = 0
(see Section 2.2). The naiveMCTS agent used the SqrtEF
evaluation function described in (Ontañón 2013) summing
the resource cost of all player units weighted by the square
root of the fraction of hit-points left and then subtracting
the same sum for the opponent player. The maximal tree
depth for MCTS was set to 10, the maximal simulation time
to 100 frames, and the playout policy was set to Random-
BiasedAI – an agent that is provided with the microRTS
framework. This agent’s actions are biased in the way that
non-movement actions (collect, attack and return a resource)
have a higher probability to be selected than movement ac-
tions.

For the strategical level of our agent we have created a
simple HTN with 7 compound tasks, 16 methods, and the
following 4 primitive tasks: CollectRecources, BuildAndDe-
fend, PreventAttack, AttackOpponent. With this HTN, in the
beginning of a game match the planner would usually create
the following task sequence: CollectRecources, BuildAnd-
Defend, AttackOpponent. However, depending on the map
size and the units/buildings available at the start, it could
create a plan without the BuildAndDefend task. Then, dur-
ing the execution, it could detect an opponent’s attack and
re-plan scheduling the PreventAttack task first and then con-
tinuing with other tasks.

With these HTN tasks, the agent would assign one of the
4 corresponding evaluation functions (CollectEF, BuildEF,
PreventEF, AttackEF) to its MCTS. Some functions took the
same variables into account, however the weights used for
the weighted sum were different. As already mentioned in
Section 4.1, we have tweaked the weights manually accord-
ing to our game knowledge. We have used the same evalu-
ation functions for all map sizes tested in our experiments.
Monitoring the progress of the high-level tasks and the en-
vironment the agent would decide when to switch between
the tasks and thus switch between evaluation functions.

In addition to directly comparing our agent with the
naiveMCTS agent, we tested both agents’ performance
against further agents. We selected the AHTN agent (Ad-
versarial hierarchical Task Network) (Ontañón and Buro
2015) that comes with a predefined HTN, and the winner of
2017 microRTS AI competition – StrategyTactics (Barriga,
Stanescu, and Buro 2017). We have also tested both agents
against the baseline agent RandomBiasedAI. However, since
both agents won all games against this agent, we did not put
these results into our analysis.

Testing our agent against the 3 opponents (and naiveM-
CTS against 2 opponents), we have run 50 games on each
map (with 25 games on each player side) for each pair.
Therefor, we used 3 maps of the size 8×8 cells, 2 maps of the
size 16× 16 cells, and 2 maps of the size 24× 24 cells. The
maximum computation time of each agent’s move was lim-
ited to 100 milliseconds (frametime). Following the official
rules of the microRTS AI Competition (Ontañón 2017b), we
have run the matches on the small maps for maximum 3000
frames, on the mid-size maps for maximum 4000 frames,
and on the bigger maps for maximum 5000 frames. After
this time a match was considered a tie.

5.2 Results
After manually tweaking the weights in the evaluation func-
tions, our agent (HTN-MCTS) was able to show behaviors
very close to the ones expected when performing the distinct
HTN tasks. The interim results have shown that the hybrid
agent was able to either win or achieve a tie in the majority
of matches playing against the original naiveMCTS agent on
all map sizes as shown in Figures 2 – 4.

Furthermore, the experiments have shown how much im-
pact the weights have on the agent’s behavior and how it is
possible to achieve this behavior without giving the agent
any explicit commands. Figure 1 shows the progress of a
match played by the hybrid agent (striped units) against
the naiveMCTS agent on the NoWhereToRun9x8 map. (The
blue, red, and violet cell background colors tell whether a
cell would be visible for our agent, the opponent or both
respectively if the game was played in the partially observ-
able mode. However, these are not important for our exper-
iments since we test the agent with full observability first.)
In the first step, the hybrid agent was executing the HTN
task CollectRecources. The task’s evaluation function was
taking into consideration the distance of each worker to the
closest resource or the basis depending on whether or not he
was carrying a resource. Therefore, all units stayed within
a small radius of the base while the opponent’s units spread
around the available space.

In the next step, having enough worker units and re-
sources, the agent could not attack the opponent because of
the resource wall in the middle of the map. Therefore, the
HTN planner created a new high-level plan scheduling the
BuildandDefend task to be executed until meeting the attack
conditions. In the second part of Figure 1, the agent created
light military units which defended the base while preparing
an attack. Again, this was done implicitly by maximizing
the number of military units and minimizing their distances
to the agent’s base. At the same time, the opponent was cre-

42

Figure 1: Progress of a match between our agent (striped units) and naiveMCTS.

Figure 2: Results of 50 matches played by our agent (HTN-MCTS) and naiveMCTS against 3 (2) opponents on small maps.

Figure 3: Results of 50 matches played by our agent (HTN-
MCTS) and naiveMCTS against 3 (2) opponents on mid-size
maps.

Figure 4: Results of 50 matches played by our agent (HTN-
MCTS) and naiveMCTS against 3 (2) opponents on bigger
maps.

ating more worker units since his function was maximizing
the health points of units in general (not specifically military
units) and creating workers was the cheapest in regards to
resource consumption.

Once the wall in the middle was opened, the opponent’s
units spread further into our agent’s part of the map. When
they came too close to our agent’s base, an attack was
detected by the monitoring system and the HTN planner

re-planned scheduling a PreventAttack task first. Thus, the
agent stayed reactive to changes in the environment. Now,
this task’s evaluation function was minimizing the distance
of every unit to the opponent unit closest to the base (red
worker in bottom part of the map) and minimizing its health
points while maximizing the health points of friendly units.
Part 3 of Figure 1 shows the movement of the units towards
the opponent worker.

Finally, when the preconditions for the attack task were
reached, our agent started the AttackOpponent task mini-
mizing the distance to the opponent’s base and units as well
as their health points while maximizing the health points of
friendly units. Only in this step did the agent’s units start vis-
ibly moving towards the other end of the map and following
the opponent’s units as shown in the last part of Figure 1.

In general, these experiments have shown that defining an
abstract high-level task by evaluation functions for MCTS
can lead to interesting and visibly distinct emergent behav-
iors. However, they have also shown that the balance be-
tween weights has a big impact on the behaviors. For exam-
ple, we could see in most games on the mid-size and bigger
maps that our agent was not aggressive enough when attack-
ing the opponent with military units although the attack be-
havior was aggressive on small maps when the attack was
performed by workers mostly. For that reason, most games
between our agent and naiveMCTS on mid-size and bigger
maps resulted in a tie as shown in Figures 3 and 4. In these
cases, our agent would not destroy all of the opponent’s units
while strongly defending friendly units and not letting the
opponent win.

43

We assume that, for one part, this difference in aggres-
siveness was due to the different weighting of health points
of different unit types. Thus, destroying an enemy unit might
have been too costly while risking to lose a friendly unit. An
additional reason could be weights assigned to distance min-
imization in relation to the weights of the functions respon-
sible for health points optimization. Thus, in smaller maps, it
could have been more optimal for the agent to reach the op-
ponent’s base than to keep friendly units alive while it was
the opposite way on mid-size maps.

The same defensive behavior was visible when playing
against the agents AHTN and StrategyTactics, both of which
are very aggressive and purposefully attack their opponents
(as opposed to naiveMCTS). A match against one of these
agents usually progressed as follows: our agent started build-
ing barracks and military units while the opponent quickly
started an attack. That way, our agent had to stop expand-
ing its army and executed the PreventAttack task for as long
as needed. The difference between AHTN and StrategyTac-
tics was, however, that the former agent fully concentrated
on the attack sending all of his units towards our base. That
allowed our agent to destroy all enemy units without having
to move across the map and balance between distance and
hit points. This way, our agent was able to win most games
against AHTN on all map sizes.

In contrast, StrategyTactics continued to expand its army
while performing an assault with only a part of its units. De-
pending on how well/fast our agent was able to destroy the
incoming enemy units and return to the build task, it was
either able to start an attack itself and destroy the remain-
ing units as shown in the following video2 or was defeated.
For that reason, out agent outperformed the naiveMCTS
agent when playing against StrategyTactics even on the mid-
size map basesWorkers16x16A (Figure 3) and basesWork-
ers24x24A (Figure 4).

However, our agent was not able to win against Strategy-
Tactics on the maps TwoBasesBarracks16x16 (Figure 3) and
DoubleGame24x24 (Figure 4) which were different from
other maps. Here, each player started with 2 bases (and 2
barracks) and more resources. That gave the StrategyTactics
agent an even better chance to start a quick assault while our
agent was trying to fully build up his army before attacking.
We assume that in order to improve our agent’s performance
on such special maps, we need to make changes to the high-
level HTN, allowing for quick attacks under different pre-
conditions.

Finally, the experiments have shown that the proposed
monitoring approach allows for a combination of long-term
planning and reactive execution. Especially in games against
AHTN and StrategyTactics, our agent was able to detect
changes in the environment (when the opponents were per-
forming an attack) and trigger re-planning on a high-level.

6 Conclusions and Future Work
In this work we have introduced a planning and execution
approach which uses an HTN planner for high-level plan-
ning and MCTS for micro-management of multiple units.

2Experiment video: https://youtu.be/Eox_ab836tM

Instead of explicitly defining how to execute HTN tasks, we
define evaluation functions telling what needs to be opti-
mized when executing a task. An evaluation function for a
task is a weighted sum of functions optimizing, for example,
distances, health points or resources. These evaluation func-
tions are then used by MCTS selecting an optimal distribu-
tion of unit actions. The game environment and the progress
of the high-level plan are monitored during execution and, if
required, re-planning is triggered on the higher level.

Our first experiments in the microRTS environment have
shown that this combination of the two planning approaches
can lead to visible emergent behaviors. Furthermore, the in-
terleaved planning, monitoring and execution has allowed
the agent to stay reactive while following the high-level
tasks. Additionally, even with a very simple HTN, the hy-
brid agent was able to perform similarly or better than a
pure MCTS agent that was using a single evaluation func-
tion throughout the whole game match. It was also able to
outperform a pure HTN agent and performed well against
a strong agent that combined strategical and tactical behav-
iors.

The major difficulty in creating planning domains for this
hybrid approach has been proven to be the balancing of
weights used in the weighted sums of evaluation functions.
Tweaking these weights has a big impact on the units’ be-
haviors. For that reason, our first step towards future work
is finding an appropriate way to automatically learn these
weights. Alternatively, we might use a different approach
for multi-objective optimization (Perez et al. 2015) instead
of the weighted sums. Also, the evaluation functions might
be more complex, for example controlling the distances be-
tween all units allowing for swarms with formations. Ad-
ditionally, we might experiment with different high-level
HTNs either creating more detailed networks or tweaking
the pre- and post-conditions of the current one. Finally, this
approach could be tested in an even more complex environ-
ment such as the full version of StarCraft or the partially
observable mode of microRTS.

References
Auer, P.; Cesa-Bianchi, N.; and Fischer, P. 2002. Finite-
time analysis of the multiarmed bandit problem. Machine
learning 47(2-3):235–256.
Balla, R.-K., and Fern, A. 2009. UCT for tactical assault
planning in real-time strategy games. In Proceedings of
the 21st International Joint Conference on Artificial Intel-
ligence, 40–45.
Barriga, N. A.; Stanescu, M.; and Buro, M. 2015. Puppet
search: Enhancing scripted behavior by look-ahead search
with applications to real-time strategy games. In Proceed-
ings of the 11th Artificial Intelligence and Interactive Digital
Entertainment Conference, 9–15.
Barriga, N. A.; Stanescu, M.; and Buro, M. 2017. Combin-
ing strategic learning and tactical search in real-time strategy
games. arXiv preprint arXiv:1709.03480.
Browne, C. B.; Powley, E.; Whitehouse, D.; Lucas, S. M.;
Cowling, P. I.; Rohlfshagen, P.; Tavener, S.; Perez, D.;
Samothrakis, S.; and Colton, S. 2012. A survey of monte

44

carlo tree search methods. IEEE Transactions on Computa-
tional Intelligence and AI in games 4(1):1–43.
Chung, M.; Buro, M.; and Schaeffer, J. 2005. Monte carlo
planning in RTS games. In Proceedings of the IEEE Sympo-
sium on Computational Intelligence and Games, 117–124.
Churchill, D., and Buro, M. 2013. Portfolio greedy search
and simulation for large-scale combat in starcraft. In Pro-
ceedings of the IEEE Conference on Computational Intelli-
gence in Games. IEEE.
Gonzlez Dorado, J. C.; Veloso, M.; Fernndez, F.; and Garca-
Olaya, A. 2018. Task monitoring and rescheduling for op-
portunity and failure management. In Proceedings of the
28th International Conference on Automated Planning and
Scheduling. Workshop on Integrated Planning, Acting and
Execution., 24–31.
Höller, D.; Behnke, G.; Bercher, P.; and Biundo, S. 2018a.
Plan and goal recognition as HTN planning. In IEEE 30th
International Conference on Tools with Artificial Intelli-
gence, 466–473. IEEE.
Höller, D.; Bercher, P.; Behnke, G.; and Biundo, S. 2018b.
HTN plan repair using unmodified planning systems. In Pro-
ceedings of the 28th International Conference on Automated
Planning and Scheduling. Workshop on Hierarchical Plan-
ning, 26–30.
Ishihara, M.; Miyazaki, T.; Chu, C. Y.; Harada, T.; and Tha-
wonmas, R. 2016. Applying and improving monte-carlo
tree search in a fighting game AI. In Proceedings of the 13th
International Conference on Advances in Computer Enter-
tainment Technology, 27–32. ACM.
Justesen, N.; Tillman, B.; Togelius, J.; and Risi, S. 2014.
Script-and cluster-based UCT for starcraft. In Proceedings
of the IEEE Conference on Computational Intelligence in
Games. IEEE.
Moraes, R. O.; Marino, J. R.; Lelis, L. H.; and Nascimento,
M. A. 2018. Action abstractions for combinatorial multi-
armed bandit tree search. In Proceedings of the 14th Artifi-
cial Intelligence and Interactive Digital Entertainment Con-
ference, 74–80.
Nau, D.; Cao, Y.; Lotem, A.; and Munoz-Avila, H. 1999.
SHOP: Simple hierarchical ordered planner. In Proceed-
ings of the 16th international joint conference on Artificial
intelligence-Volume 2, 968–973. Morgan Kaufmann Pub-
lishers Inc.
Nau, D. S.; Au, T.-C.; Ilghami, O.; Kuter, U.; Murdock,
J. W.; Wu, D.; and Yaman, F. 2003. SHOP2: An HTN
planning system. Journal of artificial intelligence research
20:379–404.
Ontañón, S., and Buro, M. 2015. Adversarial hierarchical-
task network planning for complex real-time games. In Pro-
ceedings of the 24th International Conference on Artificial
Intelligence, 1652–1658. AAAI Press.
Ontañón, S.; Barriga, N. A.; Silva, C. R.; Moraes, R. O.; and
Lelis, L. H. 2018. The first microrts artificial intelligence
competition. AI Magazine 39(1).
Ontañón, S. 2013. The combinatorial multi-armed bandit
problem and its application to real-time strategy games. In

Proceedings of the 9th Artificial Intelligence and Interactive
Digital Entertainment Conference, 58–64.
Ontanón, S. 2016. Informed monte carlo tree search for real-
time strategy games. In Proceedings of the IEEE Conference
on Computational Intelligence and Games, 1–8. IEEE.
Ontanón, S. 2017a. Combinatorial multi-armed bandits for
real-time strategy games. Journal of Artificial Intelligence
Research 58:665–702.
Ontañón, S. 2017b. MicroRTS AI Competition,
https://sites.google.com/site/micrortsaicompetition/.
Orkin, J. 2006. Three states and a plan: the AI of FEAR. In
Game Developers Conference.
Perez, D.; Mostaghim, S.; Samothrakis, S.; and Lucas, S. M.
2015. Multiobjective monte carlo tree search for real-time
games. IEEE Transactions on Computational Intelligence
and AI in Games 7(4):347–360.
Perez, D.; Rohlfshagen, P.; and Lucas, S. M. 2012. Monte-
carlo tree search for the physical travelling salesman prob-
lem. In European Conference on the Applications of Evolu-
tionary Computation, 255–264. Springer.
Pozanco, A.; Yolanda, E.; Fernández, S.; and Borrajo, D.
2018. Counterplanning using goal recognition and land-
marks. In Proceedings of the 28th International Conference
on Automated Planning and Scheduling. Workshop on Dis-
tributed and Multi-Agent Planning., 17–24.
Sailer, F.; Buro, M.; and Lanctot, M. 2007. Adversarial
planning through strategy simulation. In IEEE Symposium
on Computational Intelligence and Games, 80–87. IEEE.
Sironi, C. F.; Liu, J.; Perez-Liebana, D.; Gaina, R. D.; Bravi,
I.; Lucas, S. M.; and Winands, M. H. 2018. Self-adaptive
MCTS for general video game playing. In International
Conference on the Applications of Evolutionary Computa-
tion, 358–375. Springer.
Soemers, D. 2014. Tactical planning using MCTS in the
game of starcraft. Bachelors thesis, Department of Knowl-
edge Engineering, Maastricht University.
Stanescu, M.; Barriga, N. A.; and Buro, M. 2014. Hierarchi-
cal adversarial search applied to real-time strategy games. In
Proceedings of the 10th Artificial Intelligence and Interac-
tive Digital Entertainment Conference, 66–72.
Uriarte, A., and Ontañón, S. 2014. Game-tree search over
high-level game states in RTS games. In Proceedings of
the 10th Artificial Intelligence and Interactive Digital En-
tertainment Conference, 73–79.
Weber, B. G.; Mateas, M.; and Jhala, A. 2010. Applying
goal-driven autonomy to starcraft. In Proceedings of the 6th
Artificial Intelligence and Interactive Digital Entertainment
Conference, 101–106.

45

Interleaving Acting and Planning Using Operational Models

Sunandita Patra1, Malik Ghallab2, Dana Nau1, Paolo Traverso3

patras@cs.umd.edu, malik@laas.fr, nau@cs.umd.edu, traverso@fbk.eu
1Department of Computer Science and Institute for Systems Research, University of Maryland, College Park, USA

2Centre national de la recherche scientifique (CNRS), Toulouse, France
3Fondazione Bruno Kessler (FBK), Povo - Trento, Italy

Abstract

In (Patra et al. 2019) we proposed and implemented a frame-
work for planning with operational models, i.e., models that
describe how to perform actions, with rich control structures
for closed-loop online decision-making. As described in (Pa-
tra et al. 2019), the acting component RAE, inspired by the
well-known PRS system, calls the planner RAEplan, which
plans by doing Monte Carlo rollout simulations of the actor’s
operational models.
In this paper, we show how this framework can be used to
interleave acting and planning with operational models in
different ways. We extend the acting component RAE with
heuristics to decide when and how to call the planning com-
ponent RAEplan. This allows us to realize more or less reac-
tive behaviors. For instance, the acting component RAE may
decide to call the planner just when it fails or anytime a deci-
sion needs to be made. Moreover, RAE can decide whether to
bound the depth of the search during planning, and whether
to do acting and planing concurrently. The planning algo-
rithm in this paper takes into consideration the depth of the
search. We call the modified planning algorithm RAEplan-
LookAhead. We implement the RAEplan-LookAhead al-
gorithm and do its experimental evaluation on a simulated
domain called Search and Rescue.

Introduction
Several approaches for the integration of planning, acting,
and execution have been proposed so far, see, e.g., (Vaquero
et al. 2018). Some of them (e.g., lookahead methods, see
e.g., (Ghallab, Nau, and Traverso 2016) for a survey) are
based on the idea of generating a partial plan, for example
the next few “good” actions, and then acting, i.e., performing
all or some of the generated actions, and repeating these two
steps from the state that has been reached. In this way, the
planner knows exactly which of the many possible states of
the world has actually been reached, and the uncertainty as
well as the search space is significantly reduced. Moreover,
interleaving planning and acting provides the ability to deal
with dynamic environments and exogenous events.

Most of the previous approaches to interleaving planning
and execution perform planning with descriptive models,
which represent actions at a rather abstract level, e.g., with

Copyright c© 2019, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

preconditions and effects. This representation is tailored to
efficiently compute, given some conditions on state variables
(the action preconditions), how the values of the state vari-
ables change (the action effects). However, when planning
needs to be interleaved with acting, most of the works highly
underestimate the problem of mapping descriptive models
to and from operational models, which describe how to per-
form actions, with rich control structures for closed-loop on-
line decision-making. The mapping between the descriptive
model and the operational model is often given for granted,
simply assuming that the acting/execution mechanism re-
turns the actual state (the values of state variables) at the
abstract level in which the agent can start to do planning
again.

In this paper we take a different approach. We build upon
our work presented in (Patra et al. 2019) (see also (Patra
et al. 2018)), in which we propose to use a single repre-
sentation, the operational model, for both acting and plan-
ning, and to do planning by reasoning directly with the ac-
tor’s operational models. In our approach, the agent does
not start from planning and then calls the execution platform
when needed. We rather start the other way around. The act-
ing component RAE, inspired by the well-known PRS sys-
tem, calls the planner RAEplan, which plans by doing Monte
Carlo rollout simulations of the actor’s operational models.
RAE uses a hierarchical task-oriented operational represen-
tation. A collection of refinement methods describes alter-
native ways to handle tasks and react to events. RAE calls
RAEplan to decide how to refine tasks or events. RAEplan
does Monte Carlo rollouts with applicable refinement meth-
ods.

In this paper, we extend this framework and show how
it can be used to interleave acting and planning in different
ways. We extend the acting component RAE with heuris-
tics to decide when an how to call the planning component
RAEplan. This allows us to realize more or less reactive be-
haviours. For instance, the acting component RAE can de-
cide to call the planner just when it fails or anytime a deci-
sion must be made, i.e., anytime one upon different applica-
ble methods must be selected. Moreover, our extended plan-
ning algorithm RAEplan-LookAhead, when called by RAE,
can decide whether to complete the Monte Carlo rollout,
or to bound the depth of the search according to different
heuristics, e.g., to save time. Finally, RAE and RAEplan-

46

LookAhead can be run concurrently and interact in different
ways.

We implement different techniques for interleaving act-
ing and planning using heuristics and evaluate them on the
Search and Rescue domain. With this experimental evalua-
tion, we show the benefits of interleaving acting and plan-
ning with operational models.

The paper is structured as follows. In the next section, we
first provide some background on the key concepts described
in (Patra et al. 2019) to keep the paper self-contained. Fol-
lowing that, we describe different techniques for the inter-
leaving of acting and planning. We then describe the oper-
ational models for the Search and Rescue domain, and pro-
vide an experimental evaluation. We finally discuss the re-
lated and future work.

Background
In this section, we briefly review the key elements of the
approach presented in (Patra et al. 2019), to make the pa-
per self-contained. For the details of the acting component
RAE and of the planning component RAEplan, please refer
to (Patra et al. 2019).

RAE (Refinement Acting Engine) is from (Ghallab, Nau,
and Traverso 2016, Chapter 3). It is is based on a hierarchical
task-oriented operational representation with an expressive,
general-purpose language offering rich control structures for
closed-loop online decision-making. A collection of refine-
ment methods describes alternative ways to handle tasks and
react to events. Each method has a body that can be any
complex algorithm. In addition to the usual programming
constructs, the body may contain subtasks, which need to
be refined recursively, and sensory-motor commands, which
query and change the world non-deterministically. Notice
that we assume that methods, tasks, and subtasks are manu-
ally programmed. We believe this assumption is the practical
way to build agents that can behave reactively and deal with
realistic and complex applications.

RAE implements a reactive system. At each loop, it gets in
input a task or event that comes in from an external source,
such as the user or the execution platform, and it creates a
refinement stack, analogous to a computer program’s execu-
tion stack. An agenda keeps the set of all current refinement
stacks.

Task frames and refinement stacks. A task frame is a
four-tuple r = (τ,m, i, tried), where τ is a task, m is the
method instance used to refine τ , i is the current instruction
in body(m), with i = nil if we haven’t yet started execut-
ing body(m), and tried is the set of methods that have been
already tried and failed for accomplishing τ .

A refinement stack is a finite sequence of stack
frames stack = 〈ρ1, . . . , ρn〉. If stack is nonempty, then
top(stack) = ρ1; rest(stack) = 〈ρ2, . . . , ρn〉; stack =
top(stack).rest(stack). To denote pushing ρ onto stack, we
write ρ.stack = 〈ρ, ρ1, ρ2, . . . , ρn〉. Refinement stacks used
during planning will have the same semantics, but we will
use the notation stack instead of stack to distinguish it from
the acting stack.

When an execution failure occurs with a method instance,
then RAE calls a Retry procedure. Retry tries another ap-
plicable method instance that it hasn’t tried already. Notice
that when a Retry is called, the failed method has already
been partially executed; it has changed the current state. In
many application domains it is important to minimize the
total number of retries, since recovery from failure may in-
cur significant, unbudgeted amounts of time and expense.
We call retry ratio the number of times that RAE had to call
the Retry procedure, divided by the total number of tasks to
accomplish.

Rather than behaving purely reactively, the agent inter-
leaves acting with planning to decide how to refine tasks
or events. Planning is performed by Monte Carlo rollouts
with applicable refinement methods. Planning is therefore
performed with all the same constructs and operations of
the operational model used to act, all but a simulation of
commands. Commands are indeed simulated when planning
and performed by an execution platform in the real world
when acting. During planning, when a refinement method
contains a command, the planner takes samples of its pos-
sible outcomes, using either a domain-dependent generative
simulator, when available, or a probability distribution of its
possible outcomes.

RAEplan does a recursive search to optimize a criterion. It
chooses a refinement method that has a refinement tree with
a minimum expected cost for accomplishing a task (along
with the remaining partially accomplished tasks in the cur-
rent refinement stack). It minimizes the expected cost, i.e.,
the expected cost of the plan for accomplishing all the tasks
in the refinement stack. In order to take into account possible
failures, which would have an infinite cost, cost minimiza-
tion is done by maximizing an efficiency criteria, which is
the reciprocal of the cost.

Efficiency. We define the efficiency of accomplishing a task
to be the reciprocal of the cost. Let a decomposition of a task
τ have two subtasks, τ1 and τ2, with cost c1 and c2 respec-
tively. The efficiency of τ1 is e1 = 1/c1 and the efficiency
of τ2 is e2 = 1/c2. The cost of accomplishing both tasks is
c1 + c2, so the efficiency of accomplishing τ is

1/(c1 + c2) = e1e2/(e1 + e2). (1)

If c1 = 0, the efficiency for both tasks is e2; likewise for
c2 = 0. Thus, the incremental efficiency composition is:

e1 • e2 = e2 if e1 =∞, else (2)
e1 if e2 =∞, else e1e2/(e1 + e2).

If τ1 (or τ2) fails, then c1 is ∞, e1 = 0. Thus e1 • e2 =
0, meaning that τ fails with this decomposition. Note that
formula 2 is associative.

Moreover, RAEplan has two parameters b and k. Parame-
ter b denotes how many different method instances to exam-
ine for each task. Parameter k denotes how large a sample
size must be for each command. The estimated efficiency
E∗b,k(s, stack) calculated in a given state s for a refinement
stack stack depends on both b and k. The larger the values of
b and k inE∗b,k, the more plans RAEplan will examine. In the

47

planning algorithm proposed in this paper called RAEplan-
LookAhead, we add an additional sub-script called d to effi-
ciency in order to bound the depth of Monte Carlo rollouts
that RAEplan-LookAhead examine. In RAEplan, d is always
infinite. As d → ∞, the behavior of RAEplan-LookAhead
becomes similar to RAEplan. Please see the next section for
details.

Interleaving Acting and Planning
In (Patra et al. 2019), the acting algorithm RAE always waits
for the planner RAEplan to complete its search and return a
refinement method for a task τ . The time taken by RAEplan
to complete the search increases with the increase in size of
the refinement tree for τ . However, because the planning is
happening online, this may create a long wait time before
the actor takes an action. We can have several strategies to
reduce the wait time of the actor and discuss them below.

Strategy 1: Active Planning. This is the simplest case
where RAE calls RAEplan every time it needs to refine a task
τ . RAE waits for RAEplan to complete its search and refines
τ according to what RAEplan suggested. This strategy is im-
plemented in the paper (Patra et al. 2019). The advantage of
this approach is that RAEplan returns the best possible sug-
gestion for given values of b and k. The disadvantage is that
the actor RAE need to wait until RAEplan returns. It has no
control over the wait time.

Strategy 2: Include Heuristics. The idea is similar to
a lookahead search. When RAEplan searches for the most
efficient method for a task τ , it does several Monte Carlo
rollouts. Every such rollout corresponds to a complete re-
finement tree for τ . Our idea is that instead of looking at
complete rollouts like RAEplan, RAEplan-LookAhead only
rolls out upto depth d. When the length of the rollout reaches
depth d, we estimate the efficiency of the remaining part of
the rollout using a heuristic function. The heuristic may be
domain dependent or domain independent. We call the mod-
ified algorithm RAEplan-LookAhead. The pseudocode is as
follows:

RAEplan-LookAhead(s, τ, tried, stack, d)
M ← Candidates(τ, s) \ tried
if d = 0 then return M [1]
else
mopt ← argmaxm∈ME

∗
b,k,d−1(s, (τ,m, 0, tried).stack)

if mopt = None then return M [1]
else return mopt

Above, s is the current state, tried is the set of refine-
ment method instances which has been tried by RAE to ac-
complish τ and failed. stack is the current refinement stack.
Candidates(τ, s) is the set of applicable method instances
for τ in current state s. d is the maximum search depth.
Note that d = 0 corresponds to the situation where RAE
acts purely reactively and no planning is done. RAEplan-
LookAhead optimizes a criterion called expected efficiency
which is based on the definition in the previous section with
an additional parameter d (in subscript). The expected effi-
ciency is calculated depending on whether the current step
is a task or command and also the current depth d. The defi-

nition of E∗ is recursive and the value of d decreases by one
at every recursive call.

Estimated efficiency. We now define E∗b,k,d(s, stack) as an
estimate of expected efficiency of the optimal plan for the
tasks in stack stack when the current state is s. The parame-
ters b and k denote, respectively, how many different method
instances to examine for each task, and how large a sample
size to use for each command. d denotes how much further
RAEplan-LookAhead is allowed to search.

If stack is empty, thenE∗b,k,d(s, stack) =∞ because there
are no tasks to accomplish. Otherwise, let (τ,m, i, tried) =
top(stack). Then E∗b,k,d(s, stack) depends on whether i is a
command, an assignment statement, or a task and whether
the current depth d is greater than 0:
• If i is a command and d > 0, then E∗b,k,d(s, stack) =

1
k

∑
s′∈S′

1
cost(s,i,s′) • E∗b,k,d−1(s′,next(s′, stack)), (3)

where S′ is a random sample of k outcomes of command
i in state s, with duplicates allowed. next(s′, stack) is
the refinement stack after performing command i taking
into account the effect of control statements like if-else
or loops. Since S′ has the probability distributions of the
outcomes of the commands, it converges asymptotically
to the expected value of E∗.

• If i is a command and d = 0, then

E∗b,k,0(s, stack) =
1

Heuristic-Estimate(s, stack)
(4)

• If i is an assignment statement, then E∗b,k,d(s, stack) =

E∗b,k,d(s
′,next(s′, stack)), where s′ is the state produced

from s by performing the assignment statement.
• If i is a task and d > 0, then E∗b,k,d(s, stack) recursively

optimizes over the candidate method instances for i. That
is:

E∗b,k,d(s, stack) = max
m∈M ′

E∗b,k,d−1(s, (i,m, nil, ∅).stack),

(5)
where M ′ = Candidates(i, s) if |Candidates(i, s)| ≤ b,
and otherwise M ′ is the first b method instances in the
preference ordering for Candidates(i, s).

• If i is a task and d = 0, then E∗b,k,0(s, stack) is a heuristic
estimate of accomplishing the remaining stack. That is:

E∗b,k,0(s, stack) =
1

Heuristic-Estimate(s, stack)
. (6)

We have implemented RAEplan-LookAhead in this pa-
per for a simulated domain called Search and Rescue with
two domain dependent heuristics and various values of
depth d. As d approaches infinity, the behavior of RAEplan-
LookAhead should become similar to the RAEplan algorithm
in (Patra et al. 2019). The results are presented in the Exper-
imental Evaluation section.

Strategy 3: Lazy Planning. RAE calls RAEplan-
LookAhead the first time it receives a task. RAEplan-
LookAhead needs to be modified so that it returns the

48

most expected refinement tree because this strategy requires
that we have a plan and not just one suggested refinement
method instance. RAE executes the refinement tree via in-
order traversal until it encounters a mismatch between the
current state and the state expected from the refinement tree,
or a command fails. The drawback of this approach is that
in an environment with dynamic events, our plan might be-
come too old and lead to dead-ends which we could have
avoided if we used Strategy 1. The advantage of this ap-
proach is that it saves the time of computing a similar plan
again in case their are no dynamic or exogenous events.
However, if commands are non-deterministic, the chances
of getting a similar plan are low and this is probably not a
good approach.

Strategy 4: Concurrent Planning. RAEplan-LookAhead
always runs in parallel to RAE and keeps track of the most
recent plan for the current task at hand. As explained in
the case of lazy Planning, RAEplan-LookAhead needs to
be modified so that it returns a refinement tree instead of
just a refinement method instance. Whenever RAE needs ad-
vice from RAEplan, RAEplan suggest the refinement method
from its current refinement tree. One drawback of this strat-
egy is that, the current refinement tree may not have taken
into account the most recent dynamic or exogenous events
of the environment. However, this should be better than the
lazy strategy because the planner is never idle. This method
can be useful when the actor has access to multiple cores
and can do multi-tasking.

One could use any one of the above strategies or a com-
bination of them depending on the domain and the nature of
tasks that need to be accomplished.

Domain: Search and Rescue
Consider that some natural disaster has happened in a 2D
area. People are trapped or injured at certain locations in
this area which has no particular graph or map. UAVs con-
tinuously survey the area and find people who need help.
The detection happens by capturing images via the front and
bottom cameras that the UAVs are equipped with. The clar-
ity of the image depends upon various weather conditions
and the altitude at which the UAV is flying. We assume that
a human expert or some computer vision algorithm identi-
fies correctly whether a person needs help or not from the
image. Once a person in need of help has been identified,
the UAV transfers control to the UGVs operating on the
ground. Ground locations are represented via integral coor-
dinates. The UGVs navigate following certain patterns. In
order to move from one location to another, UGVs may take
a straight route, a curved route or a Manhattan route. There
may or may not be obstacles in their path. If it finds an ob-
stacle, it needs to take a different route to reach its desti-
nation. UAVs always fly from one location to the other via a
straight route. They may fly in two different altitudes. UGVs
are useful for transporting first-aid and medicine to doctors
and volunteers or the person in need. First-aid and medicines
can be picked up from the base camp or taken from other
UGVs which have them. Once helper robot and/or human
experts have reached the location of the injured person, they
may not find the person immediately. They might need to do

some sensing and searching, which can involve removing
debris or looking around.
Example 1. Consider a set R of robots performing search
and rescue operations in a partially mapped area. The
robots have to find persons in some area and leave them a
package of supplies (medication, food, water, etc.). This do-
main is specified with state variables such as robotType(r) ∈
{UAV, UGV}, r ∈ R; hasSupply(r) ∈ {>,⊥}; loc(r) ∈ L,
for L = {(x, y)| x and y are integers}∪{BASE}.

These robots can use commands such as DETECT(r, cam-
era, class) which detects if an object of some class appears
in images acquired by camera of r, TRIGGERALARM(r, l),
DROPSUPPLY(r, l), LOADSUPPLY(r, l), TAKEOFF(r, l),
LAND(r, l), MOVETO(r, l), FLYTO(r, l). They can address
tasks such as: search(r,area), which makes a UAV r
survey in sequence the locations in area, survey(r, l),
navigate(r, l), rescue(r, l), getSupplies(r).

Here is a refinement method for the survey task:
m1-survey(r, l)

task: survey(r, l)
pre: robotType(r) = UAV

body: if DETECT(r,“base-camera”,“person”)=> then:
if hasSupply(r) then rescue(r, l)
else TRIGGERALARM(r, l)

This methods specifies that in the location l the UAV r de-
tects if a person appears in the images from its base camera.
In that case, it proceeds to a rescue task if it has supplies,
otherwise it triggers an alarm event. This event is processed
(by some other methods) by finding the closest robot not in-
volved in a current rescue and assigning to it a rescue task
for that location.

Here are two possible methods for the task rescue(r, l):
m1-rescue(r, l)

task: rescue(r, l)
pre: robotType(r) = UAV

body: if hasSupply(r) then
if loc(r) = l then DROPSUPPLY(r, l)
else do

navigate(r, l)
rescue(r, l)

else do
navigate(r,BASE)
LOADSUPPLY(r,BASE)
rescue(r, l)

m2-rescue(r, p)
task: rescue(r, p)
pre: (robotType(r) = UGV) ∧ hasSupply(r)

body: if loc(r) = l then DROPSUPPLY(r, l)
else do

navigate(r, l)
rescue(r, l)

Note that the above methods are recursive.

Experimental Evaluation
For our experiments, we generated 96 problems for the
search and rescue domain randomly. Every problem has one
incoming task, ‘survey’ or ‘rescue’ which arrives at a ran-
domly chosen time in RAE’s input stream. A problem may

49

have one to four robots (consisting of UAVs and UGVs).
The location of a robot consist of its x and y coordinates in
a 2D area. x and y are chosen to be random integers from
the range [5, 30]. The location from where a person needs to
be rescued is also generated randomly in the same way. Be-
cause our commands are nondeterministic, every problem
with a particular combination of parameters of RAEplan-
LookAhead is run 20 times. The experiments are run on a
2.6 GHz Intel Core i5 processor.

RAEplan-LookAhead has three main parameters: b, k and
d. We first did experiments by changing b and k with d set to
∞. We measured the performance using three different met-
rics: efficiency, success ratio and retry ratio. It is not easy to
measure the performance of an integrated planning and act-
ing system. These three metrics were developed after much
thought and details can be found in (Patra et al. 2019). Ef-
ficiency is the same discussed in the previous section. Suc-
cess ratio is the number of successful jobs divided by the
total number of incoming jobs. A job is a task that arrives
in the input stream of RAE and does not include the sub-
tasks generated from it. Retry ratio is the number of times
RAE retries a task before succeeding (details can be found
in the Section Background). The results for efficiency, suc-
cess ratio and retry ratio are shown in Figures 1, 2 and 3
respectively.

Figure 1: Efficiency E for various values of b and k in the
Search and Rescue Domain. d is set to infinity.

From the plots of efficiency, success ratio and retry ratio,
we observe that k = 3 is the most optimal value of k. Now,
we fix k to the value 3 and do experiments by varying the
parameter depth d of RAEplan-LookAhead. We do this with
the following two heuristics:

1. Zero Heuristic: Heuristic is always 0.
2. Distance Heuristic: Heuristic is the distance of the agent

trusted with the rescue operation and the location where
the rescue operation needs to be performed.

We choose the value of depth d to be all values from the
set {0, 3, 6, 9, 12, 15}. We also choose b to be all values from
{1, 2, 3, 4} because there can be a maximum of four method

Figure 2: Success ratio (number of successful jobs/ total
number of jobs) for various values of b and k in the Search
and Rescue Domain.

Figure 3: Retry Ratio (number of retries of RAE/ total num-
ber of jobs) for various values of b and k in the Search and
Rescue Domain.

instances for any task in this domain. We set k to 3 as ex-
plained before.

Experiments with Zero Heuristic
We expect to see an improvement in efficiency with increase
in depth d because the plans will be more accurate if we
examine rollouts till a higher depth before using a heuristic
estimate. It is indeed the case as observed in Figure 4. The
success ratio also increases for the same reason as observed
in Figure 5.

It is interesting to see that the retry ratio decreases upto
depth d = 6 but then starts increasing with increase in d. In
general, we would expect the retry ratio to decrease with in-
crease in d because RAE should be able to accomplish tasks
with fewer attempts when plans are more accurate. The in-
crease in efficiency and success ratio confirms that. How-
ever, note that retry ratio is measured and compared only for

50

Figure 4: Efficiency E for various values of b and depth d in
the Search and Rescue Domain for Zero heuristic.

Figure 5: Success ratio (number of successful jobs/ total
number of jobs) for various values of b and depth d in the
Search and Rescue Domain for Zero heuristic.

the successful jobs, jobs that succeed for all values of b and d
because it will be unfair to compare the retries of a failed job
to the retries of a successful job. For this set of sub-problems
in the Search and Rescue domain, it is possible that for some
sub-task, RAEplan-LookAhead finds a method which is more
efficient but not very reliable to succeed. The failure is not
very dangerous because the success ratio does not suffer as
seen in Figure 5.

Experiments with Distance Heuristic
Like in the case of Zero heuristic, the experiments with Dis-
tance heuristic also show that the efficiency increases with
increase in b and depth d. This can be seen in Figure 7. The
success ratio also increases with increase in b and d as seen
in Figure 8. The behavior of retry ratio shown in Figure 9
is similar to that of zero heuristic. It decreases upto d = 6
and then increases. We believe the reason for this behavior
is same as discussed in the case of zero heuristic.

Figure 6: Retry ratio for various values of b and depth d in
the Search and Rescue Domain for Zero heuristic.

Figure 7: Efficiency E for various values of b and depth d in
the Search and Rescue Domain for distance heuristic.

Depth and Running Time
Figure 10 shows how the acting time and the planning
time changes with depth for the zero heuristic. We mea-
sured the acting time and planning time separately with the
bolder lines denoting the acting time. We observe that acting
time decreases and planning time increases with increase in
depth d of RAEplan-LookAhead. This is expected because
the planner needs more time to roll out upto greater depths
and returns more efficient methods which in turn reduces the
acting time. The changes with depth are more pronounced
for b = 4 than b = 1 because RAEplan-LookAhead examines
for method instances for higher values of b. We also observe
that somewhere between d = 9 and d = 12, the planning
time starts to dominate the acting time. This is interesting
and may help one decide the ideal value of depth in their
domain. The acting time and planning time for the distance
heuristics is shown in Figure 11. The value of d may be cho-
sen depending on the desired trade-off between efficiency
and running time of RAEplan with respect to RAE. Note that

51

Figure 8: Success ratio (number of successful jobs/ total
number of jobs) for various values of b and depth d in the
Search and Rescue Domain for distance heuristic.

Figure 9: Retry ratio for various values of b and depth d in
the Search and Rescue Domain for distance heuristic.

we also tried to observe patterns in the total time by taking
an weighted sum of the acting and planning times. However,
the results were not very meaningful in this domain.

Related Work
The approach to do planning in an operational model, RAE,
and RAEplan, have been presented in (Patra et al. 2019). In
this paper we discussed how the framework proposed in (Pa-
tra et al. 2019) can be used to easily interleave acting and
planning and provided a novel experimental evaluation that
shows the advantage of interleaving acting with planning.
Beyond our AAAI work, to our knowledge, no previous ap-
proach has proposed the integration of planning and acting
directly within the language of an operational model.

Our acting algorithm and operational models are based
on the RAE algorithm (Ghallab, Nau, and Traverso 2016,
Chapter 3), which in turn is based on PRS. If RAE and PRS
need to choose among several eligible refinement methods
for a given task or event, they make the choice without trying

Figure 10: This figure shows that using the zero heuristic,
the planning time (running time of RAEplan) increases with
depth and the acting time (running time of RAE) decreases
when it calls RAEplan with higher depth d. The time is mea-
sured in counter ticks. We do not show the plots for b = 2
and b = 3 here because they were similar to b = 4 and
adding them made the figure more cluttered.

Figure 11: This figure shows that using the distance heuris-
tic, the planning time (running time of RAEplan) increases
with depth and the acting time (running time of RAE) de-
creases when it calls RAEplan with higher depth d. The time
is measured in counter ticks.

to plan ahead. This approach has been extended with some
planning capabilities in PropicePlan (Despouys and Ingrand
1999) and SeRPE (Ghallab, Nau, and Traverso 2016). Un-
like our approach, those systems model commands as clas-
sical planning operators; they both require the action mod-
els and the refinement methods to satisfy classical planning
assumptions of deterministic, fully observable and static en-
vironments, which are not acceptable assumptions for most
acting systems.

Various acting approaches similar to PRS and RAE have
been proposed, e.g., (Firby 1987; Simmons 1992; Sim-
mons and Apfelbaum 1998; Beetz and McDermott 1994;
Muscettola et al. 1998; Myers 1999). Some of these have re-
finement capabilities and hierarchical models, e.g., (Verma

52

et al. 2005; Wang et al. 1991; Bohren et al. 2011). While
such systems offer expressive acting environments, e.g.,
with real time handling primitives, none of them provide the
ability to plan with the operational models used for acting,
and thus cannot integrate acting and planning as we do. Most
of these systems do not reason about alternative refinements.

(Musliner et al. 2008; Goldman et al. 2016; Goldman
2009) propose a way to do online planning and acting, but
their notion of “online” is different from ours. In (Musliner
et al. 2008), the old plan is executed repeatedly in a loop
while the planner synthesizes a new plan (which the authors
say can take a large amount of time), and the new plan isn’t
installed until planning has been finished. In RAEplan, hier-
archical task refinement is used to do the planning quickly,
and RAE waits until RAEplan returns.

The Reactive Model-based Programming Language
(RMPL) (Ingham, Ragno, and Williams 2001) is a compre-
hensive CSP-based approach for temporal planning and act-
ing which combines a system model with a control model.
The system model specifies nominal as well as failure state
transitions with hierarchical constraints. The control model
uses standard reactive programming constructs. RMPL pro-
grams are transformed into an extension of Simple Tempo-
ral Networks with symbolic constraints and decision nodes
(Williams and Abramson 2001; Conrad, Shah, and Williams
2009). Planning consists in finding a path in the network
that meets the constraints. RMPL has been extended with er-
ror recovery, temporal flexibility, and conditional execution
based on the state of the world (Effinger, Williams, and Hof-
mann 2010). Probabilistic RMPL are introduced in (Santana
and Williams 2014; Levine and Williams 2014) with the no-
tions of weak and strong consistency, as well as uncertainty
for contingent decisions taken by the environment or another
agent. Our approach does not handle time; it focuses instead
on hierarchical decomposition with Monte Carlo rollout and
sampling.

Behavior trees (BT) (Colledanchise 2017; Colledanchise
and Ögren 2017) can also respond reactively to contingent
events that were not predicted. Planning synthesizes a BT
that has a desired behavior. Building the tree refines the act-
ing process by mapping the descriptive action model onto
an operational model. Our approach is different since RAE
provides the rich and general control constructs of a pro-
gramming language and plans directly within the operational
model, not by mapping from the descriptive to an opera-
tional model. Moreover, the BT approach does not allow for
refinement methods, which are a rather natural and practical
way to specify different possible refinements of tasks.

Approaches based on temporal logics and situation cal-
culus (Doherty, Kvarnström, and Heintz 2009; Hähnel, Bur-
gard, and Lakemeyer 1998; Claßen et al. 2012; Ferrein and
Lakemeyer 2008) specify acting and planning knowledge
through high-level descriptive models and not through op-
erational models like in RAE. Moreover, these approaches
integrate acting and planning without exploiting the hierar-
chical refinement approach described here.

Our methods are significantly different from those used in
HTNs (Nau et al. 1999): to allow for the operational models
needed for acting, we use rich control constructs rather than

simple sequences of primitives. The hierarchical represen-
tation framework of (Bucchiarone et al. 2013) includes ab-
stract actions to interleave acting and planning for compos-
ing web services—but it focuses on distributed processes,
which are represented as state transition systems, not opera-
tional models. It does not allow for refinement methods.

A wide literature on MDP-based probabilistic planning
and Monte Carlo tree search refers to simulated execu-
tion, e.g., (Feldman and Domshlak 2013; 2014; Kocsis and
Szepesvári 2006; James, Konidaris, and Rosman 2017) and
sampling outcomes of action models e.g., RFF (Teichteil-
Königsbuch, Infantes, and Kuter 2008), FF-replan (Yoon,
Fern, and Givan 2007) and hindsight optimization (Yoon et
al. 2008). The main conceptual and practical difference with
our work is that these approaches use descriptive models,
i.e., abstract actions on finite MDPs. Although most of the
papers refer to doing the planning online, they do the plan-
ning using descriptive models rather than operational mod-
els. There is no notion of integration of acting and planning,
hence no notion of how to maintain consistency between
the planner’s descriptive models and the actor’s operational
models. Moreover, they have no notion of hierarchy and re-
finement methods.

Finally, there has been a lot of work in robotics to inte-
grate planning and execution. They propose various tech-
niques and strategies to handle the inconsistency issues that
arise when execution and planning are done with different
models. (Lallement, De Silva, and Alami 2014) shows how
HTN planning can be used in robotics. (Garrett, Lozano-
Perez, and Kaelbling 2018a) and (Garrett, Lozano-Pérez,
and Kaelbling 2018b) integrates task and motion planning
for robotics. (Coste-Maniere et al. 2017) integrates planning
and execution for surgical planning algorithms used by sur-
gical robots for laporoscopic and other minimally invasive
surgery.

Conclusions and Future Work
In this paper, we discussed different ways to interleave act-
ing and planning using operational models. Our actor is RAE
and our planner is RAEplan-LookAhead. We came up with
simple domain dependent heuristics in a simulated domain,
called Search and Rescue and showed that performance im-
proves with depth but the cost is that it also takes more time.
Depending on the domain, the heuristics available and the
performance requirements, the set of experiments done in
this paper can help one identify the sweet spot.

In future, we plan to interleave acting and planning in
some other domains and observe the changes in the perfor-
mance of RAE and RAEplan-LookAhead. We also plan to
do experiments using the lazy and concurrent strategies dis-
cussed in this paper.

References
Beetz, M., and McDermott, D. 1994. Improving robot plans during
their execution. In AIPS.
Bohren, J.; Rusu, R. B.; Jones, E. G.; Marder-Eppstein, E.; Panto-
faru, C.; Wise, M.; Mösenlechner, L.; Meeussen, W.; and Holzer, S.
2011. Towards autonomous robotic butlers: Lessons learned with
the PR2. In ICRA, 5568–5575.

53

Bucchiarone, A.; Marconi, A.; Pistore, M.; Traverso, P.; Bertoli,
P.; and Kazhamiakin, R. 2013. Domain objects for continuous
context-aware adaptation of service-based systems. In ICWS, 571–
578.
Claßen, J.; Röger, G.; Lakemeyer, G.; and Nebel, B. 2012. Platas—
integrating planning and the action language Golog. KI-Künstliche
Intelligenz 26(1):61–67.
Colledanchise, M., and Ögren, P. 2017. How behavior trees mod-
ularize hybrid control systems and generalize sequential behav-
ior compositions, the subsumption architecture, and decision trees.
IEEE Trans. Robotics 33(2):372–389.
Colledanchise, M. 2017. Behavior Trees in Robotics. Ph.D. Dis-
sertation, KTH, Stockholm, Sweden.
Conrad, P.; Shah, J.; and Williams, B. C. 2009. Flexible execution
of plans with choice. In ICAPS.
Coste-Maniere, E.; Adhami, L.; Boissonnat, J.-D.; Carpentier, A.;
and Guthart, G. S. 2017. Methods and apparatus for surgical plan-
ning. US Patent App. 15/397,498.
Despouys, O., and Ingrand, F. 1999. Propice-Plan: Toward a uni-
fied framework for planning and execution. In ECP.
Doherty, P.; Kvarnström, J.; and Heintz, F. 2009. A temporal
logic-based planning and execution monitoring framework for un-
manned aircraft systems. J. Autonomous Agents and Multi-Agent
Syst. 19(3):332–377.
Effinger, R.; Williams, B.; and Hofmann, A. 2010. Dynamic ex-
ecution of temporally and spatially flexible reactive programs. In
AAAI Wksp. on Bridging the Gap between Task and Motion Plan-
ning, 1–8.
Feldman, Z., and Domshlak, C. 2013. Monte-carlo planning: The-
oretically fast convergence meets practical efficiency. In UAI.
Feldman, Z., and Domshlak, C. 2014. Monte-carlo tree search: To
MC or to DP? In ECAI, 321–326.
Ferrein, A., and Lakemeyer, G. 2008. Logic-based robot control
in highly dynamic domains. Robotics and Autonomous Systems
56(11):980–991.
Firby, R. J. 1987. An investigation into reactive planning in com-
plex domains. In AAAI, 202–206. AAAI Press.
Garrett, C. R.; Lozano-Perez, T.; and Kaelbling, L. P. 2018a. Ffrob:
Leveraging symbolic planning for efficient task and motion plan-
ning. The International Journal of Robotics Research 37(1):104–
136.
Garrett, C. R.; Lozano-Pérez, T.; and Kaelbling, L. P. 2018b.
Stripstream: Integrating symbolic planners and blackbox samplers.
arXiv preprint arXiv:1802.08705.
Ghallab, M.; Nau, D. S.; and Traverso, P. 2016. Automated Plan-
ning and Acting. Cambridge University Press.
Goldman, R. P.; Bryce, D.; Pelican, M. J.; Musliner, D. J.; and Bae,
K. 2016. A hybrid architecture for correct-by-construction hybrid
planning and control. In NASA Formal Methods Symposium, 388–
394. Springer.
Goldman, R. P. 2009. A semantics for htn methods. In ICAPS.
Hähnel, D.; Burgard, W.; and Lakemeyer, G. 1998. GOLEX –
bridging the gap between logic (GOLOG) and a real robot. In KI,
165–176. Springer.
Ingham, M. D.; Ragno, R. J.; and Williams, B. C. 2001. A reactive
model-based programming language for robotic space explorers.
In i-SAIRAS.
James, S.; Konidaris, G.; and Rosman, B. 2017. An analysis of
monte carlo tree search. In AAAI, 3576–3582.

Kocsis, L., and Szepesvári, C. 2006. Bandit based monte-carlo
planning. In ECML, volume 6, 282–293.
Lallement, R.; De Silva, L.; and Alami, R. 2014. Hatp: An htn
planner for robotics. arXiv preprint arXiv:1405.5345.
Levine, S. J., and Williams, B. C. 2014. Concurrent plan recogni-
tion and execution for human-robot teams. In ICAPS.
Muscettola, N.; Nayak, P. P.; Pell, B.; and Williams, B. C. 1998.
Remote Agent: To boldly go where no AI system has gone before.
Artificial Intelligence 103:5–47.
Musliner, D. J.; Pelican, M. J.; Goldman, R. P.; Krebsbach, K. D.;
and Durfee, E. H. 2008. The evolution of circa, a theory-based
ai architecture with real-time performance guarantees. In AAAI
Spring Symposium: Emotion, Personality, and Social Behavior,
volume 1205.
Myers, K. L. 1999. CPEF: A continuous planning and execution
framework. AI Mag. 20(4):63–69.
Nau, D. S.; Cao, Y.; Lotem, A.; and Muñoz-Avila, H. 1999. SHOP:
Simple hierarchical ordered planner. In IJCAI, 968–973.
Patra, S.; Gallab, M.; Nau, D.; and Traverso, P. 2018. Using oper-
ational models to integrate acting and planning. In IntEx: ICAPS
2018 Workshop on Integrated Planning, Acting and Execution.
Patra, S.; Gallab, M.; Nau, D.; and Traverso, P. 2019. Acting and
planning using operational models. In AAAI. AAAI Press.
Santana, P. H. R. Q. A., and Williams, B. C. 2014. Chance-
constrained consistency for probabilistic temporal plan networks.
In ICAPS.
Simmons, R., and Apfelbaum, D. 1998. A task description lan-
guage for robot control. In IROS, 1931–1937.
Simmons, R. 1992. Concurrent planning and execution for au-
tonomous robots. IEEE Control Systems 12(1):46–50.
Teichteil-Königsbuch, F.; Infantes, G.; and Kuter, U. 2008. RFF: A
robust, FF-based MDP planning algorithm for generating policies
with low probability of failure. In ICAPS.
Vaquero, T.; Roberts, M.; Bernardini, S.; Niemueller, T.; and
Fratini, S., eds. 2018. Proceedings of the 2nd Workshop on In-
tegrated Planning, Acting, and Execution, ICAPS 2018 Workshop.
Verma, V.; Estlin, T.; Jónsson, A. K.; Pasareanu, C.; Simmons, R.;
and Tso, K. 2005. Plan execution interchange language (PLEXIL)
for executable plans and command sequences. In i-SAIRAS.
Wang, F. Y.; Kyriakopoulos, K. J.; Tsolkas, A.; and Saridis, G. N.
1991. A Petri-net coordination model for an intelligent mobile
robot. IEEE Trans. Syst., Man, and Cybernetics 21(4):777–789.
Williams, B. C., and Abramson, M. 2001. Executing reactive,
model-based programs through graph-based temporal planning. In
IJCAI.
Yoon, S. W.; Fern, A.; Givan, R.; and Kambhampati, S. 2008. Prob-
abilistic planning via determinization in hindsight. In AAAI, 1010–
1016.
Yoon, S. W.; Fern, A.; and Givan, R. 2007. Ff-replan: A baseline
for probabilistic planning. In ICAPS, volume 7, 352–359.

54

Executing Multi-Goal Mission Plans for Coordinated Mobile Robots

Marlyse Reeves, Enrique Fernández-González, Brian Williams
MIT, CSAIL

Cambridge, MA 02139
{mreeves,efernan,williams}@csail.mit.edu

Abstract
This paper presents a centralized executive for robotic mis-
sion plans with multiple temporally extended goals and coor-
dinated agents. Common approaches to online motion plan-
ning and execution execute sequential goals independently,
and do not consider the full plan when planning for the next
goal. This often results in suboptimal or infeasible plans.
Some hybrid and temporal planners are capable of generating
motion plans for multiple vehicles with multiple goals over
long horizons. However, the dynamics considered are often
too simple to be executed by real systems. We present an ex-
ecutive planner that plans local trajectories using sufficiently
accurate dynamics while considering the rest of the global
plan constraints in the far future. We achieve this by repeat-
edly solving a single, multi-fidelity optimization problem,
where we combine higher fidelity discrete-time dynamics to
generate the local trajectory and lower fidelity continuous-
time dynamics to capture the full remaining plan, guiding the
local trajectory. We evaluate our multi-goal executive planner
against a naive, myopic executive and demonstrate the scala-
bility on a set of expressive real-world scenarios.

1 Introduction
Autonomous mobile systems are being tasked to execute in-
creasingly complex missions in a variety of domains. For
example, NASA plans to send a suite of remote agents to
Saturn’s moon Europa to autonomously explore the icy sur-
face and oceans for long durations without human inter-
vention. Robotic scenarios like this often involve coordina-
tion of multiple heterogeneous vehicles subject to expressive
constraints including temporal deadlines, limited resources,
and coupling between vehicles. Mission plans generated for
these scenarios require agents to achieve multiple goals over
long time spans. Local execution may affect the feasibility
of goals later in the plan. Similarly, goals in the future may
impose constraints on the immediate behavior of the system.

To successfully execute these challenging missions, an
executive planner must 1) avoid being myopic by consid-
ering the constraints of the full plan to ensure agents can
achieve all the mission goals, 2) generate dynamically fea-
sible trajectories that respect the complex constraints of the

Copyright c© 2019, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

mission, and 3) reason in real time to adapt to changes in the
environment and uncertainty in agent execution.

Traditionally, to ensure sufficiently fast planning, execu-
tives only reason about the next goal. Model predictive con-
trol (MPC) is a widely used approach for this execution strat-
egy. This approach solves a series of local control problems
iteratively until the goal is reached, allowing for plan adap-
tation in response to disturbances. Typically, MPC methods
use spatial heuristics to guide the local trajectory (Mettler,
Dadkhah, and Kong 2010), (Bellingham, Kuwata, and How
2003), (Kuwata and How 2004). Again, these approaches
only consider a single goal and are often limited to single
agent problems with simple linear constraints.

Other work addresses efficient long horizon execution
planning with finer resolution as the plan is executed (Jain
and Tsiotras 2009). In these multi-fidelity approaches, only
simple constraints for a single vehicle are considered. Hi-
erarchical approaches use a lower level trajectory planner
to refine solutions generated by a high level planner, speed-
ing up the planning process to allow for larger and more
complex problems. One such approach uses a constrained
Markov decision process (CMDP) as a mission planner in-
tegrated with a probabilistic roadmap (PRM) for more fine-
grained control to handle scenarios in complex cityscapes
(Ding et al. 2014). Another approach solves a graph search
problem on a discretized map using a continuous trajectory
planner to compute edge costs and ensure dynamic feasibil-
ity (Cowlagi and Tsiotras 2012). However, during execution,
these approaches only use the next unsatisfied goal to guide
the local trajectory.

Work has been done to consider multiple goals during
planning. One approach models the mission activities as a
directed graph encoded with spatial and temporal constraints
(Bhattacharya, Likhachev, and Kumar 2010). Although this
approach can handle complex problems with multiple co-
ordinated vehicles, the graph search is too slow for online
execution. Other approaches use a similar graph-like formu-
lation encoded as a receding horizon optimization problem
(Léauté and Williams 2005), (Hofmann and Williams 2017).
These approaches demonstrate robust execution of complex,
multi-goal mission plans and serve as the foundation of our
work. We give a more efficient optimization encoding with a

55

more informative heuristic guidance which allows for real-
time execution of richer mission plans.

Hybrid planners are devised to handle coordinated
agents over long horizons with multiple goals (Fernández-
González, Williams, and Karpas 2018). However, these fo-
cus on the generative activity planning side, and only con-
sider simple first-order constant velocity dynamics that are
not suitable for direct execution. The temporal logic com-
munity has also frequently addressed the problem of plan-
ning multi-goal, long duration missions for multiple vehi-
cles (Wurm et al. 2013) (Ulusoy et al. 2012) (Schillinger,
Bürger, and Dimarogonas 2018). These planners efficiently
assign and schedule tasks to many agents however the plans
consist of a series of waypoints or graph nodes which can-
not be directly executed by a real robot. Our executive plan-
ner does not do task allocation or activity planning but in-
stead could support these planners by providing central-
ized, multi-vehicle trajectory planning and execution for
long horizon mission plans.

In this paper, we introduce a centralized executive plan-
ner capable of executing multi-goal, long duration missions
involving multiple coordinated vehicles. Leveraging a multi-
fidelity approach, our executive plans trajectories using a de-
tailed discrete-time formulation for a limited horizon while
simultaneously reasoning over the entirety of the remain-
ing plan using a lower fidelity continuous time formulation.
The key innovation of our approach is how we combine this
local (discrete time) and global (continuous time) planning
into a single optimization problem such that the local trajec-
tory is guided by the constraints and objectives of the global
mission plan. Our executive planner solves this optimization
problem iteratively, in real-time, using a receding horizon
approach which allows us to react to disturbances discov-
ered during execution. In our discussion of this work, we
assume that mission plans have been generated by experts
or by a generative hybrid planner similar to ScottyActiv-
ity (Fernández-González, Williams, and Karpas 2018). We
empirically evaluate our executive planner on a set of real-
world multi-agent scenarios in simulation and show that it
can execute a richer set of mission scenarios when compared
to myopic online executives.

2 Motivating Scenario
Our team at MIT will participate in a robotic mission in
Santorini, Greece to study marine life around an underwa-
ter volcano. In this work, we will use an idealization of this
mission to illustrate the capabilities of our executive planner.
The scenario involves an Autonomous Underwater Vehicle
(AUV) and a ship. The AUV uses a thruster powered by a
battery to propel itself through the water.

Consider an example mission plan for this scenario. Ini-
tially, the ship is transporting the AUV to the area of sci-
entific interest. First, the AUV must take images of the sea
floor in region A. Then, the AUV must visit region B to take
samples of the water column. After all the data has been
gathered, the ship must recover the AUV within 30 minutes.
Finally, the ship, with the AUV on board, must end in the
destination region. For safety reasons, the AUV must stay

within communication range of the ship at all times. Ad-
ditionally, the AUV must avoid consuming the entire bat-
tery supply during the mission. We assume all obstacles are
below the ocean surface and therefore only the AUV is re-
quired to avoid them. The objective of this mission is to min-
imize a linear combination of the total mission time and the
total distance traveled by the ship. Figure 1a shows an ex-
ample plan satisfying the mission goals in 2D.

This mission plan is flexible with implicit goals; the plan-
ner must decide, for example, where and when the AUV and
ship should rendezvous. Also, notice that the trajectories ex-
ecuted in the near term affect the rest of the plan. For in-
stance, if the ship deploys the AUV close to region A, it will
have more battery power to use for the rest of the mission.
Additionally, the constraints later in the plan affect early ex-
ecution. For example, the AUV must achieve all its science
goals fast enough to rendezvous with the ship before the
deadline. Moreover, the AUV and the ship are tightly cou-
pled throughout the mission due to the communication range
constraint.

3 Problem Statement
Given a representation of the mission plan specifying ve-
hicle dynamics, multiple goals over time, and mission con-
straints, our executive planner finds a finite horizon control
sequence. This control sequence may satisfy some of the
mission goals that are achievable during this finite horizon
and will ensure that the remaining goals are achievable under
relaxed dynamics. Finally, this control sequence is guided
by all the remaining goals of the full mission plan. In order
to the complete the mission, we iteratively plan and execute
control sequences using a receding horizon formulation until
all the goals are satisfied.

3.1 Definition of a Qualitative State Plan
A complex robotic mission plan can be represented as a
qualitative state plan (QSP) (Léauté and Williams 2005).
This graph-like representation uses nodes to represent dis-
tinct points in time, or events. Edges, or episodes, capture
state constraints, temporal constraints, or vehicle dynamics
that are active between a pair of events.

More formally, a QSP = 〈X ,U,E,EP,O〉 describes the
state, temporal, and dynamic constraints that need to be sat-
isfied at different points in the plan where:

• X is a set of state variables for all agents.

• U is a set of control variables for all egents.

• E is an ordered list of events with each event e given by
〈te,Se〉 where:

– te is a real-valued variable representing the execution
time of the event.

– Se is the set of state constraints on the values of the state
variables at that event.

• EP is the set of episodes and each episode ep is given by
〈eS,eE ,dl ,du,Sep,Dep〉 where:

– eS and eE are the starting and ending events of the
episode.

56

(a) Ocean exploration motivating scenario
plan. The ship and AUV trajectories are
shown in blue and orange respectively.

deploy AUV
AUV take images

at region A
AUV take samples

at region B recover AUV

mission

AUV deployed

x0

t0

xAUV ∈ A xAUV ∈ B
xAUV = xship

xship ∈ Rdest

‖ xAUV −xship ‖ ≤ dcommunication

battery drain ∝‖ vAUV ‖

eo

e1 e2 e3 e4 e5 e6 e7 e8

e9

min f (xship) + g(t9)

[ε, ∞) [ε, ∞) [ε, ∞) [ε, ∞) [ε, ∞)

[5,5] [10,20] [10,20] [5,5]

(b) Qualitative state plan for the ocean exploration motivating scenario. The plan con-
sists of activities that must be executed in a certain order. Activities have associated
constraints that restrict the state of the vehicles, describe the dynamical behavior, and
impose temporal relations between other activities.

Figure 1: Ocean Exploration Motivating Scenario

– dl and du are the lower and upper bounds on the dura-
tion of the episode.

– Sep is the set of state constraints that must be satisfied
for the duration of the episode.

– Dep is the set of dynamic equations that relate control
inputs to state constraints, describing how state vari-
ables change over the duration of the episode.

• O is an objective to be minimized over the entire mission
as a function of state and control variables.

Additionally, we assume the the events in the qualitative
state plan are totally ordered such that t1 < t2 < · · · < tm
where m is the total number of events.

The qualitative state plan for our motivating scenario is
shown in Figure 1b. The events are shown as black circles.
For example, event e3 is the moment in time when the AUV
starts taking images of region A. The episodes are shown
in green. A subset of the state and dynamic constraints are
shown in blue and orange respectively. The episode between
events e5 and e6 represents the AUV taking samples in re-
gion B. This activity can take between 10 and 20 minutes
and requires that the AUV be inside region B for the dura-
tion of the episode. The AUV is deployed and navigating
underwater between events e2 and e7 during which time its
battery drains as a function of its velocity. The objective over
the entire mission is shown in the QSP in pink. Finally, the
[ε,∞) temporal constraints between some events enforce the
total ordering of events (i.e. e1 must happen at least ε min-
utes after e0 where ε is some small constant).

3.2 Multi-goal Execution Problem
In order to successfully execute the mission described by
the QSP, we iteratively find finite control trajectories for a
receding horizon. We denote multi-goal execution problem
as the problem of finding such local finite trajectory for the
next planning horizon while considering the goals of the full
plan. Our multi-goal execution problem is given by the 6-
tuple, 〈QSP,xxxo,enext ,n,∆t,env〉 where:

• QSP is a qualitative state plan.
• xxxo is the current state of all agents.
• enext is the next event in the QSP that is yet unsatisfied.
• n is the number of discrete time steps.
• ∆t is the sample time between discrete time steps.
• env is a representation of the obstacles in the environment.

The problem consists of building and solving a trajec-
tory optimization problem to generate a finite control tra-
jectory 〈uuu0, . . . ,uuun−1〉 and the corresponding state trajectory
〈xxx1, . . . ,xxxn〉 for each discrete time step t0, ..., tn−1. We define
the planning horizon, TP, to be the total time of this finite
control trajectory.

TP = tn = t0 +(n−1)∆t

Note that in general, TP � TM , where TM is the total time
of the entire executed mission. Additionally, we let Th < TP
where Th is the execution horizon, or the length of the con-
trol trajectory actually executed by the agents before re-
planning. A valid finite control trajectory and corresponding
state trajectory satisfies all constraints and dynamics cap-
tured by the corresponding portion of the QSP and avoids
obstacles in the environment. This finite trajectory might sat-
isfy one or more of the remaining events in the QSP if those
events are achievable within the execution horizon.

4 Approach
Our executive planner hinges on a ”multi-fidelity” approach;
that is, jointly reasoning with a high fidelity model just be-
fore execution while reasoning with a lower fidelity model
for the remaining mission plan. More specifically, we use a
discrete time formulation to generate a finite horizon trajec-
tory. This formulation allows us to reason about executable
dynamics and local hazards for a limited time to avoid in-
tractability. Conversely, we use a continuous time formula-
tion to capture the remaining mission plan. While this for-
mulation is lower resolution, it allows us to efficiently reason

57

over long and complex plans. We unify these discrete time
and continuous time formulations into a single optimization
problem which is solved iteratively, in real time, until all the
mission goals have been satisfied. Most importantly, this in-
tegration ensures that the local finite trajectory respects and
is informed by the constraints and goals of the overall mis-
sion plan.

In the following section, we first review how our approach
leverages existing discrete time and continuous time trajec-
tory optimization formulations, then discuss our main inno-
vation which is the integration of these two formulations for
multi-goal execution guided by the full plan.

4.1 Generating Finite Control Trajectories

To enable successful missions, we must generate detailed
and accurate control trajectories that agents can execute in
the real world. In addition to being dynamically feasible,
these finite control trajectories must respect the constraints
of the QSP and avoid local hazards such as nearby obsta-
cles or agents. We use a discrete time trajectory optimiza-
tion formulation to generate these high-fidelity trajectories.
More specifically, we use a fixed horizon of n discrete time
steps where ∆t is the sample time.

Our discrete time formulation, derived from generic tra-
jectory optimization methods such as the one presented in
(Schouwenaars et al. 2001), can be written as

min
uuui,xxxn

n−1∑

i=0

rrr|uuui|+ f (xxxn) (1a)

subject to xxxi+1 = AAAxxxi +BBBuuui, (1b)

gk(xxxi)≤ 0, (1c)

uuumin ≤ uuui ≤ uuumax, (1d)

i = 0, . . . ,n−1

where xxx and uuu are the state and control vectors for all ve-
hicles. AAA and BBB are matrices that define second-order lin-
ear state space dynamics models for all vehicles. In addition
to dynamics, finite control trajectories are subject to con-
vex state constraints (Eq. 1c) and actuation limits (Eq. 1d).
Agents are assumed to start at a known initial state. The cost
function given in Eq. 1a uses a weight one norm of the con-
trol, where r is a non-negative weight matrix, that represents
total control effort. f (xxxn) is some terminal cost on the final
state, usually the approximate cost or distance to the goal. In
our formulation, the state constraints and dynamics are de-
rived from the QSP which will be discussed in section 4.3.

In our motivating scenario, the state vector contains the
position and velocities for both vehicles as well as the bat-
tery level for the AUV. The control vector contains the ac-

celerations for both vehicles.

xxx =
ï

xxxauv
xxxship

ò
, xxxauv =

xauv
yauv

vx,auv
vy,auv
bauv

 , xxxship =

xship
yship

vx,ship
vy,ship

 (2)

uuu =

ï
uuuauv
uuuship

ò
, uuuauv =

ï
ax,auv
ay,auv

ò
, uuuship =

ï
ax,ship
ay,ship

ò
(3)

Obstacles are represented by convex polygons P :=
{x|AAAxxxp < bbb} where xxxp is a positional state vector. To avoid
collision with polygon P, the following constraint must be
satisfied

aaaT
i xxxp ≥ bi−Mdi, i = 1, . . . ,D (4)

D∑

i=1

di ≤ D−1 (5)

where aaai is a row in matrix A, di ∈ {0,1} are binary deci-
sion variables, M is a large constant, and D is the number of
sides of the polygon. A similar method can be used to model
collision avoidance between vehicles (Richards et al. 2002).

4.2 Reasoning Over Long Horizons
In addition to generating local finite control trajectories, we
would like to be able to reason about the full mission plan.
A naive approach would be to extend the discrete time ap-
proach described in the previous section to the full plan
horizon. While this would give an optimal control trajec-
tory for the full plan that satisfies all the state and dynamic
constraints, increasing the number of discrete time steps in-
creases the number of variables and constraints in the prob-
lem. For the mission durations that we are interested in, the
problem becomes intractable. Instead, our approach avoids
fine-grained time discretization by using a continuous time
optimization formulation to reason about the full plan.

We leverage a class of convex optimization programs
called second order cone programs (SOCP) that are fast to
solve and allow for constraints that commonly arise in multi-
vehicle mission plans. More specifically, SOCPs allow us
to express inequality constraints on the norm and squared
norm of vectors of variables. For example, we can model
the AUV’s battery decrease as function of the magnitude of
the velocity vector and enforce a maximum distance con-
straint between the AUV and ship. In this work, we use the
convex model presented in (Fernández-González, Williams,
and Karpas 2018).

We encode the QSP, which represents the entire mission
plan, as a continuous time SOCP optimization problem. To
aid in our discussion, we define a segment to be the period of
time between two successive events in the QSP. Recall that
events are totally ordered in our definition of QSPs. Also
note that segments are different from episodes which can
span multiple events (and therefore multiple segments).

At each event j, we define a vector of state variables qqq j
and for each segment k we define a vector of control vari-
ables ccck. Additionally, we add a variable t j to represent the

58

episode b

episode a

e0 e1 ei ei+1
seg0 seg j seg j+1

q0 q1 qi qi+1

t0 t1 ti ti+1

c0 c j t

event

continuous
state

segment

...

Figure 2: Continuous time formulation overlaid on a QSP.
Events and segments and their associated variables are de-
picted in blue.

time at each event j. Figure 2 shows the continuous time
formulation overlaid on the QSP.

For reasoning over the full plan, we restrict the dynamics
to first-order velocity control and constrain the control vari-
ables to take constant values between events. For our moti-
vating example, the state and control vectors in the full plan
formulation are

qqq =

ï
qqqauv
qqqship

ò
, qqqauv =

[xauv
yauv
bauv

]
, qqqship =

ï
xship
yship

ò
(6)

ccc =
ï

cccauv
cccship

ò
, cccauv =

ï
vx,auv
vy,auv

ò
, cccship =

ï
vx,ship
vy,ship

ò
(7)

Our state transition equations becomes
qqq j+1 = qqq j + ccc j · (t j+1− t j) (8)

Notice that this equation is non-linear and non-convex
and cannot be directly encoded in a convex program.
(Fernández-González, Williams, and Karpas 2018) intro-
duces a proxy variable ccc j∆t j = ccc j · (t j+1 − t j) and reasons
over this variable in the optimization. We can see that substi-
tuting ccc j∆t j into Eq. 8 makes the state evolution linear. More
details on this proxy decision variable and how it impacts the
constraints can be found in (Fernández-González, Williams,
and Karpas 2018).

Given that the variables in our formulation correspond di-
rectly to events and episodes, we can directly apply con-
straints to these variables from the QSP. More specifically,
we add state constraints on the variables in qqq j from event j
as well as from any episode spanning that event. Similarly,
the control variables in ccck become constrained by the dy-
namic constraints of any episodes segment k is contained in.
Finally, the duration bounds on episodes enforce constraints
on the time variables t j.

The solution to our continuous time formulation over the
full plan is a piece-wise linear state trajectory that ignores
obstacles. Note that this ”relaxed” solution is always be op-
timistic with respect to the discrete time formulation and
therefore serves as an admissible heuristic for the local fi-
nite control trajectory. By leveraging convex optimization,
the continuous time solution can be efficiently computed for
long duration mission plans with many goals online.

4.3 Multi-goal Execution
To successfully execute multi-vehicle mission plans, our ex-
ecutive planner must ensure that the local trajectory obeys

episode a

e0 e1 e2seg0 seg2

q0 q1 tq2

......

segr

x0 xn−1∆t

reaching
segment

next event to
be satisfied, enext

Figure 3: Integrated discrete and continuous formulations
for a single planning horizon overlaid on a QSP. Local tra-
jectory with a fixed time step ∆t is represented by red x’s.
The planning horizon Tp = 4 ·∆t. The reaching segment is
depicted in orange.

the constraints of the QSP and that all events in the QSP
are executed successfully and in the proper order. Addition-
ally, we’d like the local finite control trajectory to be guided
by the full plan. In the following section, we describe how
our approach to integrating the discrete time and continu-
ous time formulations into a single optimization problem
meets these needs. More specifically, our trajectory opti-
mization problem is a mixed integer second-order cone pro-
gram (MISOCP). For reference, Fig. 3 shows both the dis-
crete and continuous time formulations for a single planning
horizon overlaid on the QSP.

The local state and control trajectory must obey the con-
straints of the QSP. However, as shown in Fig. 3, states in the
local trajectory do not necessarily fall between the same two
events and thus different constraints may apply at different
points in the trajectory. For example, in our motivating sce-
nario, the AUV only needs to be in region A between events
e3 and e4. We use binary indicator variables to choose which
constraints are active at each discrete time step.

Assume that our QSP has m events (and therefore m− 1
segments). Additionally, there are n discrete time states
where n = Tp/∆t. We introduce the following segment in-
dicator binary variables

zik =

ß
1 if xxxi in segment k,
0 otherwise (9)

i = 0, . . . ,n−1, k = 0, . . . ,m−2
m−1∑

k=0

zik = 1 (10)

where zik ∈ {0,1} and xxxi are discrete time states. For exam-
ple, from Fig. 3, we see that z0,0 = z1,0 = z2,0 = 1 because
states xxx0...2 fall in segment 0. We also impose the constraint
(Eq. 10) that each state on the local trajectory must be as-
signed to exactly one segment in the QSP. If a local state
is assigned to segment k, it inherits the state and dynamic
constraints from all the episodes that span that segment k.

Our formulation also needs to ensure that all events in the
QSP are executed in the correct order while obeying their
state constraints. Because events can be executed at any time
(subject to temporal constraints) where as the local trajec-
tory is sampled at fixed time steps, our executive planner
must decide which events, if any, will be satisfied during
each planning horizon.

59

We add the following state indicator variables to the
model to allow the planner to make that choice.

wi j =

ß
1 if event j is satisfied by xxxi,
0 otherwise (11)

i = 0, . . . ,n−1, j = 0, . . . ,m−1
n−1∑

i=0

wi j ≤ 1 (12)

where wi j ∈ {0,1}. For example, in Fig. 3, wn−2,1 = 1 since
event e1 is satisfied by state xn−2. We also impose the con-
straint (Eq. 12) that each event can be satisfied by at most
one state in the local trajectory. We also use this constraint as
a stopping condition for our executive planner. The last plan-
ning horizon is when the final event in the QSP is satisfied
and scheduled to be executed within the execution horizon,
Th.

Because our local control trajectory has fixed time steps,
we cannot impose arbitrary temporal constraints directly on
the discrete time variables. However, our approach uses a
combination of the state and segment indicator variables to
ensure that events are executed sequentially in the correct
order. More explicitly we add the following constraints to
our formulation

wi j = 1⇐⇒
i∑

l=0

wl(j−1) = 1 (13)

zik = 1⇐⇒
i∑

l=0

wlk = 1 (14)

Intuitively, Eq. 13 states that for discrete time state xxxi to sat-
isfy event j in this planning horizon, event j− 1 must have
been satisfied by a previous state in the local control trajec-
tory in this planning horizon (unless j = 0). Eq. 14 states that
a discrete time state xxxi can only be assigned to segment k if
event k was satisfied at or before xxxi or the planning horizon
started within segment k.

Recall that when reasoning over the full plan, we assigned
a state vector q j to each event j in the QSP. If xi satisfies
event j in the local trajectory then it must be consistent with
the state in the global ”relaxed” trajectory, inheriting its state
constraints.

wi j = 1⇐⇒
ß

xxxi = qqq j
Ti = t j

(15)

i = 0, . . . ,n−1, j = 0, . . . ,m−1

where Ti = t0 + i ·∆t is planned execution time of xxxi. Note
that the state variable vectors differ between the two models.
xxx contained position, velocity, and battery level while qqq only
contained position and battery level. Eq. 15 only applies to
the state variables present in both xxx and qqq state vectors.

Our executive planner not only ensures consistency with
the QSP but also forces the local trajectory to be guided by
the global plan. For guidance, the executive planner must
know which event in the QSP is next to be executed af-
ter the current planning horizon. We refer to this event as
the ”chased event”, echased . Some event e j = echased if all

Figure 4: (top) Integrated discrete and continuous formula-
tion for a single planning horizon overlaid on the motivating
example QSP. Note that the discrete states are not shown to
scale. (bottom) Integrated discrete and continuous time tra-
jectories for single planning horizon during execution plot-
ted in mission environment for the motivating scenario. The
ship’s trajectory is omitted for simplicity.

the events before event j have already been executed or are
scheduled to be executed in the current planning horizon.
We use the segment indicators to identify the chased event

zn(j−1) = 1 ⇐⇒ e j = echased (16)

e j = echased ⇐⇒ qqqchased = qqq j (17)

Intuitively, if the last local trajectory state xxxn is going to be
executed in segment j− 1, then the chased event is e j and
the global state associated with e j becomes the chased state.

We introduce a new auxiliary segment called the reaching
segment, which is the period of time between the last state in
the local trajectory and the global state qqqchased . We also de-
fine a new constant control variable vector for this segment,
cccr. The state evolution for the reaching segment becomes

qqqchased = xxxn + cccr · (tchased−Tn) (18)

where Tn = t0 + n ·∆t is planned execution time of xxxn. The
reaching segment is show in orange in Fig. 3.

Eq. 18 imposes a constraint on the global model that af-
fects the overall optimization cost. For example, assume the
objective is to minimize the total time of the full plan. The
above constraint implies that the fastest you can get to the
next event after the planning horizon is from the last point
in the local trajectory going at full speed in a straight line.
This may take longer than the original global plan. The op-
timization will try to minimize the reaching segment and di-
rect the local trajectory towards the next event. Additionally,
since the next event constrains the future events in the global
plan, the local trajectory execution also impacts states in the
far future. Fig. 4 shows the local and global trajectories for
the AUV in a planning horizon during the execution of our
motivating scenario. The last point in the local trajectory is
constraining the next event in the QSP through the reaching
segment shown in dotted orange.

60

Our Executive Naive Executive
Scenario OBJ t OBJ t
One AUV 46.53 0.22 34.77 0.19

AUV + Ship 17.54 0.35 22.97 0.20
Hazard Reg. 11.02 0.31 19.44 0.10
Motiv. Scen. 19.28 0.47 - -

Table 1: Plan quality comparison. OBJ: Mean objective
value; t: Mean optimization time for single planning hori-
zon in seconds. Example solutions for these scenarios are
shown in Fig. 5
.

5 Experimental Results
Our executive planner is implemented in Python and uses
the GUROBI 8.0.1 solver to solve the MISCOP optimization
problems. We compare our executive planner to a naive, my-
opic executive and evaluate its performance and scalability
on a variety of scenarios.

For comparison, we implement a ”naive” executive that
only considers the next event in the QSP when planning lo-
cal trajectories. More specifically, this naive executive uses
the same discrete time formulation presented in Sec. 4.1 with
the next unsatisfied event encoded as the goal. Using a reced-
ing horizon approach, the naive executive plans finite trajec-
tories iteratively until the event is satisfied. Then, it takes
the next unsatisfied event in the QSP as input and repeats
the process until all the events are satisfied. Importantly, the
naive approach is myopic; it only considers the next event
during planning instead of the entire remaining mission plan.
The naive executive minimizes a linear combination of the
local control effort and the time to the next event while our
executive planner minimizes a linear combination of the lo-
cal control effort and the time of the last event in the QSP. To
compare the plan quality, or value of the objective function,
of our executive planner and the naive executive, we use 4 il-
lustrative scenarios. For each scenario, we ran 60 trials with
randomized initial conditions. A summary of the results can
be seen in Table 1 and we will briefly touch on each scenario.

First, we consider a simple single vehicle scenario. In this
first scenario, a single AUV visits regions while avoiding
obstacles. The naive executive is a greedy approach so for
this and other simple scenarios it gives better quality plans
than our executive.

Next, we consider scenarios where early decisions impact
the quality of the overall plan. In the second scenario, an
AUV is deployed by a ship to visit region A then region B
(Fig. 5a). The AUV does not need to conserve battery and
there is no communication constraint between the AUV and
the ship however the ship must still recover the AUV and
travel to the destination region before the end of the mis-
sion. The naive executive does not know that the ship and
the AUV must be at the same location later in the plan. As
a result, it makes no effort early on to move the ship in the
same direction as the AUV and the AUV must double back
to rendezvous with the ship, following a suboptimal route.
On the other hand, our executive planner uses the full QSP

to guide the ship’s local trajectory towards the destination
where it meets and recovers the AUV. The third scenario
is the same as the second execept now there is a hazard cut-
ting through region A (Fig. 5b). The naive executive greedily
steers the AUV to the closest point in region A, causing the
trajectory to region B to be suboptimal. Our executive plan-
ner steers the AUV to a location in region A farther from the
AUV’s initial position but creating a more efficient trajectory
through region B overall.

Finally, we consider our motivating scenario. Recall from
Sec. 2, that there is a communication range constraint be-
tween the AUV and the ship, a temporal constraint over the
entire mission, and a limited battery supply for the AUV. For
this scenario, the naive executive, unaware of the rest of the
plan, generates a greedy trajectory to region A, causing the
AUV to run out of battery. In contrast, our executive plan-
ner is able to generate a high quality plan that obeys all the
constraints. As Fig. 5c shows, the ship recovers the AUV be-
fore it runs out of battery and then navigates, with the AUV
on-board, to the destination.

To evaluate the scalability of our executive planner, we
tested four different ocean exploration scenarios on increas-
ingly complex mission plans. Since the size of the optimiza-
tion problem decreases as the mission is executed and events
are satisfied, we only consider the optimization time to solve
the first MISOCP at the beginning of each scenario Figure
6 shows the results that were obtained on an Intel i9 7900
4.5GHz processor and averaged over 100 different runs with
random initial conditions.

Given that the execution horizon, Th, is 2.5 seconds, our
executive planner is able to generate local control trajec-
tories in real time. Even in the worst case (three vehicles
and ten regions), the optimization time took only 2.22 sec-
onds. Note that the full mission time, TM , for these scenarios
ranges from a few minutes to several hours, demonstrating
that our approach is applicable to a wide range of mission
horizons.

In summary, our executive planner out performs the naive
approach in situations where later activities impact early mo-
tion but still performs well on simple scenarios. Addition-
ally, even though our MISOCP trajectory optimization en-
coding is more complicated than a naive approach, our exec-
utive planner runs in real-time on relatively large problems.

6 Conclusion & Future Work
In this paper, we presented an executive planner capable of
executing complex multi-vehicle mission plans with multi-
ple time-evolved goals. We use a discrete time formulation
to plan local trajectories and a continuous time formulation
to represent a relaxed solution for the full mission plan. Our
key innovation is integrating these two models into a single
mixed integer second-order cone program (MISOCP) which
is solved iteratively using a receding horizon. We show that
our approach ensures that local control trajectories are con-
sistent with and guided by the constraints of the full plan
and is broadly applicable to a range of complex robotic mis-
sion scenarios. Ongoing work aims to integrate our execu-
tive planner with a generative activity planner to create a hi-
erarchical continuous planning and execution architecture.

61

(a) AUV + Ship (b) Hazardous Region (c) Motivating Scenario

Figure 5: Example executed plans for plan quality comparison scenarios (single AUV scenario not shown). The AUV is in
orange and the ship is in blue.

Figure 6: Performance of our executive planner evaluated
on scenarios with up to three vehicles. In all scenarios, ∆t =
0.25 seconds, TP = 8 seconds, and Th = 2.5 seconds.

References
Bellingham, J.; Kuwata, Y.; and How, J. 2003. Stable Reced-
ing Horizon Trajectory Control for Complex Environments.
American Institute of Aeronautics and Astronautics.
Bhattacharya, S.; Likhachev, M.; and Kumar, V. 2010.
Multi-agent path planning with multiple tasks and distance
constraints. In 2010 IEEE International Conference on
Robotics and Automation, 953–959.
Cowlagi, R. V., and Tsiotras, P. 2012. Hierarchical mo-
tion planning with kinodynamic feasibility guarantees: Lo-
cal trajectory planning via model predictive control. In 2012
IEEE International Conference on Robotics and Automa-
tion, 4003–4008.
Ding, X. D.; Englot, B.; Pinto, A.; Speranzon, A.; and
Surana, A. 2014. Hierarchical multi-objective planning:
From mission specifications to contingency management. In
2014 IEEE International Conference on Robotics and Au-
tomation (ICRA), 3735–3742.
Fernández-González, E.; Williams, B. C.; and Karpas, E.
2018. ScottyActivity: Mixed discrete-continuous planning
with convex optimization. Journal of Artificial Intelligence
Research 62:579–664.
Hofmann, A. G., and Williams, B. C. 2017. Temporally and
spatially flexible plan execution for dynamic hybrid systems.
Artificial Intelligence 247:266–294.

Jain, S., and Tsiotras, P. 2009. Sequential multiresolu-
tion trajectory optimization schemes for problems with mov-
ing targets. Journal of Guidance, Control, and Dynamics
32(2):488–499.
Kuwata, Y., and How, J. P. 2004. Stable trajectory design
for highly constrained environments using receding horizon
control. In Proceedings of the 2004 American Control Con-
ference, volume 1, 902–907 vol.1.
Léauté, T., and Williams, B. C. 2005. Coordinating ag-
ile systems through the model-based execution of tempo-
ral plans. In Proceedings of the 20th National Conference
on Artificial Intelligence - Volume 1, AAAI’05, 114–120.
AAAI Press.
Mettler, B.; Dadkhah, N.; and Kong, Z. 2010. Agile au-
tonomous guidance using spatial value functions. Control
Engineering Practice 18(7):773 – 788. Special Issue on
Aerial Robotics.
Richards, A.; Schouwenaars, T.; How, J. P.; and Feron, E.
2002. Spacecraft trajectory planning with avoidance con-
straints using mixed-integer linear programming. Journal of
Guidance, Control, and Dynamics 25(4):755–764.
Schillinger, P.; Bürger, M.; and Dimarogonas, D. V. 2018.
Simultaneous task allocation and planning for temporal
logic goals in heterogeneous multi-robot systems. The In-
ternational Journal of Robotics Research 37(7):818–838.
Schouwenaars, T.; Moor, B. D.; Feron, E.; and How, J. 2001.
Mixed integer programming for multi-vehicle path planning.
In 2001 European Control Conference (ECC), 2603–2608.
Ulusoy, A.; Smith, S. L.; Ding, X. C.; and Belta, C. 2012.
Robust multi-robot optimal path planning with temporal
logic constraints. In 2012 IEEE International Conference
on Robotics and Automation, 4693–4698.
Wurm, K. M.; Dornhege, C.; Nebel, B.; Burgard, W.; and
Stachniss, C. 2013. Coordinating heterogeneous teams of
robots using temporal symbolic planning. Auton. Robots
34(4):277–294.

62

Monitoring Numeric Expectations in Goal Reasoning Agents

Noah Reifsnyder and Héctor Muñoz-Avila
Lehigh University

Bethlehem, PA 18015
{ndr217, hem4}@lehigh.edu

Abstract

One of the crucial capabilities for robust agency is self-
assessment, namely the capability of the agent to compute
its own boundaries. Goal reasoning agents do this by com-
puting so called expectations: constructs defining the bound-
aries of their courses of action as a function of the plan, the
goals achieved by that plan when available, the initial state,
the action model and the last action executed. In this paper
we introduce four forms of expectations when the agent rea-
sons with numeric fluents and present an empirical evaluation
highlighting their trade offs.

Introduction
Over the past years there has been an increasing interest in
goal reasoning agents; agents that may change their goals
over time as a result of changes in the environment and/or
changes in the user’s requirements (Aha 2018). One of the
main motivations for goal reasoning is the robust intelli-
gence problem, where agents exhibit the following capabili-
ties (Tianfield and Unland 2004):

• Are aware of their own limits or boundaries (self-
assessment) (Sloman and Logan 1999).

• Recognize when they have stepped out of those bound-
aries (self-diagnosis) (Horling, Benyo, and Lesser 2001).

• Act to bring themselves back into their boundaries (self-
correction) (Lucas 1961).

In this paper we focus on the self-assessment problem
of goal reasoning agents. Our worked is motivated by the
premise that it is infeasible for the agent to plan ahead for
every possible contingency that it may encounter when exe-
cuting a course of action. On the other hand, it is also unfea-
sible to replan to every possible contingency. In the words
of Ghallab et al (2014) ”Current approaches in the planning
literature either tend to foresee all possible events and situ-
ations, which is unpractical in realistic complex domains, or
they tend to replan any time something unexpected occurs,
which is hard to do in practice at run-time”.

In domains with numeric fluents, it has been observed that
it is contrived to assume after performing each action, each
fluent will be expected to have an exact value (Scala et al.
2016). For instance when traveling between two location
that a precise amount of gasoline will be consumed by the
vehicle. Even under ”usual” conditions, factors such as traf-
fic accidents may cause delays. Authors have observed that a

Copyright c© 2015, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

more robust way to handle numeric fluents is to use intervals
or margins of error (Moore, Kearfott, and Cloud 2009). This
reduces replanning since the agent can plan accounting for
variations avoiding the need for repeated replanning. Nev-
ertheless, the agent may encounter conditions under which
fluents may take values outside predefined ranges.

Numeric fluents can be altered by actions through func-
tions instead of by simple assignment of values (Hoffmann
2003; Coles et al. 2010). This presents a challenge to the
concept of expectations for goal reasoning agents. Applying
actions change symbolic fluents in the usual way (e.g., us-
ing add and delete lists) and change numeric fluents, repre-
senting a numeric value v, to a new value f(v) as indicated
by the actions’ effects (Gerevini, Saetti, and Serina 2008).
For example, for a navigate action, if v = (energy ?x),
then f(v) = v − (t ∗ r), where t = (travel-time ?y ?z)
and r =(use-rate ?x). The starting state, s0 includes nu-
meric fluents such as the fuel level of rover21, travel time
between locations, and symbolic fluents such as the starting
location of rover21. Frequently, for planning purposes these
functions are assumed to be monotonic (Edelkamp 2003;
Hoffmann 2003; Bajada, Fox, and Long 2015) although
some paradigms drop this assumption (Scala et al. 2016).

In this paper we reexamine a taxonomy that encompasses
expectations as computed by goal reasoning systems for
symbolic fluents and extend that taxonomy for numeric flu-
ents and their margins of error (Munoz-Avila, Dannenhauer,
and Reifsnyder 2019). The taxonomy’s starting point is the
division of the plan π = a1..an generated between two parts
πprefix = a1..ai, the actions in π already executed and
πsuffix = ai+1..an, the actions in π to execute. We rede-
fine the four forms of expectations from the goal reasoning
literature for the numeric case: immediate, which checks
the effects of the last action, ai executed; goal-regression,
which computes the conditions needed to execute πsuffix;
informed, which accumulated the effects from actions in
πprefix; and Goldilocks, which combines informed and re-
gression expectations.

Up until now, the bulk of the research on goal reasoning
has focused on domains where actions have symbolic flu-
ents. The only exceptions we know are (Weber, Mateas, and
Jhala 2012) and (Wilson, McMahon, and Aha 2014); these
use immediate and informed expectations respectively.

The following are the main contributions of this paper:

• We extend the taxonomy of expectations in (Munoz-
Avila, Dannenhauer, and Reifsnyder 2019) for plans with
numeric fluents and margins of error.

• We analyze the tradeoffs between those expectations.

63

(:operator move north
:parameters ?r
:condition not-within(at-y(?r), [0, 1]),
within(fuel(?r), [right(rate(?r)),∞))
:effect
at-y(?r) = [f1(?r), f2(?r)],
fuel(?r) = [f3(?r), f4(?r)],
f1(x) = left(at-y(x))-1,
f2(x) = right(at-y(x))-1,
f3(x) = left(fuel(x)) - right(rate(x)),
f4(x) = right(fuel(x)) - left(rate(x))

Table 1: Example of operator with a numeric fluent (fuel)

• We perform experiments on a goal reasoning system with
the four forms of expectations.

Our work doesn’t make any assumptions of how the plan
π was generated.

States, Operators and Plans with Numeric
Fluents

A state is a collection of variables that can be either sym-
bolic or numeric. In this paper we will focus on actions
with numeric fluents for simplicity of the exposition. A state
is a mapping s : V → I from a collection of variables
V to a collection of intervals I. For instance, the variable
at-y(r23) returns the y-coordinate as a confidence interval
[left(at-y(r23)),right(at-y(r23))] for rover r23.

As exemplified in Table 1, an operator is a 4-tuple
o=(name parameters precondition effect). The parameters
are a collection of free variables. We call free variables to
variables that are not variables in the state. Free variables
are used to facilitate writing operators. We denote free vari-
ables by using ”?”. For instance ?x denotes the free variable
x. The precondition is a set of numeric fluents and inter-
val constraints where the preconditions can be represented
as a partial mapping pre : V 9 I. A fluent nf is ei-
ther represented as a closed interval [left(nf), right(nf)],
with left(nf) and right(nf) numbers and left(nf) ≤
right(nf); or if either side is unbounded, that bound is rep-
resented as an open interval bound on ∞ (or −∞). Inter-
val constraints are of the form (within nf interval) where nf
is a fluent. Within checks if left(nf) ≥ left(interval)
and right(nf) ≤ right(interval). For instance, in the
operator shown in Table 1 we are checking if the inter-
val for the numeric fluent fuel(?r) is within the interval
left bounded by right(rate(?r)) and right bounded by
∞. The effects indicate changes in value to the state
variable. These are represented as function tuples F =
{(f1, f2)|f1 and f2 are functions}. The effects can be rep-
resented as the partial mapping eff : V 9 F, where each
variable v ∈ Veff therefore has the function tuple (fv1 , f

v
2).

An action takes a variable v ∈ V and assigns v
value [f1(left(v)), f2(right(v))], where (f1, f2) ∈ F and
f1(x) <= f2(x) for all x. For example, fuel(?r) rep-
resents the fuel level of vehicle r. Table 1 shows an
example of an operator that uses fuel(?r). The action

(:Initial State
{fuel : {r23: [10,10]}}
{at-y : {r23: [2, 2], Beacon1: [0,0]}}
{at-x : {r23: [0,0], Beacon1: [2,2]}}
{lit : {Beacon1: [0, 0]}}
{rate : {r23: [.9, 1.1]}}
:Actions
move north, move south, move east, move west, light beacon
:Goals
{lit : {Beacon1: [1, 1]}}
:Plan π
move north, move north, move east, move east, light beacon

Table 2: Planning problem and a solution plan

move north takes the variable fuel(?r) and alters it with
the following functions fuel(?r) = [left(fuel(?r)) −
right(rate(?r)), right(fuel(?r)) − left(rate(?r))]. This
denotes the usage of fuel by the action move north. The
interval of rate(?r) represents amount of fuel we expect to
be consumed by moving a tile. By subtracting the maxi-
mum of rate from the minimum of our current fuel level,
we get the new minimum amount of fuel we expect to have
after executing move north. By subtracting the minimum
of the rate from the maximum of our current fuel level, we
get the new maximum amount of fuel we expect to have.
move north also alters the variable at-y(?r). at-y(?r) is al-
tered by the function tuple at-y(?r) = (left(at-y(?r)) −
1, right(at-y(?r))− 1). This denotes a change in y-position
of the rover of -1 (north). So all together, the action
move north consumes the interval of rate(?r) amount of
fuel while moving -1 in the y-coordinate plane.

Two Basic Operations
We introduce two basic operations ⊕S and 	P , which are
used to define precisely the different forms of expectations.

We defineD = A⊕SB, whereA are some variables, S is
the current state and B are the effects of some action. More
generally, for any partial functions A and B and and any
function S with A : V 9 I, S : V → I, and B : V 9 F,
A⊕S B is a partial mapping D : V 9 I defined as follows:

1. if v ∈ VA ∩ VB and B(v) = (f1, f2), then
D(v) = [f1(left(A(v))), f2(right(A(v)))].

2. if v ∈ VA − VB then D(v) = A(v).

3. if v ∈ VB − VA where B(v) = (f1, f2), then
D(v) = [f1(left(S(v))), f2(right(S(v)))].

4. for all other variablesD is undefined (i.e., VD = VA∪VB)

Informally, A⊕S B applies the function tuple in B either
toAwhen the variable v is defined inA andB (Case 1), or to
S when v is defined inB but notA (Case 3). If the variable v
is defined inA but notB, it’s assignedA(v) (Case 2). When
it’s undefined in A and B, then it’s left undefined (Case 4).
For example, if A, S, and B are defined as:

• A = {a : [2, 3]}
• S = {a : [2, 3], b : [7, 7], c : [8, 9], d : [6, 6]}

64

• B = {a : [x−2, x−1], b : [x+1, x+2], d : [x×2, x×3]}
• Then D = A⊕S B = {a : [0, 2], b : [8, 9], d : [12, 18]}.

In the resulting partial function D(a) = [0, 2] is obtained
by evaluating the functions tupleB(a) = [x−2, x−1] on the
interval A(a) = [2, 3] (Case 1); D(b) = [9, 11] is obtained
by evaluating the functions tuple B(b) = [x + 1, x + 2] on
the value of S(b) = [7, 7] (Case 3); and D(d) = [12, 18]
is obtained by evaluating the functions tuple B(d) = [x ×
2, x× 3] on the value of S(d) = [6, 6] (Case 3).

We define D = A	P B, where A are some variables, P
are the preconditions from some action andB are the effects
of the action. More generally, let A : V 9 I, P : V 9 I,
and B : V 9 F, we define A 	P B as a partial mapping
D : V 9 I with:

1. if v ∈ VA − VB then D(v) = A(v).
2. if v ∈ (VA ∩ VB) and B(v) = (f1, f2), then
D(v) = [f−11 (left(A(v))), f−12 (right(A(v)))].

3. if v ∈ VP − VA then D(v) = P (v)

4. for all other variablesD is undefined (i.e., VD = VA∪VP)
Informally, A	P B results in a new partial mapping that

is defined for all variables from A and P . The new mapping
takes the value A(v) if v is defined in A but not in B (Case
1). If a variable v is defined in A and B, the new mapping
takes the values after applying the inverse of the functions
tuple defined in B(v) to the value of A(v) (Case 2). If a
variable v is defined in P but not in A, the new mapping
takes the value of P (v) (Case 3). If a variable is not defined
in eitherA or P , it is left undefined (Case 4). For example, if
we have the three partial functions A, P , and B, as follows:

• A = {a : [2, 3], b : [5, 6]}
• P = {c : [4, 4]}
• B = {b : [x+ 1, x+ 2]}
• Then D = A	P B = {a : [2, 3], b : [4, 4], c : [4, 4]}.

In the resulting function, D(a) = [2, 3] because a is de-
fined in A but not in B (Case 1); D(b) = [4, 4] because
A(b) = [5, 6] and B(b) = [x + 1, x + 2], hence the inverse
functions are [x − 1, x − 2] (Case 2); and D(c) = [4, 4]
because c is defined in P but not in A (Case 3).

Immediate Expectations with Numeric Values
Immediate Expectations takes ideas from plan monitoring
execution literature (see related work discussion). Formally,
Ximm(π, si, ∅) = immi. Each immi is generated as fol-
lows: imm0 = prea1 . For all i > 0, immi = (preai+1 	{}
effai

si) ⊕si−1 eff
ai
si . Informally, agents using immediate

expectations check that the effects of the previous action ai
and the preconditions of the next action to execute ai+1 hold
in the observed state si (Cox 2007).

Example:
In the plan π in Table 2, assume we have completed
a1 = move-north and we are about to execute a2 =
move-north, then the Immediate Expectations, imm1 =
(premove north	{}effmove north

s1)⊕s0eff
move north
s1 with:

• premove north = ({fuel : {r23 : [1.1,∞]}}
• effmove north

s1 = {at−y : {r23 : [x − 1, x − 1]}, fuel :
{r23 : [x− 1.1, x− .9]}}

• Then (premove north 	{} effmove north
s1) = {fuel :

{r23 : [2.2,∞]}}
• and imm1 = (premove north 	{} effmove north

s1) ⊕s0

effmove north
s1 = {at−y : {r23 : [1, 1]}, fuel : {r23 :

[1.1,∞]}}
Since fuel(r23) is a variable in common (Case 2 of the

	{} operation), we apply the inverse of fuel : {r23 : [x −
1.1, x−.9]}which is fuel : {r23 : [x+1.1, x+.9]} to fuel :
{r23 : [1.1,∞]}. The resulting value for fuel(r23) = [(x+
1.1)(1.1), (x+ .9)(∞)) = [2.2,∞)

Finally, Ximm(π, s1, ∅) = {fuel : {r23 : [0,∞]}} ⊕s0
effmove north

s1 = {at−y : {r23 : [1, 1]}, fuel : {r23 :
[1.1,∞]}} because fuel(r23) is a common variable on the
left and right side of ⊕s0 (Case 1 of the ⊕s0 operation) and
at-y(r23) is a common variable in s0 and effmove north

s1
(Case 3 of the ⊕s0 operation). Thus fuel(r23) = [((x −
1.1)(2.2), (x − .9)(∞)) = [1.1,∞), and (at−y(r23) =
[(x−1)(2), (x−1)(2)] = [1, 1]. This expectation set means
that we expect to have at least 1.1 units of fuel and to be at
y=1 on the coordinate frame (any x coordinate is fine)

Informed Expectations with Numeric Values
Informed Expectations continuously build on effects from
all previous actions executed so far in π. Informally,
it compounds functions tuples [left(v”), right(v”)] =
[f1(. . . (f

′
1(left(v))) . . .), f2(. . . (f

′
2(right(v))) . . .)],

where (f ′1, f
′
2) are the effects for v of the first action in the

trace and (f1, f2) are the effects for v of the last action exe-
cuted. If v is not changed in some action a” then we assume
f1”(x) = f2”(x) = x (i.e., the identity function). Formally,
Xinf (π, si, ∅) = infi. Each infi is generated as follows:
inf0 = ∅. That is, before the first action is executed, we
have no accumulated effects. For i > 0, infi is defined
recursively as follows: infi = infi−1 ⊕si−1

effai
si . Agents

using Informed Expectations check that the compounded
effects are valid in the environment.

Example:
If we have just completed action a2 of the plan trace π (the
second instance of move north), we calculate the Informed
Expectations Xinf (π, s2, ∅) = inf2 as follows from the ini-
tial state. We have:
• inf1 = {at−y : {r23 : [1, 1]}, fuel : {r23 : [8.9, 9.1]}}
• inf2 compounds inf1 with the effects from a2, the second
move north:

– effmove north
s2 = {at−y : {r23 : [x−1, x−1]}, fuel :

{r23 : [x− 1.1, x− .9]}}
• Thus, inf2 = inf1 ⊕s1 eff

move north
s2 = {at−y : {r23 :

[0, 0}, fuel : {r23 : [7.8, 8.2]}}
For computing at-y(r23) we compute [(x − 1)(1), (x −
1)(1)] = [0, 0] and for fuel(r23) we compute [(x −
1.1)(8.9), (x − .9)(9.1)] = [7.8, 8.2]. This expectation set

65

means that we expect to have between 7.8 and 8.2 units of
fuel and to be at y=0 on the coordinate frame (any x coordi-
nate is fine)

Regression Expectations with Numeric Values
Regression Expectations continuously build on the
cumulative values of the regressed conditions from
all actions yet to be executed in π. Informally, it
compounds functions tuples [left(v′), right(v′)] =
[f−11 (. . . (f−11′ (left(v))) . . .), f

−1
2 (. . . (f−12′ (right(v))) . . .)],

where (f−11′ , f
−1
2′) are the inverse of the effects for v of the

last action in the trace and (f−11 , f−12) are the inverse of the
effects for v of the next action to be executed. Formally,
Xregress(π, si,G) = regi. Each regi is generated as
follows: regn = G. That is, when in the last state, the agent
expects G to hold (when the goals are unknown, Gequals
the empty set {}). For i < n, regi is defined recursively
as follows: regi = regi+1 	preai+1 eff

ai+1
si+1 . Informally,

the agent checks the needed preconditions to execute the
remaining of the plan ai+1 . . . an while having the goals
G satisfied in sn.

Example:
If we have just completed action a3 of the plan trace π
in Table 2 (the first instance of move east), we calculate
the Regression Expectations reg3 = Xregress(π, s3,G) as
follows (The preconditions and effects for move east and
light beacon have not been shown before):

• reg5 = G = {lit : {Beacon1 : [1, 1]}} i.e. the Goals.

• reg4 = {at−y : {r23 : [0, 0]}, at−x : {r23 : [2, 2}, lit :
{Beacon1 : [0, 0}} which are the preconditions for
a5, light beacon.

• reg3 = reg4 	prea4 effa4
s4 , where:

– prea4 = {at−x : {r23 : [0, 1]}, fuel : {r23 :
[1.1,∞)}}

– effa4
s4 = {at−x : {r23 : [x+1, x+1]}, fuel : {r23 :

[x− 1.1, x− .9]}}
• Thus, reg3 = {at−y : {r23 : [0, 0]}, at−x : {r23 :

[1, 1]}, fuel : {r23 : [1.1,∞)}, lit : {Beacon1 : [0, 0}}
reg4 follows from the effects of light beacon, which in-

crease lit(Beacon1) by (x + 1, x + 1) so the inverse gen-
erates lit(Beacon1) = [(x − 1)(1), (x − 1)(1)] = [0, 0].
Therefore, reg3 = reg4 	premove east effmove east

s4 , where
a4 is the second instance of move east. Since fuel(r23)
is in premove east and not in reg4, in reg3: fuel(r23) =
premove east(fuel(r23)) = [1.1,∞). Since at−y(r23) and
lit(Beacon1) are in reg4 and not in effmove east

s4 , they just
carry over from reg4 into reg3. at−x(r23) is in both, reg4
and effmove east

s4 , so we compute the inverse functions from
effmove east

s4 to get in reg3: at−x(r23) = [(x−1)(2), (x−
1)(2)] = [1, 1]. This expectation set means that we expect
to have at least 1.1 units of fuel, to be at y=0 and x=1 on the
coordinate frame, and for the beacon to not be lit.

Goldilocks Expectations with Numeric Values
Goldilocks Expectations (Reifsnyder and Munoz-Avila
2018) combines Informed and Regression Expectations.
They are computed by calculating informed expectations
from the starting state (i.e., in the numeric case by com-
pounding functions v = f(. . . (f ′(v′)) . . .)), then regress-
ing off from the final states the informed expectations (i.e.,
in the numeric case by compounding inverse functions v′′ =
f ′−1(. . . (f−1(v)) . . .)). This would not work in the nu-
meric case since it will regress to the exact same value
(i.e., v” = v′). We present a slightly different definition
for Goldilocks Expectations; it takes into account both In-
formed and Regression Expectations independently.

The reason for doing this is because Regression can de-
tect when the agent will not achieve its goals, while In-
formed can detect that something is wrong in the execution
of the plan. By looking at them independently, the agent
can make decisions over trade-offs between achieving the
goals and how the agent is achieving them. For example,
using the navigation domain from Table 2, an agent might
have a goal to end the plan trace π with a range of fuel left,
e.g., {fuel : {r23 : [0,∞)}}. In this scenario, Regression
Expectations will make sure the agent has enough fuel to
finish π. While this is important, it is also important to re-
alize that Informed Expectations keep track of accumulated
effects of the the actions executed so far. Informed is mon-
itoring here the fuel consumption of the agent, and making
sure it remains within the bounds as inferred from the action
model. If the agent drifts out of those bounds, there may be
a flaw with the agent causing it to consume more fuel than
projected. So the agent might still achieve the goals but con-
sume more fuel than expected. Recognizing this expectation
failure can allow the agent to trigger a discrepancy and avoid
needlessly wasting fuel. By considering both of these expec-
tations, the agent can detect a variety of possible failures at
their onset beyond ”just” achieving the goals.

Formally, we define Goldilocks Expectations as
Xgold(π, si,G) = goldi, where goldi = (infi, regi).
That is, for ever state si, goldi is the pair contain-
ing the Informed and Regression Expectations for
that state. An agent using Xgold(π, si,G) checks the
overlap of the regressed and the informed intervals,
[left(v′), right(v′)] ∩ [left(v”), right(v”)]. This en-
sures completing the goals while checking for inferred
considerations from the action model such as efficiency.

Example:
When the agent completes action a3 of the plan trace π
in Table 2 (the first instance of move east), it calculates
the Goldilocks Expectations gold3 as follows. gold3 =
(inf3, reg3), both of which we exemplified previously as:
• inf3 = ({at−y : {r23 : [0, 0]}, at−x : {r23 :

[1, 1]}, fuel : {r23 : [6.7, 7.3]}}
• reg3 = {at−y : {r23 : [0, 0]}, at−x : {r23 :

[1, 1]}, fuel : {r23 : [1.1,∞)}, lit : {Beacon1 :
[0, 0]}})
There is a difference in the two expectations over the ex-

pectations computed for variable fuel(r23) . On the In-

66

formed side we expect between 6.7 and 7.3 fuel units, but
on the Regression side, we just expect to have more than 1.1
fuel units. If we violate the Informed side but not the Re-
gression side, we know we can likely finish the plan, but it
will indicate a larger than expected fuel consumption.

Empirical Evaluation
In our experiments, we tested 4 different types of expecta-
tions across numeric extensions of 2 domains used in the
goal reasoning literature. The 4 Expectation types we tested
were Immediate, Informed, Regression, and Goldilocks Ex-
pectations. For planning purposes, we use the Pyhop HTN
planner (Nau 2013), which handles numeric fluents. Other
than the expectation type, the agent uses the same planning
and discrepancy handling processes. Whenever a discrep-
ancy is observed from the expectations, we use a simple
goal-reasoning process to generate a goal to re-plan from
the current state.

Marsworld Definition The first domain we used is a vari-
ant on the domain Marsworld (Dannenhauer, Munoz-Avila,
and Cox 2016; Dannenhauer and Munoz-Avila 2015), in-
spired by Mudsworld (Molineaux and Aha 2014). The agent
has to navigate a 10x10 grid to turn on 3 randomly placed
beacons. Each movement action drains some amount of the
agents fuel, which is determined by a predetermined rate for
the agent. The agent also has known error rate for con-
suming fuel. Lighting each beacon also requires fuel, and
consumes fuel from a different reserve then from where the
agent draws from for movement.

While executing its actions, the agent may unexpectedly
have damage caused to it, forcing it to use more fuel per ac-
tion until repaired (this can occur with a 5% probability after
each action is taken). It can also lose some of its beacon fuel
with a 5% probability after each action as well. During our
testing, we ran 100 trials, each trial placed the rover and bea-
cons randomly on the grid. During the trials we measured
total fuel consumption as well as whether or not an execu-
tion failed. A failure means the preconditions of some action
were not met when it was to be executed.

Results for Marsworld. In Figure 1, we can see that Re-
gression Expectations consumed the most fuel, with the 3
other expectation types performing basically equally. The
reason for this, is the Regression Expectations are the only
ones not noticing when the agent is damaged, causing in-
creased fuel consumption. Regression only looks at future
preconditions, so it only realizes the damage once it drains
enough fuel so that it no longer has enough to finish its plan.
The other 3 expectation types identify increase consumption
after 1 action, since they monitor effects of the actions.

Figure 2 shows the error rates for each expectation type
Immediate, Regression and Goldilocks are able to ensure
that the plan will be completed without failures, while 27%
of trials failed for Informed Expectations. Informed fails be-
cause it will attempt to execute an action without it’s precon-
ditions being met. All other expectation types check precon-
ditions. Specifically, in this scenario, agents using Informed
expectations will attempt to light a beacon after having lost
some beacon fuel, thus failing the action.

Figure 1: Accumulated Fuel Consumption in Marsworld
across different types of expectations

Blockscraft Definition. The second domain we tested
in is a variant of the Blockscraft domain (Dannenhauer,
Munoz-Avila, and Cox 2016). In our variant, there are three
towers of blocks; each block has a random mass. The mass
of each block can only be estimated at planning time, so
while the exact mass is unknown, a range for the mass is
known and the exact mass is guaranteed to be within that
range. We have an estimation of every blocks’ mass. The
agent can only access the top block in each tower, and can
only know the exact mass of the block after collecting it.
The task for the agent is to create a tower of blocks and the
tower as a whole must be greater than a certain mass.

There is another actor in the environment who can take
blocks both from the 3 towers our agent is using, as well as
from the agent’s own tower. There is an 8% chance after
each action that the other actor will take a block out of the
3 center towers, and a 2% chance that the actor takes from
the agent’s tower. We ran 100 trials, where the mass of the
blocks were randomized each trial. We measured total mass
obtained by the agent during each trial, as well as if the trial
failed or not. A failure happens either if the agent finishes
the plan without enough mass in their tower, or an action’s
preconditions are not met when it is to be executed.

Results for Blockscraft. Figure 3 shows the total mass
accumulated across 100 runs for an agent using each type
of Expectations. Immediate, Informed, Regression, and
Goldilocks all accumulated roughly the same amount of
mass. They are all equal, because there isn’t any discrep-
ancies that alters the rate of obtaining mass, so the rates stay
constant between all expectation types.

Figure 4 shows the failure rates. Only an agent using
Goldilocks Expectations was able to complete the plan and
have the goals fulfilled. Immediate failed 65% of its trials,
while Regression failed 43% of its trials. These failures oc-
curred when the other actor took blocks out of the agent’s
tower. Effects of actions are not monitored for those expec-
tations, so the agent is not monitoring total mass of its tower.

67

Figure 2: Number of failures in 100 executions in Mar-
sworld across different types of expectations

Informed failed 88% of its trials. This occurred due to the
other actor removing blocks from the 3 central towers that
the agent had planned to obtained. The action then to collect
that block failed because the block didn’t exist in the tower
any more. Goldilocks had 0 failures across the 100 trials.
This is because it checked preconditions due to the Regres-
sion side of the expectations, while also monitoring the mass
so far obtained by the agent from the Informed side of the
expectations. Combined, an agent using Goldilocks Expec-
tations caught all discrepancies.

Related Work
(Scala 2013) proposed using kernel methods to compute
the necessary numerical conditions Ki needed to com-
plete the rest of the plan ai . . . an, akin to our regres-
sion expectations. While not defined that way, Ki(v) =
f−1i (. . . (f−1n (v)) . . .), where v is a goal condition and f−1j
is the inverse function for v in aj (with i ≤ j ≤ n). (Scala
and Torasso 2014) expands this to distances around the val-
ues of v playing a similar role as our error intervals. Our
work differs in some important differences: by explicitly us-
ing inverse functions we provide a concrete way to compute
these kernels. More importantly, we introduce two forms of
expectations: informed and Goldilocks. Informed expecta-
tions are needed when goals are not known. Informed expec-
tations can provide needed information missing from goal
regression calculations. For example, in a scenario where we
have resource consumption, if we have an action that con-
sumes an amount of resource, we would likely have some
goal to have > 0 amount of the resource (or more than how-
ever much the action consumes). If there are multiple oc-
currences of this action, and they end up consuming a larger
amount of resource, informed will allow us to (1) detect the
discrepancy after the first action, instead of after however
many it takes to deplete the resource and (2) conserve more
of the resource. Crucially, Goldilocks allows the detection of

Figure 3: Accumulated Mass Obtained in the Blocks World
Domain across different types of expectations

Figure 4: Number of failures in 100 executions in Blocks
World Domain across different types of expectations

deviations in the values of numerical values that are pivotal
in finishing the provided plan with the expected outcomes,
even when the goals are unknown.

We know of two systems using numeric fluents for goals
reasoning. (Weber, Mateas, and Jhala 2012) represents
quantities as numeric fluents for a goal reasoning agent play-
ing an adversarial real-time computer game. For instance,
an action to produce 10 archers, will have as expectation
that 10 archers are produced. After executing the action, if
the number of archers is num with num < 10, then a dis-
crepancy is detected. The agent will formulate a new goal
to produce 10 − num archers. In the context of the taxon-
omy we presented, this agent maintains immediate expecta-
tions. Furthermore, no margins of error are maintained as
the agents expectations are exact natural numbers.

(Wilson, McMahon, and Aha 2014) uses what we call
informed expectations. They project forward the expected

68

numerical values within intervals and detect discrepancies
when the values are outside of these projected intervals. Our
experiments show how informed expectations can incur into
the highest number of errors because they don’t regress con-
ditions on the goals. This leads to a high volume of failures
when they attempt to be executed.

Plan monitoring execution systems annotate the plan with
conditions necessary for the plan’s execution to be valid
(Fikes, Hart, and Nilsson 1972). While not using ”expecta-
tions” as a term, (Ambros-Ingerson and Steel 1988) checks
for the causal links, triples (effect, fluent, precondition) are
met when the action having the precondition is to be exe-
cuted. In our parlance, this is subsumed by immediate ex-
pectations. Plan monitoring execution have also been used
to monitor optimality. For instance, (Fritz and McIlraith
2007) uses goal regression to define necessary conditions
to guarantee the optimal execution of the plan. These works
use symbolic fluents.

Conclusions
We introduce 4 forms of Expectations over numerical flu-
ents: Immediate, Informed, Regression, and Goldilocks.
In our empirical evaluation, only agents using Goldilocks
solved problems without failures across all domains;
Goldilocks projects forward all changes the agent makes to
the state, as well as making sure the agent is on track to meet
the goals. The agent using Regression was shown to be inef-
ficient over the fuel consumption in one of the domains. The
reason is that Regression only checks if the agent is on track
to satisfy the goals but makes no consideration of any other
deviation from the action model.

Time series have been used to build statistical models of
”normal” or expected readings for numerical values and in
doing so detect outliers to predict malfunctions (Tsay 1988).
In this work, we assume the ”normal” ranges has been given
in the effects of the actions. However, in future work, such
models could be used in situations when we expect the ef-
fects of the actions to change over time.

Acknowledgements. This research was supported by
ONR under grants N00014-18-1-2009 and N68335-18-C-
4027.

References
Aha, D. W. 2018. Goal reasoning: foundations emerging
applications and prospects. AI Magazine.
Ambros-Ingerson, J. A., and Steel, S. 1988. Integrating
planning, execution and monitoring. In AAAI, volume 88,
21–26.
Bajada, J.; Fox, M.; and Long, D. 2015. Temporal planning
with semantic attachment of non-linear monotonic continu-
ous behaviours. In IJCAI, 1523–1529.
Coles, A. J.; Coles, A. I.; Fox, M.; and Long, D. 2010.
Forward-chaining partial-order planning. In Twentieth Inter-
national Conference on Automated Planning and Schedul-
ing.
Cox, M. T. 2007. Perpetual self-aware cognitive agents. AI
magazine 28(1):32.

Dannenhauer, D., and Munoz-Avila, H. 2015. Raising ex-
pectations in gda agents acting in dynamic environments. In
IJCAI, 2241–2247.
Dannenhauer, D.; Munoz-Avila, H.; and Cox, M. T. 2016.
Informed expectations to guide gda agents in partially ob-
servable environments. In IJCAI, 2493–2499.
Edelkamp, S. 2003. Taming numbers and durations in the
model checking integrated planning system. Journal of Ar-
tificial Intelligence Research 20:195–238.
Fikes, R. E.; Hart, P. E.; and Nilsson, N. J. 1972. Some new
directions in robot problem solving. Machine Intelligence
7:405–430.
Fritz, C., and McIlraith, S. A. 2007. Monitoring plan opti-
mality during execution. In ICAPS, 144–151.
Gerevini, A. E.; Saetti, A.; and Serina, I. 2008. An
approach to efficient planning with numerical fluents and
multi-criteria plan quality. Artificial Intelligence 172(8-
9):899–944.
Hoffmann, J. 2003. The Metric-FF planning system:
Translating “ignoring delete lists” to numeric state variables.
Journal of Artificial Intelligence Research (JAIR) 20:291–
341.
Horling, B.; Benyo, B.; and Lesser, V. 2001. Using self-
diagnosis to adapt organizational structures. In Proceedings
of the fifth international conference on Autonomous agents,
529–536. ACM.
Lucas, J. R. 1961. Minds, machines and gödel. Philosophy
36(137):112–127.
Molineaux, M., and Aha, D. W. 2014. Learning unknown
event models. In AAAI, 395–401.
Moore, R. E.; Kearfott, R. B.; and Cloud, M. J. 2009. Intro-
duction to interval analysis, volume 110. Siam.
Munoz-Avila, H.; Dannenhauer, D.; and Reifsnyder, N.
2019. Is everything going according to plan? - expectations
in goal reasoning agents. In Proceedings of AAAI-19.
Nau, D. 2013. Pyhop, version 1.2.2 a simple htn planning
system written in python. https://bitbucket.org/
dananau/pyhop. Accessed: 2019-01-30.
Reifsnyder, N., and Munoz-Avila, H. 2018. Goal reason-
ing with goldilocks and regression expectations in nonde-
terministic domains. In 6th Goal Reasoning Workshop at
IJCAI/FAIM-2018.
Scala, E., and Torasso, P. 2014. Proactive and reactive recon-
figuration for the robust execution of multi modality plans.
Scala, E.; Haslum, P.; Thiébaux, S.; and Ramirez, M. 2016.
Interval-based relaxation for general numeric planning. In
Proceedings of the Twenty-second European Conference on
Artificial Intelligence, 655–663. IOS Press.
Scala, E. 2013. Numeric kernel for reasoning about plans
involving numeric fluents. In Congress of the Italian Asso-
ciation for Artificial Intelligence, 263–275. Springer.
Sloman, A., and Logan, B. 1999. Building cognitively rich
agents. Communications of the ACM 42(3):71–72.
Tianfield, H., and Unland, R. 2004. Towards autonomic

69

computing systems. Engineering Applications of Artificial
Intelligence 17(7):689–699.
Tsay, R. S. 1988. Outliers, level shifts, and variance changes
in time series. Journal of forecasting 7(1):1–20.
Weber, B. G.; Mateas, M.; and Jhala, A. 2012. Learning
from demonstration for goal-driven autonomy. In Twenty-
Sixth AAAI Conference on Artificial Intelligence.
Wilson, M. A.; McMahon, J.; and Aha, D. W. 2014.
Bounded expectations for discrepancy detection in goal-
driven autonomy. In AI and Robotics: Papers from the AAAI
Workshop.

70

Automated Verification of Social Laws Robustness for Reactive Agents

Alexander Tuisov
Technion, Israel

alexandt@campus.technion.ac.il

Erez Karpas
Technion, Israel

karpase@technion.ac.il

Abstract

Coordinating agents in a multi-agent system is an interesting
and important challenge. One of the most effective meth-
ods of coordinating multiple agents is using a “social law”,
which a-priori restricts some possible behaviors in order to
ensure every agent can achieve its goal. Recent work has con-
nected social laws with automated planning, and shown how
to verify if a given social law is robust, that is, ensures each
agent can achieve its goal regardless of the plans chosen by
the other agents. This prior work assumed the agents choose
a plan offline, and never modify it in response to the other
agents’ actions. In this paper, we address reactive agents, that
is, agents that can reconsider their course of action during ex-
ecution. This setting presents a new challenge, as agents now
have the possibility of entering into an infinite loop (a live-
lock) in which each agent replans in the same way in response
to the other agents. We show how to verify if a given social
law is robust in such a setting, and specifically show how to
verify that the social law is livelock-free via a compilation we
call hindsight intent attribution.

Introduction
Systems with multiple autonomous agents are becoming
more and more common (e.g., in robotic fulfillment centers)
and will become more so in the future (e.g. autonomous
cars, drone delivery). Designing such systems is very chal-
lenging; one of the main reasons for this is the need to co-
ordinate all of the agents operating in the same shared envi-
ronment.

Several approaches for coordination have been explored
in the past. One possibility is to use a centralized controller,
which controls the actions of all the agents (for example, see
(Nissim and Brafman 2012)). However, this centralized con-
trol is not feasible for a large number of agents, especially
when they are owned by different entities (as is the case for
autonomous cars). Another approach is to allow each agent
to act autonomously, and devise “rules of encounter” for
when two agents come into conflict, which usually requires
some negotiation between the agents (Georgeff 1988). In
this paper, we follow a third approach, of enacting a “social
law” (Shoham and Tennenholtz 1992) which restricts the be-
havior of the agents in order to ensure each agent can achieve

Copyright c© 2019, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

its own goal. One of the main advantages social laws is they
do not require any communication between the agents.

Previous work (Karpas et al. 2017; Nir and Karpas 2019)
has shown how to verify if a given social law is rationally
robust, that is, ensures that each agent can achieve its goal
regardless of the (goal-achieving) plans chosen by the other
agents. However, the kind of robustness described in these
works is extremely strict — it requires every plan chosen of-
fline by every agent to work, regardless of what every other
agent is doing. Importantly, this assumes that agents are
blind, in the sense that they never change their plan, re-
gardless of what they see the other agents doing. This is an
extremely strict requirement, and very few real-world prob-
lems have meaningful social laws that are rationally robust.

In this paper, we propose a new model, in which agents
are reactive, that is, they are allowed to replan if they notice
that their current plan is not going to work. We begin by
formulating the execution and replanning model more pre-
cisely. We then propose a suitable definition of robustness
for this model, and discuss the possible failure modes under
this new model. Importantly, when agents are allowed to re-
plan, a new failure mode called livelock emerges, in which
two or more agents can get stuck in an infinite loop. Finally,
we show how to verify the robustness of a given social law
under our new model via heuristic search on a black-box
planning model.

Background
In this section we provide an overview of concepts which
provide a foundation for the rest of the paper.

Following Brafman et al. (2008) we define an MA-STRIPS
problem as a quadruple Π = 〈F, {Ai}ni=1, I, {Gi}ni=1〉
where F is a set of predicates, Ai is a set of actions for
agents numbered 1 . . . n, I ⊂ F is the initial state and Gi is
the goal of agent i. Each action a ∈ Ai can be described as
a triplet 〈pre(a), add(a), del(a)〉, where pre(a) ⊂ F is the
precondition for performing a, and add(a), del(a) are the
add and delete effects of a respectively.

Social laws are a set of rules that regulate the behaviour
of agents, such that a certain level of coordination is en-
forced upon the otherwise ”selfish” agents. Such rules ex-
ist in human society (Rousseau 1762) as well as in artificial
systems (Shoham and Tennenholtz 1995; Moses and Ten-
nenholtz 1995; Agotnes et al. 2008). Social laws can be for-

71

malized in terms of MA-STRIPS tasks as a modification Πl

made to a MA-STRIPS task Π, in particular: facts, actions,
preconditions and effects of actions, facts in initial and goal
states added and/or removed from a problem. In the spirit
of Karpas et al. (2017) we allow some preconditions to be
marked as waitfor, and by doing so, assume our agents have
the ability to wait and do nothing. Marking precondition as
waitfor means that if an agent is due to perform an action a,
and some pre(a) is not fulfilled but is marked as waitfor, the
agent will wait until pre(a) becomes true, and then execute
a.

Given a social law, one needs a way to assess how well
it promotes the implicit coordination of agents. Karpas et
al. (2017) propose to check a social law for rational and
adversarial robustness. Enforcement of a rationally robust
social law ensures that every agent may plan offline with no
regard to plans and actions of other agents, and is still guar-
anteed to eventually reach its goal. Note that this require-
ment is very strict. In this paper we stick to robustness as
a measure of the quality of a social law, but we attempt to
derive a new, more liberal, notion of robustness.

The last tool we will require is the black-box planning
formalism. In the spirit of (Frances et al. 2017), we define
a factored state model problem (also known as black-box
planning problem, in what follows we favor the use of the
latter term) as a tuple Π = 〈V,D, s0, G,Act, A, t〉 where:
• V is a set of variables X
• DX are the domains of the variables X ∈ V
• s0 is a full assignment to the variables in V that represents

the initial state of the problem
• G is a conjunction of goal conditions
• Act is a set of actions (defined only as symbols)
• A : S 7→ 2|Act| is a function that represents the set of

actions applicable in each state
• t : S ×A 7→ S is a transition function

Note that we allow A and t(s, a) to be given by black-
box procedures rather than being defined explicitly. After
having all the necessary tools covered, we can describe the
exact model of the problem at hand.

Planning and Execution Model
We can now describe the planning and execution model for
how the agents operate, which will allow us to define a new
notion of robustness.

We will distinguish between a number of different models
with regards to replanning while acting: First, and perhaps
the most obvious setting is the one where replanning is for-
bidden altogether, i.e. every agent plans exactly once before
the start of execution. This correlates to the basic model pre-
sented in (Karpas et al. 2017). The robustness of the social
laws in this model had been already sufficiently explored
there, and henceforth will be denoted as rational robustness.

Second, we will mention the setting where the agent re-
plans after its every action. The robustness with respect to
this model will be denoted as anytime robustness. Note that
we do not put any limitations on the agent’s plan, thus in
many domains models of this kind will contain a trivial live-
lock, akin to the Buridan’s ass dilemma.

The next type of model is on a spectrum between the op-
tions presented earlier (never allow replanning and always
allow it), whereas here we allow the agent to replan only
on need, defined as a state where the agent deduces that the
original plan is no longer valid. Thus the need for replanning
arises. Note that in the general case an agent may predict
that its plan cannot succeed in advance. Replanning on need
presents a wide range of possible rules for deducing where
the need appears, and such an inference would probably re-
quire combining multi-agent reasoning and plan recognition
about other agents’ actions, which is potentially a hard task.

Thus, we would like to focus our discussion here on a spe-
cific sub-case of replanning on need: reactive replanning.
Agents replan only when they cannot execute the next ac-
tion in the original plan, i.e. the next action in the plan has
an unfulfilled non-waitfor precondition when the agent is
activated by an external scheduler. This allows us to forgo
the replanning in situations where the missing precondition
of an un-executable action was restored by another agent.
The robustness with respect to this model will be denoted as
reactive robustness. Formally:
Definition 1. A social law l for multi-agent setting Π =
〈F, {Ai}ni=1, I, {Gi}ni=1〉 is reactively robust iff: for all
agents i, for all action sequences π which can result
from initial planning, execution and reactive replanning, π
achieves G1 ∪ · · · ∪Gn

Note that the definition requires any sequence to lead the
agents to their goals, which means any proof of robustness
will have to assume adversarial scheduler deciding which
agent will act next.

Let us examine the relation between rational and reactive
robustness. We will establish a hierarchy of robustness types
by proving the following theorem:

Theorem 1. For any problem Π and social law l, rational
robustness is strictly stronger than reactive robustness.

Proof. Rephrasing the theorem, every Π under l that is ra-
tionally robust is also reactively robust, but not vice versa. If
Π under l is rationally robust, it is guaranteed that any set of
plans the agents produce at the beginning will be executed
to the end without a need to replan. Thus, replanning will
never occur, and the initial plans will be executed until the
goal is reached for every agent.

If, however, Π under l is reactively robust, we will show
an example where it is not rationally robust. Consider the
following setting: two agents a1 and a2, each has a goal to
hammer its own nail (n1 and n2 respectively), and there are
two distinct hammers (h1 and h2). In a setting where re-
planning is forbidden, an empty social law ∅ will not be ra-
tionally robust, since both agents can choose a plan in which
they pick up h1 and use it to hammer their nail, leading to
failure. On the other hand, in a reactive setting an agent can
replan to use h2 instead, i.e. the empty social law is reac-
tively robust.

Having settled on an execution model, we need to explore
in detail what can disrupt robustness. We now discuss the
types of failure that could occur during execution.

72

Types of failure
Reactive robustness can be violated in a few ways:
• Deadend - an agent should act but does not have a defined

action to execute for the current state, i.e. an agent can-
not execute the next action from its current plan, and the
replanning does not yield any other valid plan. Note that
even if an agent i is stuck in a deadend, it is possible that
in the future other agents’ actions can make i′s plan for
the goal possible again, but we still regard a possibility of
a deadend as a violation to robustness.

• Deadlock - A state where no agent can perform any ac-
tion, i.e. every agent is either waiting or finished. Since
we allow waitfor preconditions, some agents can be
waiting. If every active agent waits for some waitfor
precondition to become true, a deadlock occurs.

• Livelock - a condition where one or more agents change
the state of the system continuously, but no agent makes
progress towards its goal. The oscillations of the system
states continue ad infinitum, but the goal of some agents
is never achieved.

Note that the types of failure in this work quite differ from
those presented in (Karpas et al. 2017). A rationally robust
system cannot enter a state of livelock, since no replanning
occurs. On the other hand, in a reactive system an agent
cannot fail because of a missing precondition, and will re-
plan instead of declaring failure in that case.

As we have established the failures that lead to a breach
in robustness, in the following section we propose a way
to check whether a given social law is robust by actively
searching for failures of a given types.

Reactive Robustness Verification
In this section we show a compilation for verifying reactive
robustness of a MA-STRIPS problem Π under a social law l
via black-box planning. Our strategy at the macro level is to
map possible failures described in Section to the goals of the
search problem we are constructing. The rest of the section
is structured as follows: we first present the single agent
projection of the task as a building block for the complete
compilation, i.e. the planning task that every agent solves
independently, and explain how the single agent plans are
executed. We then show the complete compilation, using
plans of individual agents as a building block.

Single Agent Projection
We first show the search space derived from the original
MA-STRIPS problem for each individual agent. The main
challenge is how to plan for each agent independently of the
goals of the other agents, while still taking into account pos-
sible actions of the other agents.

In this work, we cannot use the single-agent projection
used in (Karpas et al. 2017), since their single-agent pro-
jection does not allow to come up with plans that include an
action that has a waitfor precondition on some fact which is
false in the initial state, e.g.,, to wait for some other agent
to move out of the way. In the reactive case it is even more
important to allow waiting for other agents, since there are

many more opportunities to plan for something which is cur-
rently false, but could become true later. Although there are
works that try to emulate some aspects of reactive behav-
ior in offline planning, these works operate under some very
specific assumptions that do not apply to our task. For exam-
ple, (Domshlak 2013) assumes there is a constant amount of
“failure” outcomes, while in our setting the amount of plans
an agent can come up with after replanning (and, by exten-
sion the amount of outcomes of any action that can invoke
replanning) is far from constant. Thus, we propose the fol-
lowing single-agent projection of the problem:

Each agent i solves a classical planning task with a mod-
ified action space. The problem the agent solves includes
only the actions of the agent itself (with a slight addition),
the variables of the original problem, the initial state of the
original problem and the private goal of the agent itself. The
additional actions try to capture the effects of the environ-
ment and other agents that are out of i’s control. To this
end, for each action ai of agent i we add a special action
waitfor-enable-ai, defined as:
• pre(waitfor-enable-ai) = pre(ai) \ prew(ai).
• eff(waitfor-enable-ai) = prew(ai)
where prew(ai) is the set of all waitfor preconditions of ai.
Such an action allows us to plan to wait for the waitfor pre-
conditions of ai. Note that no waitfor-enable-ai will ever
have a waitfor precondition.

In conclusion, given an MA-STRIPS problem Π =
〈F, {Ai}ni=1, I, {Gi}ni=1〉, the single agent projection for
agent i is the planning task Π′i = 〈F ′, A′, I ′, G′〉, where:
• F ′ = F
• A′ = Ai ∪ {waitfor-enable-ai | ai ∈ Ai}
• I ′ = I
• G′ = Gi

After solving Π′i, the execution policy of agent i can be
extracted from the plan in a straightforward way:
• If the agent had achieved its goal: return a special action
finish−i. Otherwise:

• If there is an action a ∈ Ai planned for the next step and
it can be executed: execute it.

• If there is an action a ∈ Ai planned for the next step
and it cannot be executed: replan. If replanning yields no
solution, the next action is undefined for the current state,
which constitutes a deadend.

• If there is an action waitfor-enable-ai planned for the
next step: check if ai can be executed. If so, execute ai,
otherwise, wait.

Complete Compilation
After presenting the planning and execution for each indi-
vidual agent, we have the necessary tools to describe the
complete compilation of reactive robustness verification to
black-box planning. Consider a description of an MA-
STRIPS task, a set of n agents, each agent i having its own
plan, which is assumed to lead it to its goal (assuming the
other agents do not interfere, and, in fact, help in achiev-
ing conditions specified by waitfor-enable actions). We
would like to check if the whole problem is reactively ro-
bust, which will be achieved by solving a black-box plan-
ning task, whose objective is to find a counterexample to

73

robustness, i.e. a failure. As was discussed in the previous
section , a failure is either reaching a state of deadend, dead-
lock, or livelock.

The main driving logic behind this compilation is straight-
forward: we would like our planner to seek for a failure. As
Definition 1 requires any sequence of actions to lead to the
goal, the planner has the ability to choose which agent to
activate next, and to control the result of each agent’s re-
planning process when allowed. We now explain the state
variables, actions, and the 3 different goal conditions.

State Variables: To make sure agents only replan when
allowed (i.e., necessary) our compilation keeps track of both
the state of the world and of each agent’s current plan, which
we refer to as the internal state (and is represented as the
variables πi in the compilation). Additionally, as we explain
below, we keep another set of variables to detect potential
livelocks, as well as other auxiliary variables.

Note that unlike the compilation of (Karpas et al. 2017)
we do not have a need to create a copy of the state for each
agent. This is because we use the power of the black box
successor generator to ensure that every possible plan leads
to a goal in the single agent projection. Subsequently, we
also do not need to create multiple versions of each action.

Actions: The actions that are available for the planner
will be called activate-action-ai, which have the follow-
ing semantics: activate agent i and make it execute its next
planned action ai (that is determined according to i’s current
plan πi). The effect of activate−action−ai on the state
will be determined by the effect of ai. If the next action
cannot be executed, and the agent replans, the planner can
execute one of the special actions set-πi-to-π, which should
set πi to a certain plan π (out of every plan available to i).
The set-πi-to-π actions can be though of as choosing the
result of replanning. The amount of set-πi-to-π actions is
enormous, so in the following section we describe a more
compact compilation.

Goal (deadend): Detecting a deadend has been already
discussed before. A deadend is a state where an agent has to
replan, but its single agent projection is unsolvable. If such
an agent exists in a state, that state is a goal state, and the
complete compilation will recognize it by adding failure
in the transition to that state.

Goal (deadlock): Since the social law can declare some
preconditions as waitfor, a deadlock where every agent waits
for some waitfor precondition, and none of them can be acti-
vated, could occur. In a reactively robust environment dead-
locks are not allowed, thus we give the planner an ability to
detect them and declare failure (i.e., reach the goal) accord-
ingly. A deadlock occurs at state s if for every agent i, the
first action in π(s)i has some unfulfilled waitfor precondi-
tion or i has already finished (indicated by flag fini). We
check this by raising a flag i−is−waiting whenever agent
i is waiting, and having an action declare−deadlock with
precondition ∀i : i−is−waiting, and an effect of achieving
a failure.

Goal (livelock): A potential livelock can be formalized
as the existence of an infinite joint sequence of actions that
agents follow, never arriving at their intended goals. As
shown by Patrizi et al. [2011] for planning with LTL goals,

1. Both agents plan. 2. Agent 2 makes a move.

3. Agent 1 comes to a point
where it needs to replan.

4. Same world state as
(2) with different internal
states — no livelock.

Figure 1: Why Internal States Matter. Arrows represent plans.

infinite plans can be characterized as consisting of two se-
quences of actions: a sequence p1 that maps the initial state
of the problem to some state s, and a second non-empty se-
quence of actions p2 that maps s to itself and can be repeated
indefinitely. Note that in order for a livelock to form, the
whole state s should be repeated: both the world state and
the agents’ internal states, denoted by π(s)1 . . . π(s)n.

The need for replicating the internal states is best illus-
trated by an example as given in Figure 1. In this example,
although the same world state is reached twice (with differ-
ent internal states), there exists no livelock.

In the complete compilation, similarly to the compilation
for LTL goals (Patrizi et al. 2011), we introduce a flag l and
an action start−loop that captures the transition between
p1 and p2, as well as the auxiliary set of variables L, that
stores the state s (of the original MA-STRIPS task and the
agents’ internal states) when action start−loop is applied.
A livelock is detected if the system can return to state s (via
a non-empty sequence of actions). This is implemented by
a goal test which checks whether L = s (to make sure this
is not achieved by an empty sequence, we also use the flag
just−started−loop). The correctness of this part of the
compilation is shown by the following Lemma.
Lemma 1. The state whereL = s will be encountered if and
only if there exists cycle p2 that can be repeated infinitely
many times.
Proof. If L = s then the flag l was up, and the system re-
turned to s after executing some non-empty set of actions
p2. We do not assume fairness on our scheduler, thus it can
repeat the agent activation sequence that led to p2. We also
do not assume anything on our planners, thus they can gen-
erate identical plans from identical states, and that means
that every action in p2 can have the same effect as it had the
first time. Starting from the same state, the same sequence
of actions with the same results will lead to the same state
again.

We can now characterize the complete com-
pilation, given an MA-STRIPS problem Π =
〈F, {Ai}ni=1, I, {Gi}ni=1〉, we construct the black-box
problem Π′ = 〈V,D, s0, G,Act, A, t〉:
• V = F ∪ {fini, statei, i−is−waiting, πi, i−replans|i =

1 . . . n} ∪ {failure, l, just−started−loop} ∪ L, where L ≡

74

F ′ ∪ {fin′i, state′i, i−is−waiting′, πi|i = 1 . . . n}, and πi is
the internal state of agent i

• DX = ∀X ∈ V \ ISi : X ∈ {true, false}. ∀πi : πi ∈ Πall
i ,

where Πall
i is the set of all possible plans for i

• s0 = {f |f ∈ I} ∪ {¬f |f ∈ I} ∪
{∀i : ¬fini,¬i−is−waiting,¬i−replans} ∪
{¬failure,¬l,¬just−started−loop} ∪ {∀x ∈ L :
¬x} ∪ {∀x ∈ {πi} : x = ∅}

• G = {failure}
• Act = {activate−action−ai|ai ∈ Ai} ∪ {set-πi-to-π | π ∈

Πall
i }∪{start−loop, declare−deadlock, declare−livelock}

• A:
– pre(activate−action−ai) = {s �
prewaitfor(ai),¬fini, } ∪ {∀i : ¬i−replans}.

– pre(declare−deadlock) = {∀i : i−is−waiting∩fini}∪
{∃i : ¬fini}

– pre(start−loop) = ∅
– pre(declare−livelock) = {l,¬just−started−loop} ∪
{L = s}

– pre(set-πi-to-π) = i−replans
• t(s, a) :

– del(just−started−loop) ∈ t(s, a) for every action except
start−loop.

– if ai is defined and ai 6=
finish−i, waiti, replan: t(s, activate−action−ai) =
eff(ai), del(i−is−waiting)

– else if ai = replan: t(s, activate−action−ai) =
add(i−replans)

– else if ai = waiti: t(s, activate−action−ai) =
add(i−is−waiting)

– else if ai = finish−i: t(s, activate−action−ai) =
add(fini)

– else t(s, activate−action−ai) = add(failure)
– t(s, set-πi-to-π) = πi ← π, del(i−replans)
– t(s, start−loop) = add(l, just−started−loop), L ← s \
{L, l, failure}

– t(s, declare−deadlock) = add(failure)
– t(s, declare−livelock) = add(failure)
The proof of correctness of the complete compilation fol-

lows the structure of the compilation itself, and is omitted
for the sake of brevity. Note that the state space of the com-
plete compilation is infinite (or at least doubly exponential
if individuals plans are restricted to have no loops). In the
following section, we present the hindsight intent attribution
compilation, which eliminates the need to keep track of the
internal states, at the cost of a more complex livelock goal
test.

Hindsight Intent Attribution
As mentioned above, planning in the complete compila-
tion is infeasible, due to the large branching factor (i.e., the
number of possible single agent plans). We now propose
the hindsight intent attribution compilation, which does not
keep track of the internal states. Instead, the goal test for
livelock looks at the plan so far, and attempts to attribute an
intent (that is, an internal plan) to each relevant replanning
decision of each agent in hindsight. Note that we need to
keep track of when each agent replanned, but this can be
done by adding one bit per agent for each state.

We must first modify the successor generator to only gen-
erate actions which could have been the next action now, in
the plan that was generate when the agent last replanned.

This is done by solving a planning problem similar to plan
recognition as planning (Ramı́rez and Geffner 2009), where
the actions that have been executed since the last replanning
of agent i are “observed”. To check if action ai is a possible
successor, we check whether there is a solution in which ai
is also “observed”. As this could become expensive, we can
also perform these checks only retroactively once a possible
plan is found, and try to justify that plan.

To detect a livelock, when the system arrives at the same
world state for the second time along a path, we declare a
pseudo− livelock. Note that we also omit the L variables,
as we can check whether we have reached the same state
twice by tracing the parent pointers of the current node back
up to the root. We then check whether this is a true livelock
by finding a plan for each relevant point along the current
path where an agent replanned, which justifies the current
path and could lead to a livelock.

In more detail, we will require auxiliary definitions of
three distinct states for each agent: s0i , s′i, s

′′
i , and one global

state: s. These are defined as follows:
• s - a world state where pseudo − livelock occurred. By

definition of pseudo − livelock it is a world state that
occurred more than once during the execution. Therefore,
we can divide the execution to periods according to the
visits to s, i.e. refer to the time point of the last visit to
the state s as t, and time point of a previous visit as t− 1
(note that we consider all previous visits to s).

• s0i - the last state where agent i planned before t− 1. Can
stem from either i replanning or i planning for the first
time in the initial state.

• s′i - the state where agent i first invoked replanning after
t− 1 and before t.

• s′′i - the state where agent i last invoked replanning after
t − 1 and before t. Can be the same as s′i if i replanned
only once between t− 1 and t.
Given a pseudo − livelock happened at s, we need to

know whether it is a real livelock. Livelock requires the
agents to have the same internal state at t as in t − 1. We
will denote the state of the complete compilation described
in the previous section as S = (s, π1(s), . . . , πn(s)), where
πi(s) are the agents’ current plans. In a slight abuse of no-
tation we will denote i’s plan when it arrives to s at t by
πi(st). Lemma 1 assures that livelock ⇐⇒ St−1 = St,
thus it is sufficient to show that (s, π1(st), . . . , πn(st)) =
(s, π1(st−1), . . . , πn(st−1)).

From here on, we look at each individual agent i and rea-
son whether there is a possibility that πi(st−1) = πi(st). For
that, we divide the agents into three categories with regard
to their behavior between st−1 and st:
• Agents that did not perform any action between t− 1 and
t – since there was no action performed by those agents,
their internal state remains the same. These will be called
irrelevant agents.

• Agents that performed some actions between t − 1 and
t, but did not replan in this interval – their internal state
must have changed, which means that if there is at least
one agent in this category, s is not a true livelock. These
will be called advancing agents.

• Agents that have both performed actions and replanned

75

between t− 1 and t: for each such agent i we propose to
create a planning problem that has a solution if and only
if πi(st−1) could have been equal to πi(st). These will
be called loop agents.
Any loop agent arrives at st−1 with the plan it conceived

at s0i . The suffix of this plan is πi(st−1). A second time
around, it arrives at st with the plan it conceived at s′′i and
has πi(st) as a suffix. This means we have to check for the
existence of two plans: one from s0i with some prefix up to s
(which we will call πi(s0i , s)) and suffix πi(st−1), and a sec-
ond plan from s′′i via s, whose prefix we denote by πi(s′′i , s),
such that their suffixes match. Of course, we also require the
plans to be consistent with the actions already observed (i.e.,
executed on the current path). Figure 2 provides graphical
intuition.

For each agent i independently, given its single agent pro-
jection Π′i = 〈F ′, A′, I ′, G′〉 (described above) we will
construct a classical planning problem Πi = 〈Fi, Ai, Ii, Gi〉
that will have a solution iff a pair of plans as described above
exists. First, we need both plans to have different prefixes
and the same suffix. We split the plans into 4 phases: in
phase 1 we follow the observed plan (πi(s0i , s)) from s0i to
s, and in phase 2 we we follow the observed plan (πi(s′′i , s))
from s′′i to s. Then, in phase 3, the plans merge and reach
state s′i following the observed plan πi(s, s

′
i), and finally

in phase 4, we diverge from the actions that have been ob-
served, and simply need to find a plan that reaches the goal.
To keep track of these separate plans, we create 2 copies of
the state variables. Actions in phases 1 and 2 affect only one
of these copies, while actions in phases 3 and 4 affect both
copies. This is similar to the GRD compilation (Keren et al.
2014), except with merging instead of splitting. We denote
the lengths |πi(s0i , s)| by l1, |πi(s′′i , s)| by l2, and |πi(s′′i , s)|
by l3, and define:
• Fi = {f1, f2 | f ∈ F ′} ∪ {fin-ph-k | k ∈ {1, 2, 3}} ∪
{allow-aphk

j | k ∈ {1, 2, 3}, j ∈ {1, . . . , lk}
• Ai = {aphk

j | a ∈ A′, k ∈ {1, 2, 3}, j ∈ {1, . . . , lk}}∪{aph4 |
a ∈ A′}} where:
– for k ∈ {1, 2}:
pre(a

phk
j) = {fk | f ∈ pre(a)} ∪ {allow-aphk

j },
add(a

phk
j) = {fk | f ∈ add(a)} ∪{

{allow-aphk
j+1} j < lk

{fin-ph-k, allow-aphk+1
1 } j = lk

del(a
phk
j) = {fk | f ∈ del(a)} ∪ {allow-aphk

j },
– pre(aph3

j) = {f1, f2 | f ∈ pre(a)} ∪ {allow-aph3
j },

add(aph3
j) = {f1, f2 | f ∈ add(a)} ∪{

{allow-aph3
j+1} j < l3

{fin-ph-3} j = l3

del(aph3
j) = {f1, f2 | f ∈ del(a)} ∪ {allow-aph3

j }
– pre(aph4) = {f1, f2 | f ∈ pre(a)} ∪ {fin-ph-3}
add(aph4) = {f1, f2 | f ∈ add(a)}
del(aph4) = {f1, f2 | f ∈ del(a)}

• Ii = {f1 | f ∈ s0i } ∪ {f2 | f ∈ s′′i } ∪ {allow-aph1
1 }

• Gi = {f1, f2 | f ∈ G′} ∪ {fin-ph−3}
To prove the correctness of this compilation, note that the

existence of this pair of plans (e.g., a solution to Πi) indi-

Figure 2: Graphical representation of the livelock loop from i’s
point of view. πi(s

0
i , s) is in red, πi(s

′′
i , s) is in blue, common

suffix πi(st) = πi(st−1) is in green. Observed actions are in gray.

cates that it is possible that πi(st−1) = πi(st) if the agent was
acting alone. Moreover, by definition of s′′i we know that
agent i did not replan from s′′i to s, which means πi(s′′i , s)
can be executed regardless of the plans of the other agents.
This decoupling gives us the ability to reason about each
agent independently, as we already know how these plans
should be interleaved to achieve the loop we have already
observed. Thus, to reach the conclusion St = St−1 it is suf-
ficient to: a) find such a pair of plans for each loop agent and
b) show there are no advancing agents.
Theorem 2. Hindsight intent attribution returns ”true” for
a state s where pseudo-livelock occurred if and only if a true
livelock is possible from s.
Proof. If a true livelock is possible from s, it im-
plies that there exists a schedule of actions such that
(s, π1(st), . . . , πn(st)) = (s, π1(st−1), . . . , πn(st−1)).
This in turn implies that ∀i : i 6∈ advancing agents. Also,
for each i ∈ loop agents, there exist two plans: π1

i planned
before t− 1 with suffix πi(st−1), and π2

i planned after t− 1
and before t, with suffix πi(st) = πi(st−1). Moreover, pre-
fixes of those plans have been already executed, thus are
compatible with observed actions. Thus, ∀i : π1

i , π2
i is pair

of plans that compose a solution for the hindsight intent attri-
bution search procedure in a following way: from the points
of the last replans before t − 1 and t, the actions observed
will be executed in their respective copy of facts, until both
copies arrive to s. From s, merge will be executed, and af-
ter that, merged version of πi(st) will complete the solution.
We have shown a possible solution for each agent, therefore
hindsight intent attribution would return ”true”.

Proving the other side of if and only if, assume hindsight
intent attribution returns ”true”. It means, ∀i ∈ agents :
i 6∈ advancing agents. For each i ∈ irrelevant agents triv-
ially πi(st) = πi(st−1). For each i ∈ loop agents there
exist two plans found by the search procedure: πi(s0i , s) ·
πi(st−1) and πi(s′′i , s) · πi(st), where · denotes concatena-
tion. Moreover, these plans are consistent with the observed
actions, and πi(st) = πi(st−1) by the correctness of the
search procedure. This, in turn, means that each loop agent
could have chosen plan πi(s0i , s) · πi(st−1) in s0i , and plan
πi(s

′′
i , s) · πi(st) from s′′i , and still remain consistent with

the actions observed, independently of other agents’ plans.
The independence comes from the fact that both πi(s0i , s)
and πi(s

′′
i , s) were executed fully without replanning, i.e.

there exists a schedule such that ∀a ∈ πi(s
0
i , s), πi(s

′′
i , s),

pre(a) are fulfilled regardless of plans of other agents.
Thus, there exists a schedule s.t. (s, π1(st), . . . , πn(st)) =
(s, π1(st−1), . . . , πn(st−1)), which means true livelock is
possible from s.

76

Conclusion
We have described an execution model which allows agents
to adjust their plans online via replanning. We then proposed
the notion of reactive robustness, which is less strict than ra-
tional robustness (Karpas et al. 2017; Nir and Karpas 2019).
Finally, we have shown how to check whether a problem is
robust via a compilation to black-box planning.

References
Thomas Agotnes, Wiebe van der Hoek, and Michael
Wooldridge. Robust normative systems. In Proceedings
of the 7th International Joint Conference on Autonomous
Agents and Multiagent Systems - Volume 2, AAMAS ’08,
pages 747–754, Richland, SC, 2008. International Founda-
tion for Autonomous Agents and Multiagent Systems.
Ronen I Brafman and Carmel Domshlak. From one to
many: Planning for loosely coupled multi-agent systems. In
ICAPS, pages 28–35, 2008.
Carmel Domshlak. Fault tolerant planning: Complexity and
compilation. In ICAPS, 2013.
Guillem Frances, Miquel Ramı́rez Jávega, Nir Lipovetzky,
and Hector Geffner. Purely declarative action descriptions
are overrated: classical planning with simulators. In IJ-
CAI 2017. Twenty-Sixth International Joint Conference on
Artificial Intelligence; 2017 Aug 19-25; Melbourne, Aus-
tralia.[California]: IJCAI; 2017. p. 4294-301. International
Joint Conferences on Artificial Intelligence Organization
(IJCAI), 2017.
Michael Georgeff. Communication and interaction in multi-
agent planning. In Readings in distributed artificial intelli-
gence, pages 200–204. Elsevier, 1988.
Erez Karpas, Alexander Shleyfman, and Moshe Tennen-
holtz. Automated verification of social law robustness in
strips. Distributed and Multi-Agent Planning (DMAP-16),
page 73, 2017.
Sarah Keren, Avigdor Gal, and Erez Karpas. Goal recogni-
tion design. In ICAPS, 2014.
Yoram Moses and Moshe Tennenholtz. Artificial social sys-
tems. Computers and Artificial Intelligence, 14:533–562,
1995.
Ronen Nir and Erez Karpas. Automated verification of so-
cial laws for continuous time multi-robot systems. In AAAI,
2019.
Raz Nissim and Ronen I Brafman. Multi-agent a* for paral-
lel and distributed systems. In Proceedings of the 11th Inter-
national Conference on Autonomous Agents and Multiagent
Systems-Volume 3, pages 1265–1266. International Founda-
tion for Autonomous Agents and Multiagent Systems, 2012.
Fabio Patrizi, Nir Lipovetzky, Giuseppe De Giacomo, and
Hector Geffner. Computing infinite plans for ltl goals using
a classical planner. In IJCAI, pages 2003–2008, 2011.
Miquel Ramı́rez and Hector Geffner. Plan recognition as
planning. In Twenty-First International Joint Conference on
Artificial Intelligence, 2009.
Jean-Jacques Rousseau. The social contract, 1762, 1762.

Yoav Shoham and Moshe Tennenholtz. On the synthesis of
useful social laws for artificial agent societies (preliminary
report). In AAAI, pages 276–281, 1992.
Yoav Shoham and Moshe Tennenholtz. On social laws for
artificial agent societies: off-line design. Artificial intelli-
gence, 73(1-2):231–252, 1995.

77

