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Preface

The motivation for using hierarchical planning formalisms is manifold. It ranges from an ex-
plicit and predefined guidance of the plan generation process and the ability to represent complex
problem solving and behavior patterns to the option of having different abstraction layers when
communicating with a human user or when planning cooperatively. This led to numerous hier-
archical formalisms and systems. With this workshop, we bring together scientists working on
many aspects of hierarchical planning to exchange ideas and foster cooperation.

Hierarchies induce fundamental differences from classical, non-hierarchical planning, creating
distinct computational properties and requiring separate algorithms for plan generation, plan
verification, plan repair, and practical applications. Many issues required to tackle these – or
further – problems in hierarchical planning are still unexplored.

The range of different problems in hierarchical planning is also reflected by the topics addressed
by the submissions this year. While last year several submissions proposed novel planning
systems (for different hierarchical problem classes), no such approaches are proposed this year.
One paper applied and compared several existing planners in the computer game Minecraft
to construct various complex structures. Two approaches are concerned with learning – one
focusing on hierarchical task networks (HTNs), while the other focuses on hierarchical goal
networks (HGNs) in non-deterministic environments. Another paper proposes an extension
to the standard HTN formalism with semantic attachments. Further topics addressed are an
efficient grounding procedure, a novel procedure for plan recognition and plan verification based
on parsing, and a proposal for a standardized description language for HTN planning problems
based on the well-known PDDL for classical, non-hierarchical problems.

This year – as several ICAPS workshops did – we tried out openReview, a system that allows
other reviewers to take part in paper discussions, i.e., including those not officially assigned to
the respective paper. Further, it allows publishing the reviews for a paper, plus the original
submission context. We configured the system so that authors can decide whether they want to
publish the reviews/original submission. Reviewers can also decide to hide their reviews. We
thus invite you to visit openReview in case you are interested in the reviews behind some of the
papers.

Pascal, Gregor, Vikas, and Ron
Workshop Organizers,
June 2019
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Construction-Planning Models in Minecraft

Julia Wichlacz and Álvaro Torralba and Jörg Hoffmann
Saarland University, Saarland Informatics Campus, Saarbrücken, Germany

{wichlacz,torralba,hoffmann}@cs.uni-saarland.de

Abstract

Minecraft is a videogame that offers many interesting chal-
lenges for AI systems. In this paper, we focus on construc-
tion scenarios where an agent must build a complex struc-
ture made of individual blocks. As higher-level objects are
formed of lower-level objects, the construction can naturally
be modelled as a hierarchical task network. We model a
house-construction scenario in classical and HTN planning
and compare the advantages and disadvantages of both kinds
of models.

Introduction
Minecraft is an open-world computer game, which poses in-
teresting challenges for Artificial Intelligence (Aluru et al.
2015; Johnson et al. 2016), for example for the evaluation of
reinforcement learning techniques (Tessler et al. 2017). Pre-
vious research on planning in Minecraft focused on mod-
els to control an agent in the Minecraft world. Some ex-
amples include learning planning models from a textual de-
scription of the actions available to the agent and their pre-
conditions and effects (Branavan et al. 2012), or HTN mod-
els from observing players’ actions (Nguyen et al. 2017).
Roberts et al. (2017), on the other hand, focused on on-
line goal-reasoning for an agent that has to navigate in the
minecraft environment to collect resources and/or craft ob-
jects. They introduced several propositional, numeric (Fox
and Long 2003) and hybrid PDDL+ planning models (Fox
and Long 2006).

In contrast, we are interested in construction scenarios,
where we generate instructions for making a given structure
(e.g. a house) that is composed of atomic blocks. Our long-
term goal is to design a natural-language system that is able
to give instructions to a human user tasked with completing
that construction. As a first step, in the present paper we
consider planning methods coming up with what we call a
construction plan, specifying the sequence of construction
steps without taking into account the natural-language and
dialogue parts of the problem.

For the purpose of construction planning, the Minecraft
world can be understood as a Blocksworld domain with a
3D environment. Blocks can be placed at any position hav-
ing a non-empty adjacent position. However, while obtain-
ing a sequence of “put-block” actions can be sufficient for

an AI agent, communicating the plan to a human user re-
quires more structure in order to formulate higher-level in-
structions like build-row, or build-wall. The objects being
constructed (e.g. rows, walls, or an entire house) are natu-
rally organized in a hierarchy where high-level objects are
composed of lower-level objects. Therefore, the task of con-
structing a high-level object naturally translates into a hierar-
chical planning network (HTN) (Sacerdoti 1974; Tate 1977;
Wilkins 1988; Erol, Hendler, and Nau 1994).

We devise several models in both classical PDDL plan-
ning (Bylander 1994; McDermott et al. 1998) and hierar-
chical planning for a simple scenario where a house must
be constructed. Our first baseline is a classical planning
model that ignores the high-level objects and simply out-
puts a sequence of place-blocks actions. This is insufficient
for our purposes since the resulting sequence of actions can
hardly be described in natural language. However, it is a use-
ful baseline to compare the other models. We also devise a
second classical planning model, where the construction of
high-level objects is encoded via auxiliary actions.

HTN planning, on the other hand, allows to model the
object hierarchy in a straightforward way, where there is
a task for building each type of high-level object. The
task of constructing each high-level object can be decom-
posed into tasks that construct its individual parts. Unlike
in classical planning, where the PDDL language is sup-
ported by most/all planners, HTN planners have their own
input language. Therefore, we consider specific models for
two individual HTN planners: the PANDA planning sys-
tem (Bercher, Keen, and Biundo 2014; Bercher et al. 2017)
and SHOP2 (Nau et al. 2003).

Scenario Design
We consider a simple scenario where our agent must con-
struct a house in Minecraft. We model the Minecraft envi-
ronment as a 3D grid, where each location is either empty or
has a block of a number of types: wood, stone, or dirt.

Figure 1 shows the hierarchy of objects of our construc-
tion scenario. For the high-level structure the house consists
of four stone walls, a stone roof, and a door. The walls and
the roof are further decomposed into single rows that need
to be built out of individual blocks. The door consists of two
gaps, i.e., empty positions inside one of the walls.

As our focus is on the construction elements we abstract
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low-level details away. For example, we avoid encoding the
position of the agent and assume that all positions are always
reachable. We also assume Minecraft’s creative mode, where
all block types are always available so we do not need to
keep track of which blocks are there in the inventory.

This is a very simplistic model, where planning focuses
simply on the construction actions (i.e. placing or remov-
ing blocks), of high-level structures. Nevertheless, it can still
pose some challenges to modern planners, specially due to
the huge size of the Minecraft environment.

House

Wall Roof Door

Row

Block

Figure 1: Object hierarchy of our construction scenario.

Classical Planning Model
Our first model is a classical planning model in the
PDDL language that consists of only two actions: put-
block(?location, ?block-type) and remove-block(?location,
?block-type) where there is a different location for each of
the x-y-z coordinates in a 3D grid. The goal specifies what
block-type should be in each location. As blocks cannot be
placed in the air, the precondition of put-block requires one
of the adjacent locations of ?location to be non-empty. Other
than that, blocks of any type can always be added or removed
at any location. The goal is simply a set of block at facts.

A limitation of this simple model is that it completely
ignores the high-level structure of the objects being con-
structed. As there is no incentive to place blocks in certain
order, a high-level explanation of the plan may be impos-
sible. To address this, we introduce auxiliary actions that
represent the construction of high-level objects. Figure 2
shows the auxiliary actions that represent building a wall.
The attributes of the wall are specified in the initial state
via attributes expressed by predicates wall dir, wall length,
wall height, wall type, and current wall loc. In order to
avoid the huge amount of combinations of walls that could
be constructed of any dimensions and in any direction, the
walls that are relevant for the construction at hand are spec-
ified in the initial state via these predicates. These three ac-
tions decompose the construction of a wall into several rows.
Action begin wall ensures that no other high-level object is
being constructed at the moment and adds the fact construct-
ing wall to forbid the construction of any other wall (or roof)
until the current wall has been finished.

Action build row in wall ensures that a row of the given
length will be built on the corresponding location and direc-
tion by adding predicates (building row) and (rest row ?loc
?len ?dir ?t). Simultaneously, it updates the location for the
rest of the wall to be built and decreases its height by one.

(:action begin wall
:parameters (?w - wall)
:precondition (and (not (constructing roof))

(not (constructing wall))
:effect (and (current wall ?w) (constructing wall)))

(:action build row in wall
:parameters (?w - wall ?loc ?locN - location

?len ?height ?heightN - number
?dir - direction ?t - blocktype)

:precondition (and (current wall ?w) (wall dir ?w ?dir)
(wall length ?w ?len) (wall height ?w ?height)
(wall type ?w ?t) (current wall loc ?w ?loc)
(prev ?height ?heightN) (on top ?loc ?locN)
(not (building row)))

:effect (and (current wall loc ?w ?locN)
(wall height ?w ?heightN)
(not (current wall loc ?w ?loc))
(not (wall height ?w ?height))
(building row) (rest row ?loc ?len ?dir ?t)))

(:action finish wall
:parameters (?w - wall ?loc - location

?height - number ?dir - direction)
:precondition (and (current wall ?w) (is zero ?height)

(wall height ?w ?height) (wall dir ?w ?dir)
(wall initial ?w ?loc) (not(building row)))

:effect (and (wall at ?w ?loc ?dir)
(not (constructing wall)) (not (current wall ?w))))

Figure 2: Auxiliary PDDL actions to build a wall.

When the height is zero, the action end wall becomes appli-
cable, which finishes the construction of the wall.

In the goal we then use the predicates wall at and roof at
that force the planner to use these constructions, instead of a
set of block at facts as we did in the simple model.

Hierarchical Planning Models
HTN models encode the construction of high-level objects in
a straightforward way by defining tasks such as build house,
build wall and build row. These tasks will then be de-
composed with methods until only primitive tasks will be
left, in our case place-block and remove-block. We con-
sider specific models for two individual HTN planners: the
PANDA planning system (Bercher, Keen, and Biundo 2014;
Bercher et al. 2017) and SHOP2 (Nau et al. 2003).

PANDA
PANDA uses an HTN formalism (Geier and Bercher 2011),
which allows combining classical and HTN planning. The
predicates describing the world itself, i.e. the relations be-
tween different locations remain the same as in the PDDL
model, as do the place-block and remove-block primitive ac-
tions. On top of this, high-level objects are described as an
HTN where each object corresponds to a task, without re-
quiring to express their attributes with special predicates as
we did in the PDDL model. Specifically, we defined tasks
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(:method build wall 1
:parameters (?loc1 - location ?len ?hgt - numbers

?d - direction ?t - blocktype)
:task (buildwall ?loc1 ?len ?hgt ?d ?t)
:precondition (isone ?hgt)
:subtasks (buildrow ?loc1 ?len ?d ?t))

(:method build wall 2
:parameters (?loc1 ?loc2 - location

?len ?hgt ?hgt2 - numbers
?d - direction ?t - blocktype)

:task (buildwall ?loc1 ?len ?hgt ?d ?t)
:precondition (and (not (isone ?hgt))

(prev ?hgt ?hgt2)
(on top ?loc1 ?loc2))

:ordered´subtasks (and
(buildrow ?loc1 ?len ?d ?t)
(buildwall ?loc2 ?len ?hgt2 ?d ?t)))

Figure 3: Methods for the build-wall task in the PANDA
model.

that correspond to building a house, a wall, a roof, a row of
blocks, and the door.

Figure 3 shows the methods used to decompose the task of
building a wall. These methods work in a recursive fashion
over the height of the wall. For walls with height one, the
build wall 1 method is used to build them. For walls with
larger height, the build wall 2 method decomposes the task
of building them into building a row in the current location
and building the rest of the wall (i.e., a wall of height-1)
in the location above the previous one. These subtasks are
ordered, so that walls are always built from bottom to top.

The methods for buildrow and buildroof work in the same
fashion, while buildhouse only has one method decompos-
ing the house into four walls, the roof, and the door. The
task builddoor also has just one method stating which two
blocks have to be removed to form a door. Choosing this way
of modeling the door by first forcing the planner to place
two blocks and later removing them again may seem ineffi-
cient, but for communication with a human user this may be
preferable over indicating that these positions should remain
empty in the first place.

SHOP2
The SHOP2 model follows a similar hierarchical task struc-
ture as the PANDA model, having methods for decomposing
the house into walls, a wall into rows and rows into single
blocks. Since one of the advantages of SHOP2 is that it can
call arbitrary LISP functions, we can represent the locations
using integers as coordinates and replace the predicates used
in PANDA and PDDL to express their relations by simple
arithmetic operations. This also allows us to compute the
end point of rows of any given length in a given direction,
which means we can construct the walls by alternating the
direction of the rows. Based on this, we define two differ-
ent recursive decompositions of walls as shown in Figure 4.
In the first method we simply build the row starting in the
current location, while in the second method we change the

(:method (build-wall-east ?x ?y ?z ?length ?height ?dir)
zero-height

((call = ?height 0))
()

east-one
((up ?z1 ?z) (up ?height ?h1) (call = ?dir 1))
(:ordered

(:task build-row ?x ?y ?z ?length ?dir)
(:task build-wall-east ?x ?y ?z1 ?length ?h1 ?dir)

)
)

(:method (build-wall-east ?x ?y ?z ?length ?height ?dir)
zero-height

((call = ?height 0))
()

east-two
((up ?z1 ?z) (up ?height ?h1) (call = ?dir 1))
(:ordered

(:task build-row (call -(call + ?x ?length) 1) ?y ?z ?length 2)
(:task build-wall-east ?x ?y ?z1 ?length ?h1 ?dir)

)
)

Figure 4: SHOP2 methods to build a wall in east direction.

direction of the row we want to build and identify the posi-
tion that would previously have been the end of the row by
replacing the x-coordinate with x ` length ´ 1. Since this
computation is different for each direction, we need separate
methods for them. Apart from this, the decomposition struc-
ture is the same as with PANDA, building the walls, roof,
and rows incrementally using a recursive structure.

Experiments
To evaluate the performance of common planners on our
models1, we scale them with respect to two orthogonal pa-
rameters: the size of the construction, and the size of the cu-
bic 3D world we are considering. We use different planners
for each model. For the classical planning models we use the
LAMA planner (Richter, Westphal, and Helmert 2011). The
PANDA planning system implements several algorithms, in-
cluding plan space POCL-based search methods (Bercher,
Keen, and Biundo 2014; Bercher et al. 2017), SAT-based
approaches (Behnke, Höller, and Biundo 2018), and for-
ward heuristic search (Höller et al. 2018). We use a config-
uration using heuristic search with the FF heuristic, which
works well on our models. For SHOP2, we use the depth-
first search configuration (Nau et al. 2003). All experiments
were run on an Intel i5 4200U processor with a time limit of
30 minutes and a memory limit of 2GB.

In our first experiment, we scale the size of the house start-
ing with a 3 ˆ 3 ˆ 3 house and increasing one parameter
(length, width, and height) at a time (4 ˆ 3 ˆ 3, 4 ˆ 4 ˆ

1Benchmarks are publicly available at: https://doi.org/
10.5281/zenodo.3239243
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Figure 5: Search time, total time, number of operators, and facts of the grounded task to build a house with given number of
blocks (above) or in a world with increasing size (below).

3, . . . , 9ˆ9ˆ9.). The size of the 3D world is kept as small as
possible to fit the house with some slack, so initially is set to
5ˆ5ˆ5 and is increased by one unit in each direction every
three steps, once we have scaled the house in all dimensions.
The upper row of Figure 5 shows the search and total time of
the planners on the different models. The construction size
in the x-axis refers to the number of blocks that need to be
placed in the construction. All planners scale well with re-
spect to search time, solving problems of size up to 9ˆ9ˆ9
in just a few seconds. The non-hierarchical PDDL planning
model (PDDL blocks) that only uses the place-block and
remove-block actions without any hierarchical information
is the one with worst search performance. Moreover, it also
results in typically longer plans that build many “support”
structures to place a block in a wall without one of the adja-
cent blocks in the wall being there yet.

However, there is a huge gap between search and total
time for the PANDA and PDDL models, mostly due to the
overhead of the grounding phase. SHOP2 does not do any
preprocessing or grounding so it is not impacted by this. For
the PANDA and PDDL models, total time significantly in-
creases every three problems, whenever the world size is in-
creased. This suggests that, somewhat counterintuitively, the
size of the world environment has a greater impact on these
planners’ performance than the size of the construction. In
the PDDL based approaches, the number of operators and
facts produced in the preprocessing shows a similar trend so
the planner’s performance seems directly influenced by the
size of the grounded task. For PANDA, on the other hand,
we observe a linear increase in the number of facts and only
a comparatively small increase in the number of operators.

To test more precisely what is the impact of increasing
the world size, we ran a second set of experiments where we
kept the size of the house fixed at 5ˆ5ˆ5 and just increased
the size of the world. As shown in the bottom part of Figure 5

the performance of SHOP2 is not affected at all, since it does
not require enumerating all possible locations. Search time
for PANDA also stays mostly constant, but the overhead in
the preprocessing phase dominates the total time. This con-
trasts with the number of operators and facts, which is not
affected by the world size at all. The PDDL based models
are also affected in terms of preprocessing time, due to a
linear increase in the number of facts and operators with re-
spect to world size, but to a lesser degree. However, search
time increases linearly with respect to the world size due to
the overhead caused in the heuristic evaluation.

Discussion
We have introduced several models of a construction sce-
nario in the Minecraft game. Our experiments have shown
that, even in the simplest construction scenario which is not
too challenging from the point of view of the search, current
planners may struggle when the size of the world increases.
This is a serious limitation in the Minecraft domain, where
worlds with millions of blocks are not unrealistic.

Lifted planners like SHOP2 perform well. However, it
must be noted that they follow a very simple search strategy,
which is very effective on our models where any method
decomposition always leads to a valid solution. However, it
may be less effective when other constraints must be met
and/or optimizing quality is required. For example, if some
blocks are removed from the ground by the user, then some
additional blocks must be placed as auxiliary structure for
the main construction. Arguably, this could be easily fixed
by changing the model so that whenever a block cannot be
placed in a target location, an auxiliary tower of blocks is
built beneath the location. However, this increases the bur-
den of writing new scenarios since suitable task decompo-
sitions (along with good criteria of when to select each de-
composition) have to be designed for all possible situations.
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This makes the SHOP2 model less robust to unexpected sit-
uations that were not anticipated by the domain modeler.
PANDA, on the other hand, supports insertion of primitive
actions (Geier and Bercher 2011), allowing the planner to
consider placing additional blocks, e.g., to build supporting
structures that do not correspond to any task in the HTN.
This could help to increase the robustness of the planner in
unexpected situations where auxiliary structures that have
not been anticipated by the modeler are needed. However,
this is currently only supported by the POCL-plan-based
search component and considering all possibilities for task
insertion significantly slows down the search and it runs out
of memory in our scenarios. This may point out new avenues
of research on more efficient ways to consider task insertion.

In related Minecraft applications, cognitive priming has
been suggested as a possible solution to keep the size of the
world considered by the planner at bay (Roberts and Hiatt
2017). In construction scenarios, however, large parts of the
environment can be relevant so incremental grounding ap-
proaches may be needed to consider different parts of the
scenario at different points in the construction plan.

Our models are still a simple prototype and they do not
yet capture the whole complexity of the domain. We plan to
extend them in different directions in order to capture how
hard it is to describe actions or method decompositions in
natural language. For example, while considering the posi-
tion of the user is not strictly necessary, his visibility may be
important because objects in his field of view are easier to
describe in natural language. How to effectively model the
field of vision is a challenging topic, which may lead to com-
binations with external solvers like in the planning modulo
theories paradigm (Gregory et al. 2012).

Another interesting extension is to consider how easy it is
to express the given action in natural language and for exam-
ple by reducing action cost for placing blocks near objects
that can be easily referred to. Such objects could be land-
marks e.g. blocks of a different type (“put a stone block next
to the blue block”) or just the previously placed block (e.g.,
“Now, put another stone block on top of it”).
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Abstract

The research in hierarchical planning has made considerable
progress in the last few years. Many recent systems do not
rely on hand-tailored advice anymore to find solutions, but
are supposed to be domain-independent systems that come
with sophisticated solving techniques. In principle, this de-
velopment would make the comparison between systems eas-
ier (because the domains are not tailored to a single system
anymore) and – much more important – also the integration
into other systems, because the modeling process is less te-
dious (due to the lack of advice) and there is no (or less)
commitment to a certain planning system the model is cre-
ated for. However, these advantages are destroyed by the lack
of a common input language and feature set supported by
the different systems. In this paper, we propose an extension
to PDDL, the description language used in non-hierarchical
planning, to the needs of hierarchical planning systems. We
restrict our language to a basic feature set shared by many
recent systems, give an extension of PDDL’s EBNF syntax
definition, and discuss our extensions, especially with respect
to planner-specific input languages from related work.

1 Introduction
Much progress has been made recently in the field of hier-
archical planning. Novel systems based on the traditional,
search-based techniques have been introduced (Bit-Monnot,
Smith, and Do 2016; Shivashankar, Alford, and Aha 2017;
Bercher et al. 2017; Höller et al. 2018), but also new tech-
niques like the translation to STRIPS/ADL (Alford, Kuter,
and Nau 2009; Alford et al. 2016a), or revisited approaches
like the translation to propositional logic (Behnke, Höller,
and Biundo 2018a; 2018b; 2019a; 2019b; Schreiber et al.
2019). In contrast to earlier systems, such systems can be
considered to be domain-independent, i.e., they do not rely
on hand-tailored advice to solve planning problems, but only
on their solving techniques.

Even though the systems share the basic idea of being hi-
erarchical planning approaches, the feature set supported
by the different systems is manifold. Bit-Monnot, Smith,
and Do (2016) focus, e.g., on advanced support for tem-
poral planning, but lack the support for recursion; several
systems are restricted to models that do not include partial
ordering (Alford, Kuter, and Nau 2009; Behnke, Höller, and
Biundo 2018a; Schreiber et al. 2019); and some, like the one

by Shivashankar, Alford, and Aha (2017) even define an en-
tirely new type of hierarchical planning problems.

Even systems restricted to the maybe best-known and
most basic hierarchical formalism, called Hierarchical Task
Network (HTN) planning, do not share a common input lan-
guage, though the differences between the input languages
are sometimes rather subtle, e.g. between the formalisms
used by Alford et al. (2016a) and Bercher et al. (2017). To
the best of our knowledge, the hierarchical language intro-
duced for the first International Planning Competition (Mc-
Dermott et al. 1998) is not supported by any recent system.

The lack of a common language has several consequences
for the field. First, it makes the comparison between the sys-
tems tedious due to the translation process. Second – and
even more important – it makes the use of hierarchical plan-
ning from a practical perspective laborious, because it is not
possible to model a problem at hand and try which system
performs best on it. Selecting the system in beforehand (if
possible) requires much insights into the systems.

A common description language would make the compar-
ison of the systems easier, it could foster a common set of
supported features and result in a common benchmark set
the systems are evaluated on.

In this paper, we propose the Hierarchical Domain Defini-
tion Language (HDDL) as common input language for hier-
archical planning problems. It is widely based on the input
language of PANDA, the framework underlying the plan-
ning systems by Bercher et al. (2017), Höller et al. (2018;
2019), and Behnke, Höller, and Biundo (2018a; 2019a;
2019b). We define it as an extension of the STRIPS frag-
ment (language level 1) of the PDDL2.1 definition (Fox and
Long 2003). To concentrate on a set of features shared by
many systems, we restrict the language to basic HTN plan-
ning. However, we hope that the given definition is just the
starting point for further language extensions like the first
PDDL version in classical planning was.

We first introduce a lifted HTN formalism from the lit-
erature, before we define our language by example. We
go through new language elements, introduce their syntax
and meaning, discuss our design choices and differences
to approaches from the literature, namely PDDL1.2 (Mc-
Dermott et al. 1998), SHOP(2) (Nau et al. 2003),
ANML (Smith, Frank, and Cushing 2008), HPDDL (Al-
ford et al. 2016a), GTOHP (Ramoul et al. 2017), HTN-
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PDDL (González-Ferrer, Fernández-Olivares, and Castillo
2009), and HATP (de Silva, Lallement, and Alami 2015).

We then give a full EBNF syntax definition1 based on
the definition of PDDL2.1 and discuss every extension and
change. We conclude with a short outlook.

2 Lifted HTN Planning
In this section we formally define the problem class HDDL
can describe, i.e., standard HTN planning in line with the
text book description by Ghallab, Nau, and Traverso (2004).
To define the formal framework we extend the formalization
of Alford, Bercher, and Aha (2015a; 2015b).

Our lifted formalism is based upon a quantifier-free first-
order predicate logic L = (P, T, V, C) with the following
elements. P is a finite set of predicate symbols, each having
a finite arity. The arity defines its number of parameter vari-
ables (taken from V ), each having a certain type (defined in
T ). Thus, T is a finite set of type symbols as is also known
from PDDL. V is a finite set of typed variable symbols to be
used by the parameters of the predicates in P . C is a finite
set of typed constants. They are the syntactic representation
of the objects in the real world. Please be aware that a sin-
gle constant can have several types, e.g. truck and vehicle to
support a type hierarchy.

The basic data structure in HTN planning is a task net-
work. Task networks are partially ordered multi-sets of tasks.

In contrast to classical (non-hierarchical) planning, there
are two kinds of tasks in HTN planning: primitive and com-
pound ones. Task networks can contain both primitive tasks
(also called actions) and compound tasks (also called ab-
stract). Each task (primitive or compound) is given by its
name, followed by a parameter sequence. For instance, a
(primitive) task for driving from a source location ?ls to
a destination location ?ld is given by the first-order atom
drive(?ls, ?ld). We do not differentiate between the expres-
sions task and task names – both are used synonymously.

Definition 1 (Task Network). A task network tn over a set
of task names X (first-order atoms) is a tuple (I,≺, α,VC )
with the following elements:
1. I is a finite (possibly empty) set of task identifiers.
2. ≺ is a strict partial order over I .
3. α : I → X maps task identifiers to task names.
4. VC is a set of variable constraints. Each constraint can

bind two task parameters to be (non-)equal and it can
constrain a task parameter to be (non-)equal to a con-
stant, or to (not) be of a certain type.

The task identifiers are arbitrary symbols which serve as
place holders (or labels) for the actual tasks they represent.
We need these identifiers because any task can occur multi-
ple times within the same task network, but the partial order
needs to be able to differentiate between them. We call a
task network ground if all task parameters are bound to (or
replaced by) constants from C.

Task networks can contain primitive and/or compound
tasks. Primitive tasks are identical to actions known from

1Syntax definitions for the ANTLR and Bison parser generators
can be found online at www.uni-ulm.de/en/in/ki/panda.

classical planning. An action a is a tuple (name, pre, eff)
with the following elements: name is its task name, i.e., a
first-order atom such as drive(?ls, ?ld) consisting of the (ac-
tual) name followed by a list of typed parameter variables.
pre is its precondition, a first-order formula over literals over
L’s predicates. eff is its effect, a conjunction of literals over
L’s predicates (that are often divided into the positive eff+
and the negative effects eff−). All variables used in pre and
eff are demanded to be parameters of name. We also write
name(a), pre(a), and eff(a) to refer to these elements. We
also require that for each task name name(a) there exists
only a single action using it as its name (this way, names
can be used as unique identifiers).

A compound task is simply a task name, i.e., an atom.
In contrast to primitive tasks its purpose is not to induce a
state transition, but to reference a pre-defined mapping to
one or more task networks by which that compound task can
be refined. They do thus not use preconditions or effects.
However, there are many hierarchical planning formalisms
that do also feature preconditions and/or effects for com-
pound tasks (Bercher et al. 2016), but they are not within
the scope of this paper. The before-mentioned mapping from
compound tasks to pre-defined task networks is given by a
set of decomposition methods M . A decomposition method
m ∈ M is a tuple (c, tn,VC ) consisting of a compound
task name c, a task network tn, and a set of variable con-
straints VC . The variable constraints VC allow to specify
(co)designations between the parameters of c and those of
the task network tn.
Definition 2 (Planning Domain). A planning domain D is a
tuple (L, TP , TC ,M) defined as follows.
• L is the underlying predicate logic.
• TP and TC are finite sets of primitive and compound

tasks, respectively.
• M is a finite set of decomposition methods with compound

tasks from TC and task networks over the names TP ∪TC .
The domain implicitly defines the set of all states S, being

defined over all subsets of all ground predicates.
Definition 3 (Planning Problem). A planning problem P is
a tuple (D, sI , tnI , g), where:
• sI ∈ S is the initial state, a ground conjunction of posi-

tive literals over the predicates assuming the closed world
assumption.

• tnI is the initial task network that may not necessarily be
ground.

• g is the goal description, being a first-order formula over
the predicates (not necessarily ground).
HTN planning is not about finding courses of action

achieving a certain state-based goal definition, so it makes
perfect sense to specify no goal formula at all. We added
them anyway to be closer to the PDDL specification. Having
a goal formula in the input specification is more convenient
in case one actually wants to specify a goal, it has a clearly
defined semantics, and (since it can be compiled away (Geier
and Bercher 2011)) causes no problems to systems that do
not support it directly.

We still need to define the set of solutions for a given prob-
lem. Informally, solutions are executable, ground, primitive
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task networks that can be obtained from the problem’s initial
task network via applying decomposition methods, adding
ordering constraints, and grounding.

Lifted problems are a compact representation of their
ground instantiations that are, as in classical planning, up
to exponentially smaller (Alford, Bercher, and Aha 2015a;
2015b). However, we define solutions based on their ground-
ing. The semantics of such a lifted problem is thus defined
in terms of the standard semantics of its ground instantia-
tion. We assume that the reader is familiar with the ground-
ing process and refer to the paper by Alford, Bercher, and
Aha (2015a) for details about it. To the best of our knowl-
edge there are currently only two publications devoted to
grounding in more detail – by Ramoul et al. (2017)2 and by
Behnke et al. (2019b). We now give the required definitions
based on a ground problem and domain. Note that we do not
need to represent variable constraints anymore since their
constraints are already represented within the groundings.

Given ground problems/models we can now define exe-
cutability of task networks. Let A be the set of ground ac-
tions obtained from TP . An action a ∈ A is called exe-
cutable in a state s ∈ S if and only if s |= pre(a). The
state transition function γ : S × A → S is defined as in
classical planning: If a is executable in s, then γ(s, a) =
(s\eff −(a))∪eff +(a), otherwise γ(s, a) is undefined. The
extension of γ to action sequences, γ∗ : S ×A∗ → S is de-
fined straightforwardly.

Definition 4 (Executability). A task network tn = (I,≺, α)
is called executable if and only if there is a lineariza-
tion of its task identifiers i1, . . . , in, n = |I|, such that
α(i1), . . . , α(in) is executable in sI .

The means of transforming one task network into another
to obtain executable task networks is decomposition.

Definition 5 (Decomposition). Let m = (c, (Im,≺m, αm))
be a decomposition method, tn1 = (I1,≺1, α1) a task net-
work, and Im∩I1 = ∅ (the latter can be achieved by renam-
ing). Then, m decomposes a task identifier i ∈ I1 into a task
network tn2 = (I2,≺2, α2) if and only if α1(i) = c and

I2 = (I1 \ {i}) ∪ Im
≺2 = (≺1 ∪ ≺m∪

{(i1, i2) ∈ I1 × Im | (i1, i) ∈ ≺1} ∪
{(i1, i2) ∈ Im × I1 | (i, i2) ∈ ≺1})
\ {(i′, i′′) ∈ I1 × I1 | i′ = i or i′′ = i}

α2 = (α1 ∪ αm) \ {(i, c)}
Now we can formally define the solution criteria.

Definition 6 (Solutions). Let P = (D, sI , tnI , g) be a
planning problem with D = (L, TP , TC ,M) and tnS =
(IS ,≺S , αS). tnS is a solution to an HTN planning prob-
lem P if and only if

• There is a sequence of decompositions from tnI to tn =
(I,≺, α), such that I = IS , ≺ ⊆ ≺S , and α = αS

2Their procedure allows to delete effectless actions (Ramoul
et al. 2017), which is not allowed in standard HTN planning and
would e.g. invalidate the compilation for goal descriptions.

deliver(?p, ?ld)

get-to(?lp) pickup(?lp, ?p) get-to(?ld) drop(?ld, ?p)

get-to(?ld)

get-to(?li) drive(?li, ?ld)

get-to(?ld)

drive(?ls, ?ld)

get-to(?l)

∅

Figure 1: The method set of a simple transport domain. Ac-
tions are given as boxed nodes, abstract tasks are unboxed.
All methods are totally ordered. There exists a smaller,
equivalent model. However, the model has been created this
way to illustrate the different language features.

• tnS is primitive and has an executable action lineariza-
tion leading to a state s |= g.

3 HDDL by Example
In this section we explain our extensions to the PDDL def-
inition based on a transport domain. To keep the example
simple, the domain includes only a single transporter that
has to deliver one or more packages. For each new language
element we introduce its syntax and meaning and discuss the
way it is modeled in other input languages.

The predicate and type definition is the same as in PDDL:

1 (define (domain transport)
2 (:types location package - object)
3 (:predicates
4 (road ?l1 ?l2 - location)
5 ...)

All other languages except for HATP (de Silva, Lalle-
ment, and Alami 2015) use the same theoretical model of
objects and predicates as PDDL. HATP models its objects in
an object-oriented way instead and further allows for SAS+
variables (Bäckström and Nebel 1995) in the input language.

The full method set of the domain is illustrated in Fig-
ure 1. Each method will be discussed in this section.

The domain contains two abstract tasks deliver and
get-to. We propose to include an explicit definition of
abstract tasks as it is the case for actions. HPDDL (Al-
ford et al. 2016a) also defines abstract tasks explicitly, al-
beit with a slightly different syntax. Both ANML (Smith,
Frank, and Cushing 2008) and HTN-PDDL (González-
Ferrer, Fernández-Olivares, and Castillo 2009) require an
explicit declaration of abstract tasks and their parameter
types as well, but here the declaration is not separated from
other elements of the domain as both declare methods to-
gether with their abstract tasks.

Some description languages for HTN problems define ab-
stract tasks only in an implicit way by their use in methods.
This includes the language used by SHOP and SHOP2 (Nau
et al. 2003), PDDL1.2 (McDermott et al. 1998), HATP, as
well as GTOHP (Ramoul et al. 2017). SHOP and GTOHP
assume that any task that is used in a method, but is not
declared to be an action is an abstract task. In contrast,
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PDDL1.2 assumes that every task that has no methods is
primitive. This way of implicitly defining the set of com-
pound tasks has also been chosen in some formal defini-
tions of hierarchical problem classes (Alford, Bercher, and
Aha 2015a; 2015b). However, this can be very cumbersome
when debugging domains. If the modeler forgot to define a
specific primitive task, the domain will still be valid, as it
would be interpreted as an abstract task.

Another problem with such a definition is that the ar-
gument types are defined implicitly, namely as those with
which the task can be instantiated via any method. The lan-
guage of GTOHP further does not allow for using different
types (that share a common ancestor in the type hierarchy) to
be used for the same task. For example, there might be dif-
ferent methods for the deliver task, depending on the type
of transported package. deliver might have two methods,
one where the first argument is of type regularPackage and
one where it is of type valuablePackage , the latter requir-
ing an armored transporter. We assume that regularPackage
and valuablePackage are disjunct types, but have a com-
mon super-type package , which would be the correct pa-
rameter type for deliver ’s first argument. If its type is not
declared explicitly, the planner can either reject the domain,
as GTOHP does, or would have to infer the possible types of
the arguments of an abstract task.

Declaring abstract tasks and their parameter types explic-
itly is also in line with the design choices of PDDL. Similar
to abstract tasks, PDDL could omit the explicit definition of
predicates as their types could be inferred from their usages.
This is however discouraged from a modeling point-of-view.

Omitting the distinct definition of tasks and methods
would also mean a significant deviation from the contempo-
rary theoretical work on HTN planning. It could hinder fur-
ther language extensions like annotating abstract tasks with
constraints, e.g. preconditions and effects, as done by a cou-
ple of systems (see e.g. the survey by Bercher et al., 2016).

Here is the abstract task definition for the example:

6 (:task deliver :parameters (?p - package
?l - location))

7 (:task get-to :parameters (?l - location))

There is only a single method in the model to decompose
deliver tasks (given at the top of Figure 1). It decomposes
the task into four ordered sub-tasks: getting to the package,
picking it up, getting to its final position, and dropping the
package. The definition in HDDL could look like this:

8 (:method m-deliver
9 :parameters (?p - package

?lp ?ld - location)
10 :task (deliver ?p ?ld)
11 :ordered-subtasks (and
12 (get-to ?lp)
13 (pick-up ?ld ?p)
14 (get-to ?ld)
15 (drop ?ld ?p)))

The method definition starts with the name of the method
that can e.g. be used to describe the decompositions needed
to find a solution. We decided to give the method’s param-
eters explicitly (line 9). This allows e.g. to restrict the types

used in the subtasks and the decomposed task to subtypes
of the original task parameters. Similarly, we can restrict
the method to be applicable only to certain parameters of
the abstract task it decomposes. To be correctly defined, we
assume these parameters to be a superset of all parameters
used in the entire method definition. The parameter defini-
tion is followed by the specification of the abstract task de-
composed by the method as well as its parameters (line 10).

The same syntactical structure is used by HPDDL. In con-
trast, ANML, PDDL1.2, HATP and HTN-PDDL aggregate
all decomposition methods belonging to a single abstract
task, which have to be declared as part of the definition of
an abstract task. As such, the variables that are declared as
the arguments of an abstract task are automatically variables
in a methods’ task network. All of them type variables in
methods explicitly.

In GTOHP’s language, methods don’t have names, but are
identified via the abstract task they refine.

In SHOP, all variables inside a method are only defined
implicitly by their usage as parameters of tasks and pred-
icates inside the method. For example, the definition of a
SHOP method starts with :method followed by an ab-
stract task and its parameters – which if they are variables
are automatically declared as new (untyped) variables. The
same holds for variables that only occur as parameters of
a method’s subtasks. GTOHP and HTN-PDDL follow this
pattern, but enforce that the parameters of the abstract task
are typed, i.e., declared explicitly. Their languages however
do not allow to specify the types of variables that occur in the
method that are not parameters of the abstract task. Declar-
ing the variables is, again, in line with the PDDL standard
and e.g. done the same way in actions. We think it less error-
prone. When the modeler explicitly defines the variables and
their types, the system can check the compatibility of types
and warn the modeler when undeclared variables are used
(e.g. due to a spelling error).

The subtasks of the method are given afterwards (start-
ing in line 11). We decided to have two keywords to start
the definition :ordered-subtasks (as given here) and
:subtasks (which we will show in the next method).
When the :ordered-subtasks keyword is used, the
given list of subtasks is supposed to be totally ordered.
HPDDL uses the keyword :tasks, which might cause er-
rors if mixed up with the :task keyword. Since GTOHP
does only support totally-ordered HTN planning problems,
their language only allows for specifying sequences of ac-
tions with the keyword :expansion.

In the subtask section, all abstract tasks and actions de-
fined in the domain can be used as subtasks (and only these).
The variables defined in the method’s parameter section and
the constants defined in the domain may be used as parame-
ters (and only these).

The get-to task from our example domain is again ab-
stract and may be decomposed by using one of the three
methods given at the bottom of Figure 1. We start with the
left one that is used when there is no direct road connection.
Then the transporter needs to go to the final location ?ld
via some intermediate location ?li. Therefore the method
decomposes the task into another abstract get-to task, fol-
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lowed by a drive action with the destination location ?ld.

16 (:method m-drive-to-via
17 :parameters (?li ?ld - location)
18 :task (get-to ?ld)
19 :subtasks (and
20 (t1 (get-to ?li))
21 (t2 (drive ?li ?ld)))
22 :ordering (and
23 (t1 < t2)))

Line 19 shows the aforementioned :subtask definition
that allows for partially ordered tasks. The task definition
contains IDs that can be used to define ordering constraints
(line 22). They consist of a list of individual ordering con-
straints between subtasks. However, in the given example
the resulting ordering is, again, a total order (and is just de-
fined that way to demonstrate this kind of definition).

HPDDL uses the same keyword, but with a slightly dif-
ferent syntax so specify ordering constraints. The format
omits the and and the < signs. We would argue that our
notation is better readable to humans. As stated above,
GTOHP cannot specify partial orders. ANML is primarily
designed for temporal domains and uses a temporal syntax,
e.g. end(t1) < start(t2). SHOP2 and HTN-PDDL
use a different approach to represent the task ordering. In-
stead of specifying individual ordering constraints, they re-
quire to specify the order as a single expression. This expres-
sion is a nested definition of the ordering, which can only
contain two constructors: ordered and unordered. In
SHOP2, e.g. ((:unordered (t1 t2) t3) t4) cor-
responds to the ordering constraints t1 < t2, t2 < t4,
and t3 < t4. Note that this construction cannot express all
possible partially-ordered sets of tasks. Consider an order-
ing over five task identifiers t1, . . . , t5, where t1 < t4,
t2 < t4, t2 < t5, and t3 < t5. This ordering cannot
be expressed with SHOP’s nested ordered/unordered con-
structs. PDDL1.2 also uses this mode as a default, but does
with an additional requirement also allow for an order spec-
ification as we and HPDDL do. Notably PDDL1.2 inter-
twines the definition of a method’s subtasks and the defi-
nition of their order. The syntax of PDDL1.2 to specify the
contents of methods and the order of tasks in them is some-
what convoluted and not easily readable. Thus, we have not
adapted their syntax.

HATP uses a programming-language-style syntax for the
encoding of methods. It further provides explicit means to
determine the order in which groundings of methods should
be explored during progression search. HATP’s syntax for
methods allows for specifying partial order, but its semantics
is different from standard HTN planning. A HATP method
containing partial order is interpreted as multiple totally-
ordered method, one for each linearization of the given par-
tial order. This allows for a more compact representation,
but prohibits task interleaving.

HDDL – as HPDDL, SHOP2, HTN-PDDL, and ANML
– only allow to specify a fixed set of ordering constraints.
Notably, the HTN planner UMCP (Erol, Hendler, and Nau
1994) allows for arbitrary formulae that specify these order-
ings. E.g. they allow to specify an ordering (t1 ≺ t2) =⇒
(t3 ≺ t4). We have not included such a generic means to for-

mulate ordering constraints into HDDL as they do not seem
to be used and supported by any current HTN planning sys-
tem. In principle however, HDDL could be extended to sup-
port such complex ordering constraints.

A common feature of many HTN planning systems is the
possibility of specifying state-based preconditions for meth-
ods as supported by the SHOP2 system. The feature is some-
what problematic. First, because it is (at least from our ex-
perience) usually used to guide the search and thus often
breaks with the philosophy of PDDL to specify a model that
does not include advice. The second problem is the way it
is usually realized in the HTN planning systems: The sys-
tems introduce a new primitive task that holds the method’s
preconditions. It is added to the method and placed before
all other tasks in the method’s subtask network. Consider a
totally ordered domain (i.e., the subtasks of all methods and
the initial task network are totally ordered): here, the action
is executed directly before the other subtasks of the method
and the position where the preconditions are checked is fine.
Now consider a partially ordered domain: here, the newly in-
troduced action is not necessarily placed directly before the
other subtasks, but we just know that it is placed somewhere
before, i.e., the condition did hold at some point before the
other tasks are executed, but may have changed meanwhile.
However, though we are aware of these problems, the fea-
ture is often used and thus we integrated it and assume the
standard semantics as given above.

The preconditions are defined as follows:

24 (:method m-already-there
25 :parameters (?l - location)
26 :task (get-to ?l)
27 :precondition (tAt ?l)
28 :subtasks ())

Here the method may be applied in a state where the trans-
porter is already located at its destination. The given method
has therefore no subtasks, but still has to assure that the
transporter is at its destination.

Method preconditions are typically featured in lan-
guages expressing HTNs. HPDDL uses the same syntax
we are proposing. GTOHP uses, as noted above, a separate
:constraints section, where the method precondition
has to be specified as a before constraint. This is (presum-
ably) to allow for other state constraints later on. PDDL1.2
also features method preconditions, but they are specified
as part of the task network. In ANML, there is no explicit
means for writing down method preconditions, but they can
be encoded into the state constraints allowed by ANML.

There is a strong contrast between what can be expressed
in SHOP3 and all other HTN formats. In SHOP, several
methods for the same abstract task can be arranged in a sin-
gle method declaration, each featuring its own method pre-
condition. For the ith method to be usable, it is not suffi-
cient that its precondition is satisfied. In addition, the pre-
conditions of all previous methods have to be not satisfied

3This potentially also applies to HTN-PDDL, as they use a sim-
ilar syntax. Their description is unfortunately not explicit on the
critical point in semantics (González-Ferrer, Fernández-Olivares,
and Castillo 2009).
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as well. Thus SHOP’s method preconditions are in essence
a chain of if-else constructs. This structure can be compiled
into several individual methods with preconditions. In case
one of the preconditions contains an existential quantifier (or
in SHOP’s case a free variable) this leads to universal quan-
tified preconditions in the methods after it. Nevertheless we
propose to drop the ability to use such if-else chains, most
notably, since none of the newer languages supports it. Fur-
ther, this kind of if-else is essentially a means to guide a
depth-first search planner in an efficient way. Thus it does
not constitute physics of the domain, but advice to the plan-
ner, which should not be part of the domain description lan-
guage for a domain-independent planner.

In addition to method preconditions, HPDDL features
method effects, which are modeled after SHOP2’s assert and
retract functionality. Method effects are executed in the state
in which the method preconditions are evaluated. As far as
we know, their formal semantics is not defined in any publi-
cation. We propose to drop this feature (at least for the given
definition intended to be the core language). It is not com-
monly used and might be difficult to use for newcomers to
HTN planning. Note that even without method effects in the
description language, we can still simulate them with addi-
tional actions in the methods’ definitions.

Sometimes it might be useful to define constraints in a
method, e.g. on its variables or sorts. This is demonstrated
in the following example where the transporter’s source po-
sition must be different from its destination.

29 (:method m-direct
30 :parameters (?ls ?ld - location)
31 :task (get-to ?ld)
32 :constraints
33 (not (= ?li ?ld))
34 :subtasks (drive ?ls ?ld))

We are aware that PDDL allows for variable constraints in
the precondition of actions. Due to consistency we also ar-
gue to allow this when method preconditions are specified.
However, many HTN models are defined without methods
that have preconditions and we think it not intuitive to spec-
ify a precondition section solely to define variable con-
straints. Furthermore, we think that other constraints apart
from simple variable constraints might be added to the stan-
dard. These might, e.g., be constants that certain state fea-
tures must hold between two tasks, or directly before some
task. Therefore we integrated a constraint section to the
method definition (line 32f) though our current definition
only allows for equality and inequality constraints.

HPDDL places the variable constraints of a method
into the method’s preconditions. In addition to equal-
ity and inequality it features type constraints, where e.g.
(valuablePackage ?p) is the constraint that ?p be-
longs to the type valuablePackage. GTOHP allows
for equality and inequality constraints that are also within
the :constraints section, but are located in a separate
before block. In SHOP’s syntax, variable constraints have
to be compiled into method preconditions referring to pred-
icates for the individual types and an explicitly declared
equals predicate. ANML also allows for variable con-
straints that can be declared freely inside a method.

We left the action definition unchanged compared to the
PDDL standard we build on. Therefore we included only the
following action into our example.

35 (:action drive
36 :parameters (?l1 ?l2 - location)
37 :precondition (and
38 (tAt ?l1)
39 (road ?l1 ?l2))
40 :effect (and
41 (not (tAt ?l1))
42 (tAt ?l2)))
43 ...)

The problem file is slightly adapted to represent the addi-
tional elements necessary for HTN panning (line 6).

1 (define (problem p)
2 (:domain transport)
3 (:objects
4 city-loc-0 city-loc-1 city-loc-2 -

location
5 package-0 package-1 - package)
6 (:htn
7 :tasks (and
8 (deliver package-0 city-loc-0)
9 (deliver package-1 city-loc-2))

10 :ordering ()
11 :constraints ())
12 (:init
13 (road city-loc-0 city-loc-1)
14 (road city-loc-1 city-loc-0)
15 (road city-loc-1 city-loc-2)
16 (road city-loc-2 city-loc-1)
17 (at package-0 city-loc-1)
18 (at package-1 city-loc-1)))

The section starts with a keyword that specifies the prob-
lem class. In this example, it starts with :htn to define a
standard HTN planning problem. However, there are several
other problem classes in hierarchical planning. An example
for such a class is HTN planning with task insertion, where
the planner is allowed to insert tasks apart from the hier-
archy. An overview of hierarchical problem classes can be
found in the survey by Bercher, Alford, and Höller (2019).
Some of the described problem classes are even syntactically
equivalent to standard HTN planning problems and only dif-
fer in their solution criteria. By making the specification of
the problem class explicit, extensions to the language can
easily add new classes.

The definition of the initial task network is nested in this
section. It has the same form as the methods’ subtask net-
works. The other description languages for HTN planning
also allow for a similar definition of the initial plan. Again,
all of them use a slightly different syntax to describe them.

In the given example, the planning process is started with
two deliver tasks, one for each package. These initial tasks
are not ordered with respect to each other, i.e., their subtasks
may be executed interleaved.

In the original PDDL standard, the domain designer has
to specify a state-based goal. HTN planning problems do
not require such a goal and thus often do not specify one.
Therefore we made its definition optional.
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4 Full Syntax Definition
We defined our syntax as close as possible to the STRIPS
part (i.e., language level 1) of the PDDL 2.1 language defi-
nition of Fox and Long (2003). Wide parts of the following
definition are identical to their definition. Changes and ex-
tensions are discussed in the following.

The domain definition has been extended by definitions
for compound tasks (line 6) and methods (line 7).

1 <domain> ::= (define (domain <name>)
2 [<require-def>]
3 [<types-def>]:typing

4 [<constants-def>]
5 [<predicates-def>]
6 <comp-task-def>*
7 <method-def>*
8 <action-def>*)

The definition of the basic elements is nearly unchanged.

9 <require-def> ::=
(:requirements <require-key>+)

10 <require-key> ::= ...
11 <types-def> ::= (:types <types>+)
12 <types> ::= <typed list (name)>

| <base-type>
13 <base-type> ::= <name>
14 <constants-def> ::=

(:constants <typed list (name)>)
15 <predicates-def> ::=

(:predicates <atomic-formula-skeleton>+)
16 <atomic-formula-skeleton> ::=

(<predicate> <typed list (variable)>)
17 <predicate> ::= <name>
18 <variable> ::= ?<name>
19 <typed list (x)> ::= x+ - <type>

[<typed list (x)>]
20 <primitive-type> ::= <name>
21 <type> ::= (either <primitive-type>+)
22 <type> ::= <primitive-type>

The only change concerns the definition of
<types-def> (lines 11 and 13) in combination with
the definition of <typed list (name)> (line 19). In
the PDDL2.1 standard, this can be realized by a list of
names, e.g. in an untyped way. Our intention was to enforce
a typed model and therefore allow for untyped elements
only in the type definition. There, it is necessary to define
the base type(s). In every other definition that includes
<typed list (name)> (e.g. parameter and constant
definitions), we wanted to enforce a typed list.

Abstract tasks are defined similar to actions.

23 <comp-task-def> ::= (:task <task-def>)
24 <task-def> ::= <task-symbol>

:parameters (<typed list (variable)>)
25 <task-symbol> ::= <name>

In a standard HTN setting, methods consist of a parame-
ter list (line 27), the abstract task they decompose (line 28),
and the resulting task network (line 30). The parameters of
a method are supposed to include all parameters of the ab-
stract task that it decomposes and those of the tasks in its
network of subtasks.

By setting the :htn-method-prec requirement, one
might use method preconditions (line 29).

26 <method-def> ::= (:method <name>
27 :parameters (<typed list (variable)>)
28 :task (<task-symbol> <term>*)
29 [:precondition <gd>]:htn−method−prec

30 <tasknetwork-def>)

The definition of task networks is used in method def-
initions as well as in the problem definition to define the
initial task network. It contains the definition of sub-tasks
(line 32), ordering constraints (line 33), and variable con-
straints (line 34) between any method parameters.

When the key :ordered-subtasks is used, the net-
work is regarded to be totally ordered. In the other cases,
ordering relations may be defined explicitly. This is done by
including ids into the task definition that can then be refer-
enced in the ordering definition.

31 <tasknetwork-def> ::=
32 [:[ordered-][sub]tasks

<subtask-defs>]
33 [:order[ing] <ordering-defs>]
34 [:constraints <constraint-defs>]

We use the same syntax definition for method subnetworks
and the initial task network. Here, the keyword subtasks
would seem odd. Therefore the syntax also allows for the
keys tasks and ordered-tasks (line 32) that are sup-
ported to be used in the initial task network.

The subtask definition may contain one or more subtasks.
A single task consists of a task symbol and a list of param-
eters. In case of a method’s subnetwork, these parameters
have to be included in the method’s parameters, in case of
the initial task network, they have to be defined as constants
in s0 or in a dedicated parameter list (see definition of the
initial task network, line 82). The tasks may start with an id
that can be used to define ordering constraints.

35 <subtask-defs> ::= () | <subtask-def>
| (and <subtask-def>+)

36 <subtask-def> ::= (<task-symbol> <term>*)
| (<subtask-id> (<task-symbol> <term>*))

37 <subtask-id> ::= <name>

The ordering constraints are defined via the task ids. They
have to induce a partial order.

38 <ordering-defs> ::= () | <ordering-def>
| (and <ordering-def>+)

39 <ordering-def> ::=
(<subtask-id> "<" <subtask-id>)

So far we only included variable constraints into the con-
stant section, but the definition might be extended in further
language levels, of course.

40 <constraint-defs> ::= () | <constraint-def>
| (and <constraint-def>+)

41 <constraint-def> ::= ()
| (not (= <term> <term>))
| (= <term> <term>)

The original action definition of PDDL has been split to
reuse its body in the task definition.
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42 <action-def> ::= (:action <task-def>
43 [:precondition <gd>]
44 [:effects <effect>])

We restricted the definition of preconditions and effects to
level 1, i.e., the STRIPS part of the overall language.

45 <gd> ::= ()
46 <gd> ::= <atomic formula (term)>
47 <gd> ::=:negative-preconditions <literal (term)>
48 <gd> ::= (and <gd>*)
49 <gd> ::=:disjunctive-preconditions (or <gd>*)
50 <gd> ::=:disjunctive-preconditions (not <gd>)
51 <gd> ::=:disjunctive-preconditions (imply <gd> <gd>)
52 <gd> ::=:existential-preconditions

(exists (<typed list (variable)>*) <gd>)
53 <gd> ::=:universal-preconditions

(forall (<typed list (variable)>*) <gd>)
54 <gd> ::= (= <term> <term>)
55 <literal (t)> ::= <atomic formula(t)>
56 <literal (t)> ::= (not <atomic formula(t)>)
57 <atomic formula(t)> ::= (<predicate> t*)
58 <term> ::= <name>
59 <term> ::= <variable>
60 <effect> ::= ()
61 <effect> ::= (and <c-effect>*)
62 <effect> ::= <c-effect>
63 <c-effect> ::=:conditional-effects

(forall (<variable>*) <effect>)
64 <c-effect> ::=:conditional-effects

(when <gd> <cond-effect>)
65 <c-effect> ::= <p-effect>
66 <p-effect> ::= (not <atomic formula(term)>)
67 <p-effect> ::= <atomic formula(term)>
68 <cond-effect> ::= (and <p-effect>*)
69 <cond-effect> ::= <p-effect>

The problem definition includes as additional element the
initial task network (line 74). Since a state-based goal def-
inition is often not included in HTN planning, we made it
optional (line 76).

70 <problem> ::= (define (problem <name>)
71 (:domain <name>)
72 [<require-def>]
73 [<p-object-declaration>]
74 [<p-htn>]
75 <p-init>
76 [<p-goal>])
77 <p-object-declaration> ::=

(:objects <typed list (name)>)
78 <p-init> ::= (:init <init-el>*)
79 <init-el> ::= <literal (name)>
80 <p-goal> ::= (:goal <gd>)

The initial task network contains the definition of the
problem class (line 81). In this first definition we only in-
cluded standard HTN planning.

81 <p-htn> ::= (<p-class>
82 [:parameters (<typed list (variable)>)]
83 <tasknetwork-def>)
84 <p-class> ::= :htn

Our overall definition includes two new requirement flags:

• :htn requires the applied system needs to support HTN
planning at all, so this can be seen as the basic require-
ment for the language defined here.

• :htn-method-prec requires the applied system
needs to support method preconditions.

5 Discussion
We consider the language proposed in this paper as a first
step towards a standardized language for hierarchical plan-
ning problems and hope that it helps to find a minimal set of
features supported by the diverse systems. However, this ba-
sic feature set as well as many design options are still open
and have to be discussed in the research community.

First of all, we think it is important to remain as close as
possible to PDDL and to reuse its features to allow domain
modelers to create both hierarchical and non-hierarchical
problems with minimal learning effort. Then, we must de-
cide which features have to be at the core of the language,
and which ones are secondary and possibly could be ig-
nored. This is especially important to establish a competi-
tion to compare the performance of different systems (see
the proposal by Behnke et al. (2019a)).

A feature that was present in the early HTN formalisms
(see e.g. the formalism by Erol, Hendler, and Nau, (1994))
is the possibility to define more elaborated constraints in
task networks. Recent work in hierarchical planning was
not based on such a rich definition language, but on rather
minimalistic formalisms like the one introduced by Geier
and Bercher, (2011). In this first definition we only included
the very basic constraints: ordering constraints, variable con-
straints, and method preconditions. However, we think that
a constraint set as given in PDDL3 might be a nice extension
beneficial for domain designers. When the community wants
to foster application in real world domains, it may be neces-
sary to integrate support for numbers and time into the plan-
ning systems. Since our definition builds upon the PDDL2.1,
at least the extension of the syntax in that direction could
easily be done. Another possible extension is the support for
preconditions and effects in the definition of abstract tasks
(see Bercher et al. (2016) for an overview of that feature).

Beside new features, it might be interesting to include
new problem classes like HTN planning with task insertion,
decompositional planning, or HGN planning, which comes
with the ability to decompose not tasks, but also goals (Shiv-
ashankar et al. 2012) and that even has been combined with
task decomposition (Alford et al. 2016b).

6 Conclusion
We propose a common description language for hierarchical
planning problems. We argue that the core feature set under-
lying many hierarchical planners from the last years is that
of HTN planning and introduced its elements as an extension
of PDDL. We defined the language in a way that can easily
be extended by further features as has been done in PDDL.
We introduced our novel language elements “by example”
and discussed our design choices, the syntax used in related
work, and the proposed meaning. We gave a full syntax def-
inition afterwards and discussed the extensions and changes
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to the PDDL standard. We hope that a common input lan-
guage may foster the cooperation between groups working
in hierarchical planning, the comparison of different hierar-
chical planning systems, and the application on real prob-
lems, because it enables an easy exchange of the planning
system used for a given problem.
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Abstract

Hierarchical Task Networks (HTN) generate plans us-
ing a decomposition process guided by extra domain
knowledge to guide search towards a planning task.
While many HTN planners can make calls to external
processes (e.g. to a simulator interface) during the de-
composition process, this is a computationally expen-
sive process, so planner implementations often use such
calls in an ad-hoc way using very specialized domain
knowledge to limit the number of calls. Conversely,
the few classical planners that are capable of using ex-
ternal calls (often called semantic attachments) during
planning do so in much more limited ways by gener-
ating a fixed number of ground operators at problem
grounding time. In this paper we develop the notion
of semantic attachments for HTN planning using semi
co-routines, allowing such procedurally defined predi-
cates to link the planning process to custom unifications
outside of the planner. The resulting planner can then
use such co-routines as part of its backtracking mecha-
nism to search through parallel dimensions of the state-
space (e.g. through numeric variables). We show empir-
ically that our planner outperforms the state-of-the-art
numeric planners in a number of domains using mini-
mal extra domain knowledge.

Introduction
Planning in domains that require numerical variables, for
example, to drive robots in the physical world, must rep-
resent and search through a space defined by real-valued
functions with a potentially infinite domain, range, or both.
This type of numeric planning problem poses challenges in
two ways. First, the description formalisms (Fox and Long
2003) might not make it easy to express the numeric func-
tions and its variables, resulting in a description process
that is time consuming and error-prone for real-world do-
mains (Strobel and Kirsch 2014). Second, the planners that
try to solve such numeric problems must find efficient strate-
gies to find solutions through this type of state-space. Previ-
ous work on formalisms for domains with numeric values
developed the Semantic Attachment (SA) construct (Dorn-
hege et al. 2009) in classical planning. Semantic attachments
were coined by (Weyhrauch 1981) to describe the attach-
ment of an interpretation to a predicate symbol using an ex-
ternal procedure. Such construct allows the planner to reason

about fluents where numeric values come from externally
defined functions. In this paper, we extend the basic notion
of semantic attachment for HTN planning by defining the
semantics of the functions used as semantic attachments in
a way that allows the HTN search and backtracking mecha-
nism to be substantially more efficient. Our current approach
focused on depth-first search HTN implementation without
heuristic guidance, with free variables expected to be fully-
ground before task decomposition continues.

Most planners are limited to purely symbolic opera-
tions, lacking structures to optimize usage of continuous re-
sources involving numeric values (Gerevini, Saetti, and Se-
rina 2008). Floating point numeric values, unlike discrete
logical symbols, have an infinite domain and are harder to
compare as one must consider rounding errors. One could
overcome such errors with delta comparisons, but this solu-
tion becomes cumbersome as objects are represented by sev-
eral numeric values which must be handled and compared
as one, such as points or polygons. Planning descriptions
usually simplify such complex objects to symbolic values
(e.g. p25 or poly2) that are easier to compare. Detailed nu-
meric values are ignored during planning or left to be de-
cided later, which may force replanning (Şucan and Kavraki
2011). Instead of simplifying the description or doing mul-
tiple comparisons in the description itself, our goal is to
exploit external formalisms orthogonal to the symbolic de-
scription. To achieve that we build a mapping from symbols
to objects generated as we query semantic attachments. Se-
mantic attachments have already been used in classical plan-
ning (Dornhege et al. 2009) to unify values just like predi-
cates, and their main advantage is that new users do not need
to discern between them and common predicates. Thus, we
extend classical HTN planning algorithms and their formal-
ism to support semantic attachment queries. While external
function calls map to functions defined outside the HTN de-
scription, we implement SAs as semi co-routines (Dahl, Di-
jkstra, and Hoare 1972), subroutines that suspend and re-
sume their state, to iterate across zero or more values pro-
vided one at a time by an external implementation, mitigat-
ing the potentially infinite range of the external function.

Our contributions are threefold. First, we introduce SAs
for HTN planning as a mechanism to describe and evaluate
external predicates at execution time. Second, we introduce
a symbol-object table to improve the readability of symbolic
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descriptions and the plans generated, while making it easier
to handle external objects and structures. Finally, we em-
pirically compare the resulting HTN planner with a mod-
ern classical planner (Ilghami and Nau 2003) in a number of
mixed symbolic/numeric domains showing substantial gains
in speed with minimal domain knowledge.

Background
Classical Planning
Classical planning algorithms must find plans that transform
properties of the world from an initial configuration to a goal
configuration. Each property is a logical predicate, a tuple
with a name and terms that relate to objects of the world. A
world configuration is a set of such tuples, which is called a
state. To modify a state one must apply an operator, which
must fulfill certain predicates at the current state, as precon-
ditions, to add and remove predicates, the effects. Each op-
erator applied creates a new intermediate state. The set of
predicates and operators represent the domain, while each
group of objects, initial and goal states represent a prob-
lem within this domain. In order to achieve the goal state
the operators are used as rules to determine in which or-
der they can be applied based on their preconditions and ef-
fects. To generalize the operators and simplify description
one can use free variables to be replaced by objects avail-
able, a process called grounding. Once a state that satisfies
the goal is reached, the sequence of ground operators is the
plan (Nebel 2000). A plan is optimal, iff it achieves the best
possible quality in some criteria, such as number of opera-
tors, time or effort to execute; or satisficing if it reaches the
goal without optimizing any metrics. PDDL (McDermott et
al. 1998) is the standard description language to describe do-
mains and problems, with features added through require-
ments that must be supported by the planner. Among such
features are numeric-valued fluents to express numeric as-
signments and updates to the domain, as well as events and
processes to express effects that occur in parallel with the
operators in a single instant or during a time interval.

Hierarchical Task Networks
Hierarchical planning shifts the focus from goal states to
tasks to exploit human knowledge about problem decom-
position using a hierarchy of domain knowledge recipes as
part of the domain description (Nau et al. 1999). This hi-
erarchy is composed of primitive tasks that map to opera-
tors and non-primitive tasks, which are further refined into
sub-tasks using methods. The decomposition process is re-
peated until only primitive-tasks mapping to operators re-
main, which results in the plan itself. The goal is implicitly
achieved by the plan obtained from the decomposition pro-
cess. If no decomposition is possible, the task fails and a new
expansion is considered one level up in the hierarchy, until
there are no more possible expansions for the root task, only
then a task decomposition is considered unachievable. Un-
like classical planning, hierarchical planning only considers
tasks obtained from the decomposition process to solve the
problem, which both limits the ability to solve problems and
improves execution time by evaluating a smaller number of

operators. The HTN planning description is more complex
than equivalent classical planning descriptions, since it in-
cludes domain knowledge with potentially recursive tasks,
being able to solve more problems than classical planning.

Symbolic-Geometric Planning
Classical planners with heuristic functions can solve prob-
lems mixing symbolic and numeric values efficiently using
a process of discretization. A discretization process converts
continuous values into sets of discrete symbols at often pre-
defined granularity levels that vary between different do-
mains. However, if the discretization process is not possible,
one must use a planner that also supports numeric features,
which requires another heuristic function, description lan-
guage and usually more computing power due to the number
of states generated by numeric features. Numeric features
are especially important in domains where one cannot dis-
cretize the representation, they usually appear in geometric
or physics subproblems of a domain and cannot be avoided
during planning. Unlike symbolic approaches where liter-
als are compared for equality during precondition evalua-
tion, numeric value comparison is non-trivial. To avoid do-
ing such comparison for every numeric value the user is left
responsible for explicitly defining when one must consider
rounding errors, which impacts description time and com-
plexity. For complex object instances (in the object-oriented
programming sense), such as polygons that are made of
point instances, comparison details in the description are
error-prone. Details such as the order of polygon points and
floating point errors in their coordinates are usually irrele-
vant for the planner and the domain designer and should not
be part of the domain description as they are part of a low-
level specification.

Such low-level specifications can be implemented by ex-
ternal function calls to improve what can be expressed and
computed by a HTN planner. Such functions come with dis-
advantages, as they are not expected to keep an external
state, returning a single value solely based on the provided
parameters. While HTN planners can abstract away the nu-
meric details via external function calls, there are limitations
to this approach if a particular function is used in a decom-
position tree where it is expected to backtrack and try new
values from the function call (i.e. if the function is meant
to be used to generate multiple terms as part of the search
strategy). An external function must return a list of values to
account for all possible decompositions so the planner tries
one at a time until one succeeds. Generating a complete list
is too costly when compared to computing a single value,
as the first value could be enough to find a feasible plan.
A semantic attachment, on the other hand, acts as an exter-
nal predicate that unifies with one possible set of values at
a time, rather than storing a complete list of possible sets of
values to be stored in the state structure. This implementa-
tion saves time and memory during planning, as only back-
tracking causes the external co-routine to resume generating
new unifications until a plan (or a certain amount of plans) is
found. Each SA acts as a black box that simulates part of the
environment encoding the results in state variables that are
often orthogonal to other predicates (Francès et al. 2017).
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Figure 1: Symbolic and external layers share information
through an intermediate layer that maps representations and
calls between them.

While common predicates are stored in a state structure,
SAs are computed at execution time by co-routines. With
a state that is not only declarative, with parts being procedu-
rally computed, it is possible to minimize memory usage and
delegate complex state-based operations to external methods
otherwise incompatible or too complex for current planning
description languages and planners that require grounding.

We abstract away the numeric parts of the planning pro-
cess encoded through SAs in a layer between the symbolic
planner and external libraries. We leverage the abstract ar-
chitecture of Figure 1 with three layers inspired by the work
of de Silva and Meneguzzi (2015). In the symbolic layer
we manipulate an anchor symbol as a term, such as poly-
gon1, while in the external layer we manipulate a Polygon
instance with N points as a geometric object based on what
the selected external library specifies. With this approach
we avoid complex representations in the symbolic layer. In-
stances created by the external layer that must be exposed
to the symbolic layer are compared with stored object in-
stances to reuse a previously defined symbol or create a new
one, i.e. always represent position 〈2,5〉 with p1. This pro-
cess makes symbol comparison work in the planning layer
even for symbols related to complex external objects. The
symbol-object table is also used to transform symbols into
usable object instances by external function calls and SAs.
Such table is global and consistent during the planning pro-
cess, as each unique symbol will map the same internal ob-
ject, even if such symbol is discarded in one decomposition
branch. Once operations are finished in the external layer the
process happens in reverse order, objects are transformed
back into symbols that are exposed by free variables. The
intermediate layer acts as the foreign function interface be-
tween the two layers, and can be modified to accommodate
another external library without modifications to the sym-
bolic description.

SAs can work as interpreted predicates (Mohr et al. 2018),
evaluating the truth value of a predicate procedurally, and
also grounding free variables. SAs are currently limited to be
used as method preconditions, which must not contain dis-
junctions. As only conjunctions and negations are allowed,
one can reorder the preconditions during the compilation
phase to improve execution time, removing the burden of the
domain designer to optimize a mostly declarative descrip-
tion by hand, based on how free variables are used as SA

Listing 1: Abstract method with SAs among preconditions.
(:attachments (sa1 ?a ?b) (sa2 ?a ?b))
(:method (m ?t1 ?t2)

label
(; preconditions

(call != ?t1 ?t2) ; no dependencies
(call != ?fv1 ?fv2) ; ?fv1 and ?fv2 dependencies
(sa1 ?t1 ?fv1) ; no dependencies, ground ?fv1
(pre1 ?t1 ?t2) ; no dependencies
(sa2 ?fv1 ?fv2) ; ?fv1 dependency, ground ?fv2
(pre2 ?fv3 ?fv1) ; ?fv1 dependency, ground ?fv3

)
(; subtasks

(subtask ?t1 ?t2 ?fv1 ?fv2)
)

)

terms. Each free variable creates a dependency between the
first predicate or SA that contains such variable as a term and
the next predicates or SAs that contain the same term. The
first predicate or SA is responsible for grounding such vari-
able while the next predicates or SAs only verify if the pre-
viously ground value matches with the current state. Predi-
cates have priority over SAs to ground free variables, as the
possible values are obtained from the current (finite) state,
while SAs may cover a possibly infinite number of values.
Consider the abstract method example of Listing 1, with two
SAs among preconditions, sa1 and sa2. The compiled out-
put shown in Algorithm 1 has both SAs evaluated after com-
mon predicates, while function calls happen before or after
each SA, based on which variables are ground at that point.
In Line 4 the free variables fv1 and fv3 have a ground value
that can only be read and not modified by other predicates
or SAs. In Line 7 every variable is ground and the second
function call can be evaluated.

Algorithm 1 Compilation phase may reorder preconditions
to optimize execution time.
1: function M(t1, t2)
2: if t1 6= t2
3: for each fv1, fv3; state⊂ {〈pre1,t1,t2〉,〈pre2,fv3,fv1〉} do
4: for each sa1(t1, fv1) do
5: free variable fv2
6: for each sa2(fv1, fv2) do
7: if fv1 6= fv2
8: decompose([〈subtask, t1, t2, fv1, fv2〉])

The other limitation of current SA co-routines is that they
must unify with a valid value within their internal itera-
tions or have a stop condition, otherwise the HTN process
will keep backtracking and evaluating the SA seeking new
values and never returning failure. Due to the implementa-
tion support of arbitrary-precision arithmetic and accessing
data from real-world streams of data/events (which are al-
ways new and potentially infinite) a valid value may never
be found, and we expect the domain designer to implement
mechanisms to limit the maximum number of times a SA
might try to evaluate a call (i.e. to have finite stop condi-
tions). This maximum number of tries can be implemented
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as a counter in the internal state of a SA, which is mostly
used to mark values provided to the HTN to avoid repeti-
tion, but may achieve side-effects in external structures. The
amount of side-effects in both external functions calls and
SAs increase the complexity of correctness proofs and the
ability to inspect and debug domain descriptions.

Examples
Discrete distance between objects
A common problem when moving in dynamic and continu-
ous environments is to check for object collisions, as agents
and objects do not move across tiles in a grid. One solution
is to calculate the distance between both objects centroid po-
sitions and verify if this value is in a safe margin before con-
sidering which action to take. To avoid the many geomet-
ric elements involved in this process we can map centroid
position symbols to coordinate instances and only check the
symbol returned from the symbol-object table, ignoring spe-
cific numeric details and comparing a symbol to verify if ob-
jects are near enough to collide. This process is illustrated in
Figure 2, in which p0 and p1 are centroid position symbols
that match symbols S0 and S1 in the symbol-object table,
which maps their value to point objects O0 and O1. Such in-
ternal objects are used to compute distance and return a sym-
bolic distance in situations where the actual numeric value
is unnecessary.

Symbol-object table

S0 O0

S1 O1
...

p0

p1

distance

1.41 symbol near

Figure 2: The symbol to object table maps symbols to
object-oriented programming instances to hide procedural
logic from the symbolic layer.

An iterator for HTN
In order to find a correct number to match a spatial or tem-
poral constraint one may want to describe the relevant inter-
val and precision to limit the amount of possibilities without
having to discretely add each value to the state. Planning de-
scriptions usually do not contain information about numeric
intervals and precision, and if there is a way to add such
information it is through the planner itself, as global defini-
tions applied to all numeric functions, i.e. timestep, mantissa
and exponent digits of DiNo (Piotrowski et al. 2016). The
STEP SA described in Algorithm 2 addresses this problem,
unifying t with one number at time inside the given interval
with an ε step.

Lazy adjacency evaluation
To avoid having complex effects in the move operators one
must not update adjacencies between planning objects dur-
ing the planning process. Instead one must update only the

Algorithm 2 The STEP SA replaces the pointer of t with a
numeric symbol before resuming control to the HTN.
1: function STEP(t,min = 0,max =∞, ε = 1)
2: for i←min to max step ε do
3: t← symbol(i)
4: yield . Resume HTN

object position, deleting from the old position and adding the
new position. Such positions come from a partitioned space,
previously defined by the user. The positions and their adja-
cencies are either used to generate and store ground opera-
tors or stored as part of the state. To avoid both one could
implement adjacency as a co-routine while hiding numeric
properties of objects, such as position. Algorithm 3 shows
the main two cases that appear in planning descriptions. In
the first case both symbols are ground, and the co-routine
resumes when both objects are adjacent, doing nothing oth-
erwise, failing the precondition. In the second case s2, the
second symbol, is free to be unified using s1, the first sym-
bol, and a set of directions D to yield new positions to re-
place s2 pointer with a valid position, one at a time. In other
terms, this co-routine either checks whether s2 is adjacent to
s1 or tries to find a value adjacent to s1 binding it to s2 if
such value exists.

Algorithm 3 This ADJACENT SA implementation can either
check if two symbols map to adjacent positions or generate
new positions and their symbols to unify s2.
1: D← {(-1,-1),(0,-1),(1,-1),(-1,0),(1,0),(-1,1),(0,1),(1,1)}
2: function ADJACENT(s1, s2)
3: s1← object(s1)
4: if s2 is ground
5: s2← object(s2)
6: if |x(s1) - x(s2)| ≤ 1 ∧ | y(s1) - y(s2)| ≤ 1
7: yield
8: else if s2 is free
9: for each (x, y) ∈ D do

10: nx← x + x(s1); ny← y + y(s1)
11: if 0 ≤ nx < WIDTH ∧ 0 ≤ ny < HEIGHT
12: s2← symbol(〈nx, ny〉)
13: yield

Domains and Experiments
We conducted emprirical tests in a machine with Dual 6-
core Xeon CPUs @2GHz / 48GB memory, repeating ex-
periments three times to obtain an average. The results
show a substantial speedup over the original classical de-
scription from ENHSP (Scala et al. 2016) with more com-
plex descriptions. Our HTN implementation is available at
github.com/Maumagnaguagno/HyperTensioN U.

Plant Watering / Gardening
In the Plant Watering domain (Frances and Geffner 2015) one or
more agents move in a 2D grid-based scenario to reach taps to ob-
tain certain amounts of water and pour water in plants spread across
the grid. Each agent can carry up to a certain amount of water and
each plant requires a certain amount of water to be poured. Many
state variables can be represented as numeric fluents, such as the
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Listing 2: Excerpt of the Plant Watering HTN domain used
as input to our implementation, the ADJACENT SA is de-
scribed separately.
(:attachments (adjacent ?x ?y ?nx ?ny ?gx ?gy))
(:method (travel ?a ?gx ?gy)

base
(; preconditions

(call = (call function (x ?a)) ?gx)
(call = (call function (y ?a)) ?gy)

)
() ; empty subtasks
keep_moving
(; preconditions

(adjacent (call function (x ?a))
(call function (y ?a)) ?nx ?ny ?gx ?gy)

)
(; subtasks

(!move ?a ?nx ?ny)
(travel ?a ?gx ?gy)

)
)

coordinates of each agent, tap and plant, the amount of water to
be poured and being carried by each agent, and the limits of how
much water can be carried and the size of the grid. There are two
common problems in this scenario, the first is to travel to either a
tap or a plant, the second is the top level strategy. To avoid con-
sidering multiple paths in the decomposition process one can try
to move straight to the goal first, and only to the goal in scenarios
without obstacles, which simplifies the travel method. To achieve
this straightforward movement we modify the ADJACENT SA to
consider the goal position also, using an implementation of Algo-
rithm 4. The top level strategy may consider which plant is closer to
a tap or closer to an agent, how much water an agent can carry and
so on. The simpler top level strategy is to verify how much water
must be poured to a plant, travel to a tap, load water, travel to the
previously selected plant and pour all the water loaded. Repeating
this process until every plant has enough water poured. The travel
method description using our modified JSHOP input language is
shown in Listing 2 and compiled to Algorithm 5. We compare with
the fastest satisficing configurations of ENHSP (sat and c sat)
in Figure 3, which shows that our approach is faster with execution
times constantly below 0.01s, with both planners obtaining non-
step-optimal plans.

Algorithm 4 In this goal-driven ADJACENT SA the positions
are coordinate pairs, and two variables must be unified to a
closer to the goal position in an obstacle-free scenario.
1: function ADJACENT(x, y, nx, ny, gx, gy)
2: x← numeric(x); y← numeric(y)
3: gx← numeric(gx); gy ← numeric(gy)
4: . compare returns -1, 0, 1 for <,=, >, respectively
5: nx← symbol(x + compare(gx, x))
6: ny ← symbol(y + compare(gy, y))
7: yield

Car Linear
In the Car Linear domain (Bryce et al. 2015) the goal is to con-
trol the acceleration of a car, which has a minimum and maximum
speed, without external forces applied, only moving through one
axis to reach its destination, and requiring a small speed to safely

Algorithm 5 Compiled output of the Plant Watering HTN
domain excerpt from Listing 2.
1: function TRAVEL(a, gx, gy)
2: if x(a) = gx ∧ y(a) = gy
3: decompose([])
4: free variables nx, ny
5: for each adjacent(x(a), y(a), nx, ny, gx, gy) do
6: decompose([〈move, a, nx, ny〉, 〈travel, a, gx, gy〉])
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Figure 3: Time in seconds to solve Plant Watering problems.

stop. The idea is to propagate process effects to state functions, in
this case acceleration to speed and speed to position, while being
constrained to an acceptable speed and acceleration. The planner
must decide when and for how long to increase or decrease accel-
eration, therefore becoming a temporal planning problem. We use
a STEP SA to iterate over the time variable and propagate temporal
effects and constraints, i.e. speed at time t. We compare the execu-
tion time of our approach with ENHSP with aibr, ENHSP main
configuration for planning with autonomous processes, in Table 1.
There is no comparison with a native HTN approach, as one would
have to add a discrete finite set of time predicates (e.g. 〈time 0〉)
to the initial state description to be selected as time points during
planning.

Problem 1 2 3 4 5 6 7 8 9
ENHSP (aibr) 0.461 0.462 0.427 0.461 0.475 0.474 0.443 0.466 58.256
HTN with SA 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 03.920

Table 1: Time in seconds to solve Car Linear problems.

Bitangent movement
For an agent to move in a continuous space it is common practice
to simplify the environment to simpler geometric shapes for faster
collision evaluation. One possible simplification is to find a circle
or sphere that contains each obstacle and use this new shape to eval-
uate paths. In this context the best path is the one with the shortest
lines between initial position and goal, considering bitangent lines
between each simplified obstacle plus the amount of arc traversed
on their borders, also know as Dubins path (Dubins 1957). One
possible approach for a satisficing plan is to move straight to the
goal or to the closest obstacle to the goal and repeat the process.
A precondition to such movement is to have a visible target, with-
out any other obstacle between the current and target positions. A
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second consideration is the entrance direction, as clock or counter-
clockwise, to avoid cusped edges. Cusped edges are not part of op-
timal realistic paths, as the moving agent would have to turn around
over a single point instead of changing its direction a few degrees to
either side. For the problem defined in Figure 4 the possible paths
from point i to g are ACG, ADH, BEG, BFH.

Obstacle1 Obstacle2

A

B

C

D

E

F

G

H

i

g

Figure 4: Possible bitangent paths from i to g with two cir-
cular obstacles.

Two possible approaches can be taken to solve the search over
circular obstacles using bitangents. One is to rely on an external
solver to compute the entire path, a motion planner, which could
happen during or after HTN decomposition has taken place. When
done during HTN decomposition, as seen in Listing 3, one must
call the SEARCH-CIRCULAR function and consume the resulting
steps of the plan stored in the intermediate layer, not knowing about
how close to the goal it could reach in case of failure. When done
after HTN decomposition, one must replace certain dummy oper-
ators of the HTN plan and replan in case of failure. The second
approach is to rely on parts of the external search, namely the VIS-
IBLE function and CLOSEST SA, to describe continuous search to
the HTN planner. The VISIBLE function returns true if from a point
on a circle one can see the goal, false otherwise. The CLOSEST SA
generates unifications from a circle with an entrance direction to a
point in another circle with an exit direction, new points closer to
the goal are generated first. Differently from external search, one
can deal with failure at any moment, while being able to modify
behavior with the same external parts, such as the initial direction
the search starts with. Another advantage over the original solution
is the ability to ask for N plans, which forces the HTN to back-
track after each plan is found and explore a different path until the
amount of plans found equals N or the HTN planner fails to back-
track. A description of such approach is show in Listing 4. The
execution time variance between the solutions is not as important
as their different approaches to obtain a result, from an external
greedy best-first search to a HTN depth-first search. The external
search also computes bitangents on demand, as bitangent precom-
putation takes a significant amount of time for many obstacles.

Conclusion
We developed a notion of semantic attachments for HTN planners
that not only allows a domain expert to easily define external nu-
merical functions for real-world domains, but also provides sub-
stantial improvements on planning speed over comparable classical
planning approaches. The use of semantic attachments improves
the planning speed as one can express a potentially infinite state
representation with procedures that can be exploited by a strat-
egy described as HTN tasks. As only semantic attachments present
in the path decomposed during planning are evaluated, a smaller
amount of time is required when compared with approaches that
precompute every possible value during operator grounding. Our
description language is arguably more readable than the commonly
used strategy of developing a domain specific planner with cus-
tomized heuristics. Specifically, we allow designers to easily de-
fine external functions in a way that is readable within the domain

Listing 3: Search over circular obstacles using bitangents is
done entirely by external function and resulting plan steps
stored in intermediate layer are consumed by the HTN.
(:method (forward ?agent ?goal)

base
((at ?agent ?goal)) ; preconditions
() ; empty subtasks
search
(; preconditions

(at ?agent ?start)
(call search-circular ?agent ?start ?goal)

)
; subtasks
((apply-plan ?agent ?start 0 (call plan-size)))

)
(:method (apply-plan ?agent ?from ?index ?size)

index-equals-size
((call = ?index ?size)) ; preconditions
() ; empty subtasks
get-next-action
; preconditions
((assign ?to (call plan-position ?index)))
(; subtasks

(!move ?agent ?from ?to)
(apply-plan ?agent ?to (call + ?index 1) ?size)

)
)

Listing 4: Search over circular obstacles using bitangents is
done by the HTN using CLOSEST SA to generate each step.
(:attachments (closest ?circle ?to ?outcircle

?indir ?outdir ?goal))
(:method (forward-attachments ?agent ?goal)

clockwise
((at ?agent ?start)) ; preconditions
(; subtasks

(loop ?agent ?start ?start clock ?goal)
)
counter-clockwise
((at ?agent ?start)) ; preconditions
(; subtasks

(loop ?agent ?start ?start counter ?goal)
)

)
(:method (loop ?agent ?from ?circle ?indir ?goal)

base
((call visible ?from ?circle ?goal)) ; preconditions
((!move ?agent ?from ?goal)) ; subtasks
recursion
(; preconditions

(closest ?circle ?to ?outcircle
?indir ?outdir ?goal)

(not (visited ?agent ?to))
)
(; subtasks

(!move ?agent ?from ?to)
(!!visit ?agent ?from)
(loop ?agent ?to ?outcircle ?outdir ?goal)
(!!unvisit ?agent ?from)

)
)

knowledge encoded in HTN methods at design time, and also dy-
namically generate symbolic representations of external values at
planning time, which makes generated plans easier to understand.
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Our work is the first attempt at defining the syntax and operation
of semantic attachments for HTNs, allowing further research on
search in SA-enabled domains within HTN planners. Future work
includes implementing a cache to reuse previous values from exter-
nal procedures applied to similar previous states (Dornhege, Hertle,
and Nebel 2013) and a generic construction to access such values in
the symbolic layer, to obtain data from explored branches outside
the state structure, i.e. to hold mutually exclusive predicate infor-
mation. We plan to develop more domains, with varying levels of
domain knowledge and SA usage, to obtain better comparison with
other planners and their resulting plan quality. The advantage of
being able to exploit external implementations conflicts with the
ability to incorporate such domain knowledge into heuristic func-
tions, as such knowledge is outside the description. Further work
is required to expose possible metrics from a SA to heuristic func-
tions.
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Abstract

This paper presents preliminary ideas of our work for auto-
mated learning of Hierarchical Goal Networks in nondeter-
ministic domains. We are currently implementing the ideas
expressed in this paper.

Introduction
Many domains are amenable to hierarchical problem-solving
representations whereby complex problems are represented
and solved at different levels of abstraction. Examples include
(1) some navigation tasks where hierarchical A* has been
shown to be a natural solution solving the navigation prob-
lem over different levels of abstraction (Holte et al. 1995;
Wang et al. 2014); (2) dividing a reinforcement learning
task into subtasks where policy control is learned for sub-
problems and combined to form a solution for the over-
all problem (Dayan and Hinton 1993; Dietterich 2000;
Diuk et al. 2013); (3) abstraction planning, where concrete
problems are transformed into abstract problem formulations,
these abstract problems are solved as abstract plans, and
in turn these abstract plans are refined into concrete solu-
tions (Knoblock 1994; Bergmann and Wilke 1995); and (4)
hierarchical task network (HTN) planning where complex
tasks are recursively decomposed into simpler tasks (Currie
and Tate 1991; Wilkins 1999; Erol, Hendler, and Nau 1994;
Nau et al. 1999). These paradigms have in common a divide-
and-conquer method to problem solving that is amenable to
stratified representation of the subproblems.

Among the various formalisms, HTN planning has been
a recurrent research focus over the years. An HTN planner
formulates a plan using actions and HTN methods. The lat-
ter describe how and when to reduce complex tasks into
simpler subtasks. HTN methods are used to recursively de-
compose tasks until so-called primitive tasks are reached
corresponding to actions that can be performed directly in the
world. The HTN planners SHOP and SHOP2 (Nau et al. 1999;
2003) have routinely demonstrated impressive gains in perfor-
mance (runtime and otherwise) over standard planners. The
primary reason for these performance gains is because of the
capability of HTN planners to exploit domain-specific knowl-
edge (Wilkins and desJardins 2001). HTNs provide a natu-
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ral knowledge-modeling representation for many domains
(Nau et al. 2005), including military planning (Mitchell 1997;
Muñoz-Avila et al. 1999), strategy formulation in computer
games (Hoang, Lee-Urban, and Muńoz-Avila 2005; Gor-
niak and Davis 2007), manufacturing processes (Nau 1994;
Tao et al. 2008), project planning (Tate 1976; Ullrich 2005),
story-telling (Cavazza, Charles, and Mead 2002), web service
composition (Kuter et al. 2005), and UAV planning (Gancet
et al. 2005)

Despite these successes, HTN planning suffers from a
representational flaw centered around the notion of task. A
task is informally defined as a description of an activity to
be performed (e.g., find the location of robot r15) (e.g., the
task “dislodge red team from Magan hill” in some adversarial
game) and syntactically represented as a logical atom (e.g.,
(locate r15)). (e.g., “(dislodge redteam Magan)”). Beyond
this syntax, there is no explicit semantics of what tasks ac-
tually mean in HTN representations. HTN planners obviate
this issue by requiring that a complete collection of tasks
and methods is given, one that decomposes every complex
task in every plausible situation. However, the knowledge
engineering effort of creating a complete set of tasks and
methods can be significant (Estlin, Chien, and Wang 1997).
Furthermore, researchers have pointed out that the lack of
tasks’ semantics make using HTNs problematic for execution
monitoring problems (Dvorak, Amador, and Starbird 2008;
Dvorak et al. 2009). Unlike goals, which are conditions that
can be evaluated against the current state of the world, tasks
have no explicit semantics other than decomposing them
using methods.

For example, suppose that a team of robots is trying to
locate r15 and, using HTN planning, it generates a plan call-
ing for the different robots to ascertain r15’s location. While
executing the plan generate a complex plan in a gaming task
to dislodge red team from Magan hill, the HTN planner might
set a complex plan to cutoff access to Magan, surround it,
weaken the defenders with artillery fire and then proceed to
assault it. If sometime while executing the plan, the opponent
abandons the hill, the plan would continue to be executed
despite the fact that the task is already achieved. This is due
to the lack of task semantics, so their fulfillment cannot be
checked against the current state; instead their fulfillment is
only guaranteed when the execution of the generated plans is
completed.
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Hierarchical Goal Networks (HGNs) solve these limita-
tions by representing goals (not tasks) at all echelons of the
hierarchy (Shivashankar et al. 2012). Hence, goal fulfillment
can be directly checked against the current state. In particular,
even when a goal g is decomposed into other goals (i.e., in
HGN, HGN methods decompose goals into subgoals), the
question if the goal is achieved can be answered directly by
checking if it is valid in the current state. So in the previous
example, when the opponent abandons the hill, an agent exe-
cuting the plan knows this goal has been achieved regardless
of how far it got into executing the said plan.

Another advantage of HGNs is that it relaxes the complete
domain requirement of HTN planning (Shivashankar et al.
2013); in HTN planning a complete set of HTN methods for
each task is needed to generate plans. Even if the HGN meth-
ods are incomplete, it is still possible to generate solution
plans by falling back to standard planning techniques such as
heuristic planning (Hoffmann and Nebel 2001) to achieve any
open goals. Nevertheless, having a collection of well-crafted
HGN methods can lead to significant improvement in per-
formance over standard planning techniques (Shivashankar
2015).

When the HGN domain is complete (i.e., there is no need
to revert to standard planning techniques to solve any prob-
lem in the domain), its expressiveness is equivalent to Simple
Hierarchical Ordered Planning (Shivashankar 2015), which
is the particular variant of HTN planning used by the widely
used SHOP and SHOP2 (Nau et al. 2003) HTN planners.
SHOP requires the user to specify a total order of the tasks;
SHOP2 drops this requirement allowing partial-order be-
tween the tasks (Nau et al. 2001). Both have the same repre-
sentation capabilities although SHOP2 is usually preferred
since it doesn’t force the user to provide a total order for the
method’s subtasks (Nau et al. 2001).

In this work, we propose the automated learning of HGNs
for ND domains extending our previous work on learning
HTNs for deterministic domains (Gopalakrishnan, Muñoz-
Avila, and Kuter 2018). While work exists on learning goal hi-
erarchies (Reddy and Tadepalli 1997; Könik and Laird 2006;
Ontanón et al. 2010), these works are based on formalisms
that have more limited representations than HGNs and in fact
predate them.

Related Work
Aside from HGNs, researchers have explored other ways
to address the limitation associated with the lack of tasks’
semantics. For instance, TMKs (Task-Method-Knowledge
models) require not only the tasks and methods to be given
but also the semantics of the tasks themselves as (precondi-
tions,effects) pairs (Murdock and Goel 2001; Murdock 2001).
While this solves the issue with the lack of tasks’ semantics
it may exacerbate the knowledge engineering requirement
of HTNs: the knowledge engineer must not only encode
the methods and tasks but also must encode their semantics
and ensure that the methods are consistent with the given
tasks’ semantics. To deal with incomplete HTN domains,
researchers have proposed translating the methods into a col-
lection of actions so that standard planning techniques can

be used (Alford, Kuter, and Nau 2009). There are two lim-
itations with this approach. First, HTN planning is strictly
more expressive than standard planning (Erol, Hendler, and
Nau 1994), hence the translation will be incomplete in
many domains. Second, for domains when translating meth-
ods into actions is possible, it may result in exponentially-
many actions on the number of methods. HGNs are more
in line with efforts combining HTN and standard plan-
ning approaches (Kambhampati, Mali, and Srivastava 1998;
Estlin, Chien, and Wang 1997); the main difference is that
HGNs eliminate the use of tasks all-together while still pre-
serving the expressiveness of Simple Hierarchical Ordered
Planning (Shivashankar 2015).

The problem of learning hierarchical planning knowledge
has been a frequent research subject over the years. For exam-
ple, ICARUS (Choi and Langley 2005) learns HTN methods
by using skills (i.e., abstract definitions of semantics of com-
plex actions) represented as Horn clauses. The crucial step
is a teleoreactive process where planning is used to fill gaps
in the HTN planning knowledge. For example, if the learned
HTN knowledge is able to get a package from an starting
location to a location L1 and the HTN knowledge is also able
to get the package from a location L2 to its destination, but
there is no HTN knowledge on how to get the package from
L1 to L2, then an standard planner is used to generate a plan
to get the package from L1 to L2 and skills are used to learn
new HTN methods from the plan generated to fill the gap on
how to get from L1 to L2.

Another example is HTN-Maker (Hogg, Muñoz-Avila, and
Kuter 2008). HTN-Maker uses task semantics defined as (pre-
conditions,effects) pairs, exactly like TMKs mentioned be-
fore, to identify sequences of contiguous actions in the input
plan trace where the preconditions and effects are met. Task
hierarchies are learned when an action sequence is identified
as achieving a task and the action sequence is a sub-sequence
of another larger action sequence achieving another task. This
includes the special case when the sub-sequence and the se-
quence achieve the same task. In such a situation recursion is
learned. HTN-Maker learns incrementally after each training
case is given.

HTNLearn (Zhuo, Muñoz-Avila, and Yang 2014) trans-
forms the input traces into a constraint satisfaction problem.
Like HTN-Maker, it also assumes (preconditions,effects) as
the task semantics to be given as input. HTNLearn process
the input traces converting them into constraints. For exam-
ple, if a literal p is observed before an action a and a is a
candidate first sub-task for a method m, then a constraint
c is added indicating that p is a precondition of m. These
constrains are solved by a MAXSAT solver, which returns
the truth value for each constraint. For example, if c is true
then p is added as a precondition of m. As a result of the
MAXSAT process, HTNLearn is not able to converge to a
100% correct domain (the evaluation of HTNLearn computes
the error rates in the learned domain).

Similar to HTN planning, hierarchical decompositions
have been used in hierarchical reinforcement learning (Parr
and Russell 1998; Dietterich 2000). The hierarchical struc-
ture of the reinforcement learning problem is analogous to an
instance of the decomposition tree that an HTN planner might
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generate. Given this hierarchical structure, hierarchical rein-
forcement learners perform value-function composition for a
task based on the value functions learned over its subtasks re-
cursively. However, the possible hierarchical decompositions
must be provided in advance.

Hierarchical goal networks (HGNs) (Shivashankar et al.
2012) are an alternative representation formalism to HTNs. In
HGNs, goals, instead of tasks, are decomposed at every level
of the hierarchy. HGN methods have the same fo.rm as HTN
methods but instead of decomposing a task, they decompose
a goal; analogously instead of subtasks, HGN methods have
subgoals. If the domain description is incomplete, HGNs can
fall back to STRIPS planners to fill gaps in the domain. On
the other hand, total-order HGNs are as expressive as total-
order HTNs (Shivashankar 2015) and its partial-order variant
(Shivashankar et al. 2016) is as expressive as partial-order
HTNs (Alford et al. 2016).

Inductive learning has been used to learn rules indicating
goal-subgoal relations in X-learn (Reddy and Tadepalli 1997).
This is akin to learning macro-operators (Mooney 1988;
Botea, Müller, and Schaeffer 2005); the learned rules and
macro-operators provide search control knowledge to reach
the goals more rapidly but they don’t add expressibility
to standard planning. SOAR learns goal-subgoal relations
(Könik and Laird 2006). It uses as input annotated behavior
trace structures, indicating the decisions that led to the plans;
this is used to generate a goal-subgoal relations. Another
work on learning goal-subgoal relations is reported in (On-
tanón et al. 2010). It uses case-based learning techniques to
store goal-subgoal relations, which are then reused by us-
ing similarity metrics. These works assume some form of
the input traces, unstructured in (Ontanón et al. 2010) and
structured in (Könik and Laird 2006), to be annotated with
the subgoals as they are accomplished in the traces. In our
proposed work, the input traces are not annotated and, more
importantly, we are learning HGNs.

Goal regression techniques have been used to generate a
plan starting from the goals that must be achieved (Pollock
1998; McDermott 2002). The result of goal regression can be
seen as a hierarchy recursively generated by indicating for
each goal what subgoals must be achieved. The goal-subgoal
relations resulting from goal regression are a direct conse-
quence of the domain’s operators: the goals are effects of the
operators and the preconditions are the subgoals. In contrast,
in a HGN, the hierarchies of goals represent relations between
the HGN methods and are not necessarily implied directly
from the actions. Making an analogy with HTN methods,
HGN methods capture additional domain-specific knowledge
(Nau et al. 2003) or generate plans with desirable proper-
ties (e.g., taking into account quality considerations) again
not explicitly represented in the actions (Hogg, Kuter, and
Munoz-Avila 2010).

Work on learning hierarchical plan knowledge is related
to learning of context-free grammars (CFGs), which aims
at eliciting a finite set of production rules from a finite set
of strings (Oates, Desai, and Bhat 2002; Sakakibara 1997).
The precise definition of the learning problem varies con-
straining the resulting CFG by, among others, (1) providing
a target function (e.g., obtaining a CFG with the minimum

number of production rules) or (2) assuming that negative
examples (i.e., strings that must not be generated by the CFG)
are given. To learn CFGs, algorithms search for production
rules that generate the training set (and none of the negative
examples when provided). Grammar learning is exploited by
the Greedy Structure Hypothesizer (GSH) (Li, Kambhampati,
and Yoon 2009), which uses probabilistic context-free gram-
mars learning techniques to learn a hierarchical structure of
the input plan traces. GSH doesnt learn preconditions since
its goals are not to generate the grammars for planning but
to reflect users preferences. The difference between learn-
ing CFG and learning hierarchical planning knowledge is
twofold. First, characters that form a string have no meaning.
In contrast, actions in a given plan are defined by their pre-
conditions and effects. This means that plausible strings gen-
erated by the grammars may be invalid when viewed as plans.
Second, learning HGNs requires not only learning the task
decomposition but also the preconditions. This is an impor-
tant difference: HTNs are strictly more expressive than CFGs
(Erol, Hendler, and Nau 1996). Intuitively, HTNs are akin
to context-sensitive grammars in that they constraint when a
decomposition can take place. Context-sensitive grammars
are also strictly more expressive then CFGs (Sipser 2006).

Finally, as we will see in the next the next section, our
proposed work is related to the notion of planning landmarks
(Hoffmann, Porteous, and Sebastia 2004). Given a planning
problem P , defined as a triple (s0, g,A), indicating the ini-
tial state, the goals and the actions respectively, a planning
landmark is either an action a ∈ A, or state atom p ∈ s
(s is an state, represented as a collection of atoms) that oc-
curs in any solution plan trace solving P . Given the problem
description P , planning systems can identify automatically
landmarks for P . Planning landmarks have been widely used
for automated planning resulting in planners such as LAMA
(Richter and Westphal 2010) and the HGN planner GoDel
(Shivashankar et al. 2013).

ND learning problem
We want to learn HGNs for fully observable nondetermin-
istic (FOND) planning (Fu et al. 2011; Speck, Ortlieb, and
Mattmüller 2015; Winterer, Mattmüller, and Wehrle 2015). In
such domains, actions may have multiple outcomes. For ex-
ample, in the Minecraft simulation, when a character swings
a sword to hit a monster, there are two possible outcomes:
either the sword hits the monster or the monster parries it and
the sword doesn’t hit anything.

As discussed before, HTN learners require the tasks se-
mantics to be given either as Horn clauses defining the tasks
or as (preconditions,effects) pairs. The latter is used, for ex-
ample, in the nondeterministic HTN learner ND-HTNMaker,
a state-of-the-art HTN learner, to pinpoint locations in the
traces where the various tasks are fulfilled. ND-HTNMaker
enforces a right recursive structure: exactly one primitive task
followed by none or exactly one compound task. The main
objective of enforcing this right recursive structure is to deal
with nondeterminism: if, for example, the character swings
the sword (e.g., a primitive task), the follow-up compound
task handles the nondeterminism: one method decomposing
a compound task t will simply perform the action to swing
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at the monster followed by t, thereby ensuring that method
can be triggered as many times as needed until the monster is
hit (and dies). Other methods decomposing t handle the case
when the monster has been dealt with (e.g., a method han-
dling the case when “character next to a dead monster”). This
ensures that methods learned by HTN-Maker are provable
correct (Hogg, Kuter, and Muñoz-Avila 2009). Correctness
can be loosely defined as follows: any solution generated by
a sound nondeterministic HTN planner such as ND-SHOP
(Kuter and Nau 2004) using the learned methods and the
nondeterministic actions is also a solution when using the
nondeterministic actions (i.e., without the methods).

Like in the deterministic case, the inputs will be (1)
a collection of actions A and (2) a collection of traces
s0 a0 s1 a1 . . . an sn+1, where each ai ∈ A. Only this
time, any action ai ∈ A may have multiple outcomes; so
each occurrence of ai in the input traces will reflect one such
outcome.

Planning in nondeterministic domains requires to account
for all possible outcomes. As such, (Cimatti et al. 2003)
proposed a categorization of solutions for nondeterminis-
tic domains. It distinguishes between weak, strong cyclic
and strong solutions for a problem (s0, g,A). A solution
is represented as a policy π : S → A, a mapping from
the possible states in the world S to actions A, indicat-
ing for any given state s ∈ S, what action π(s) to take.
Given a policy π, an execution trace is any sequence
s0 π(s0) s1 π(s1) . . . π(sn) sn+1, where si is an state that
can be reached from state si−1 after applying action π(si−1).

A solution policy π is weak if there exists an execution
trace from s0 to a state satisfying g. Weak solutions guarantee
that a goal state can be successfully reached sometimes. For
example, in the Minecraft simulation, a policy that assumes
a computer-controlled character will always hit any monster
it encounters when swinging the sword is considered a weak
solution. In particular, this solution would not account for
the situation when the monster parries the character’s sword
attack; e.g., the monster might counter-attack and disable the
agent and the agent has not planned what to do in such a
situation. Under the fairness assumption, stating that “every
action executed infinitely often will exhibit all its effects in-
finitely often” (D’Ippolito, Rodrıguez, and Sardina 2018), a
solution π is either strong cyclic or strong if (1) every termi-
nal state entails the goals and (2) for every state s that the
agent might finds itself in after executing π from s0, there
exists an execution trace from the state s to a state satisfy-
ing g. The difference is that in strong cyclic solutions the
same state might be visited more than once whereas in strong
solutions this never happens. For example, a strong cyclic
solution might have the character swing the sword against
the monster and if the monster parries the attack, the charac-
ter takes an step back to avoid the monster’s counter-attack
and step towards the monster while taking another swing at
it; this can be repeated as many times as needed until the
monster dies. Strong solutions are ideal since they never visit
the same state but in some domains they might not exists.
For instance, there are no strong solutions in the Minecraft
simulation mentioned as the monster can repeatedly parry the
character’s attacks. The same occurs in the robot navigation

domain (Cimatti et al. 2003), created to model nondetermin-
ism. In this domain a robot is navigating between offices
and when it encounters a closed door for an office it wants
to access, the robot will open it. There is an another agent
acting in the environment that closes doors at random. So the
robot might need to repeatedly execute the action to open the
same door.

Solving nondeterministic planning problems is difficult
because of what has been dubbed the explosion of states as
a result of the nondeterminism (Fu et al. 2011). One demon-
strated way to counter this is by adding domain-specific
knowledge as described in (Kuter and Nau 2004). While the
algorithm described is generic for a variety of ways to encode
the domain-specific knowledge, it showcases hierarchical
planning techniques outperforming an state-of-the-art non-
deterministic planner in some domains including the robot
navigation domain. The results show either speedups of sev-
eral orders of magnitude or the ability to solve problems of
sizes, measured by the number of goals to achieve, previously
impossible to solve.

Relation to probabilistic domains. In this work we are
neither assuming a probability distribution over the possi-
ble actions’ outcomes to be given nor we aim to learn such
a distribution. Once an HGN domain is learned, hierarchi-
cal reinforcement learning techniques (Dietterich 2000) can
be used to learn a probability distribution over the various
possible goal decompositions and exploit the learned distri-
bution during problem solving as done in (Hogg, Kuter, and
Munoz-Avila 2010).

We propose to learn bridge atoms and their hierarchical
structure with the important constraint that the learned hier-
archical structure must encode the domain’s nondeterminism
in a sound way. For instance, the nondeterministic version
of the logistics transportation domain in (Hogg, Kuter, and
Muñoz-Avila 2009) extends the deterministic version as fol-
lows: when loading a package p into vehicle v in a location l
there are two possible outcomes: either p is inside v or p is
still at l (i.e., the load action failed). Regardless of possibly
repeating the same action multiple times, traces will bring
the package to the airport, transport it by air to the destina-
tion city, and deliver it. So the kinds of decompositions we
are aiming to learn should also work on nondeterministic
domains; on the other hand a learned hierarchy would be
unsound if, for example, it assumes that the load truck action
always succeeds and immediately proceeds to deliver the
package to an airport. This will lead to weak solutions.

To correctly handle nondeterminism, we propose forcing
a right-recursive structure on lower echelons of the learned
HGNs. This takes care of the nondeterminism and combine
well with the higher decompositions. For instance, in the
transportation domain we identified a goal gairp, for the pack-
age p reaching the airport, identified as a bridge atom, and
then have all methods achieving gairp be right recursive; e.g.,
methods of the form (: method gairp prec (g gairp) <),
where g is some intermediate goal such as loading the pack-
age into a vehicle.
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Defining the Learning Problem
Our aim is the automated learning of HGN methods. This
includes learning the goals, the goal-subgoal structure of the
HGN methods and their applicability conditions. Specifically,
the learning problem can be defined as follows: given a set
of actions A and a collection of traces Π generated using
actions in A, to obtain a collection of HGN methods. A
collection of methodsM is correct if given any (initial state,
goal) pair (s0, g), and any solution plan π generated by a
sound HGN planner using M and A, π is a correct plan
solving the planning problem (s0, g,A). An HGN method m
is a construct of the form (:method head(m) preconditions(m)
subgoals(m) <(m)) corresponding to the goal decomposed
by m (called the head of m), the preconditions for applying
m and the subgoals decomposing head(m). Figure 1 shows
an example of an HGN method in the logistics transportation
domain (Veloso 1994). (the question marks indicate variables.
It recursively decomposes the goal of delivering ?pack1 into
?loc2 into three subgoals: (1) delivering ?pack1 to the airport
?airp1 in the same city as its current location ?loc1, (2)
delivering ?pack1 to the airport ?airp2 in the same city as
the destination location ?loc2, and (3) recursively achieve the
head goal):

Head: Package-delivery
Preconditions: (at ?pack ?loc1 ?city1) (airport ?airp1 ?city1)
(airport ?airp2 ?city2) (location ?loc2 ?city2) ( 6= ?city1
?city2)
Subgoals: g1: (package-at ?pack ?airp1) g2:(package-at
?pack1 ?airp2) g3:(package-at ?pack ?loc2 ?city2)
Constraints: g1 < g3, g2 < g3

Figure 1: Example of an HGN method in the logistics trans-
portation domain. The question marks indicate variables. The
goal achieved by the method is the last subgoal, g3. It recur-
sively decomposes the goal of delivering ?pack into ?loc2
into three subgoals: (1) delivering ?pack1 to the airport ?airp1
in the same city as its current location ?loc1, (2) delivering
?pack to the airport ?airp2 in the same city as the destination
location ?loc2, and (3) g3 is to be achieved after g1 and g2
are achieved.

HGNs planners (Shivashankar et al. 2013; 2012) main-
tain a list G = 〈g1, . . . , gn〉 of open goals (i.e., goals to
achieve). Planning follows a recursive procedure, starting
with π = 〈〉, choosing the first element, g1, in G, and either
(1) applying an HGN method m decomposing g1 into m’s
subgoals 〈g′1, . . . , g′k〉, concatenating m’s subgoals into G
(i.e, G = 〈g′1, . . . , g′k, g1, . . . , gn〉 are the new open goals),
or (2) applying an action a ∈ A achieving g, appending a to
π (i.e., π ← π · a) and removing g from G. In either case it
will check if the preconditions of m (respectively, a) are sat-
isfied in the current state. When a is applied, the current state
is transformed in the usual way (Fikes and Nilsson 1971).
When G = ∅, π is returned. HGN planners extend this basic
procedure to allow the use of standard planning techniques to
achieve open goals and to enable a partial ordering between
the methods’ subgoals. the planner picks the first goal in G
without predecessors. For example, in Figure 1, the user may

define the constraints: g1 < g3, g2 < g3, and the planner
instead of always picking the first subgoal in G, it picks the
first subgoal without predecessors. 1

Learning Hierarchical Goal Structures
We propose transforming the problem of identifying the goals
and learning their hierarchical relation into the problem of
finding relations between word embeddings extracted from
text. Specifically, we propose viewing the collection of input
traces Π as text: each plan trace π = s0 a0 s1 a1 . . . an sn+1

is viewed as a sentence w1 w2 . . . wm; each action ai and
each atom in sj is viewed as a word wk in the sentence. The
order of the plan elements in each trace is preserved (we use
the term plan element to refer to both atoms and actions):
the word wj = ai appears before the word wj′ = p, for every
p ∈ si+1. In turn, every wj′ appears before wj′′ = ai+1.

Word embeddings are vectors representing words in a
multi-dimensional vector space (Bengio et al. 2003; Ba-
roni, Dinu, and Kruszewski 2014). There are a number
of algorithms to do this translation (Mikolov et al. 2013;
Pennington, Socher, and Manning 2014). They have in com-
mon that they represent vector similarity based on the co-
occurrence of words in the text. That is, words that tend to
occur near one another will have similar vector representa-
tions. In our preliminary work we used Word2Vec (Mikolov
et al. 2013) (i.e., Word-Neighboring Word), a widely used
algorithm for generating word embeddings. Word2Vec uses
a shallow neural network, consisting of a single hidden layer,
to compute these vector representation; it computes a context
windowW consisting of k contiguous words and trains the
network using each word w ∈ W (i.e.,W is w’s context).
The windowW is ”moved” one word at the time through the
text further training the network each time. Training is re-
peated with windows of size i = {1, 2, . . . k}. For this reason,
Word2Vec is said to use “dynamic windows”. In Word2Vec,
similarity is computed with the cosine similarity, simC , be-
cause it measures how close is the orientation of the resulting
vectors, which are distributed in such a way that words fre-
quently co-occurring in the context windows have similar
orientation whereas those that co-occur less frequently will
have a dissimilar orientation.

There are two particularities of the change of represen-
tation from plan elements to word embeddings that is par-
ticularly suitable for our purposes: first the procedure is un-
supervised. This means in our case that we do not have to
annotate the traces with additional information such as where
the goals are been achieved in the traces. Second, vector rep-
resentations are generated based on the context in which they
occur (e.g., the dynamic windowW in Word2Vec). In our
case, the vector representations of the plan elements will be
generated based on their proximity to other plan elements in
the traces. These vectors can be clustered together into plan
elements that are close to one another.

1Actions are (preconditions,effects) pairs, where the effects con-
sist of the add- and the delete-lists of atoms. If the preconditions are
satisfied in the current state, the state is transformed as indicated by
the effects: atoms in the delete-list are removed and atoms in the
add-list are added.
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Our working hypothesis, supported by previous work
(Gopalakrishnan, Muñoz-Avila, and Kuter 2018), is that what
we call bridge atoms, are ideal candidates for goals. Given
two clusters of plan element embeddings, A and B, a bridge
atom, bridgeAB , is an atom in either A or B that is most
similar to the plan elements in the other set.

Establishing a bridge atom hierarchy is a recursive process
that first requires calculating the bridge atom of a corpus,
splitting each text around the bridge atom so that each text
in the corpus becomes two new texts, before and after the
bridge atom, and then repeating the procedure on the resulting
sub-corpora.

The procedure for find a bridge atom for a corpora is as
follows. We train a Word2Vec model on the corpus to deter-
mine the word vectors and cluster them with Hierarchical
Agglomerative Clustering. Currently we limit the number of
clusters to two, although later research may explore how to
determine the number of clusters from the structure of the
traces. We determine the cosine distance of each atom in a
cluster to each atom in the other and average them together
for each atom, selecting the word with the shortest average
distance,2

bridgeAB = argmina∈A,b∈B(
1

|B|Σb∈BdistC(a, b),

1

|A|Σb∈BdistC(a, b)),

(1)

where distC is the cosine distance between the vector repre-
sentations of two atoms. If an action is selected as the bridge
atom, we instead use in its place the atom describing one of
its goals.

As previously stated, by splitting each trace around the
bridge atom, we can form two new sub-corpora, one from the
section of each trace before the bridge atom and one from the
section after the bridge atom. Then we recursively perform
the procedure for bridge atom selection on each new corpora,
keeping track of the hierarchical relationship of each sub-
corpora to the other corpora. If during the division process, a
section of a trace becomes shorter than some threshold, we
discard it from the sub-corpora. Progress along any branch
of recursion halts once there are insufficient traces in a sub-
corpus for training.

We use the hierarchy of bridge atoms as a guide for build-
ing a set of hierarchical methods. At the lowest level of
division are single-action or short multi-action sections of the
traces. Each of these sections will become a method with a
single goal (an effect of an action) or a method with multiple
goals (one for each of the actions). Each of these methods
have two subgoals: one for the subsection of trace before a
bridge atom and another one for the trace after that bridge
atom.

Each action is annotated with its preconditions. The pre-
conditions of a method can be extrapolated from the pre-
conditions of the actions into which it decomposes by re-
gressing over the actions of that section of the plan trace in

2This is different from the formula we used in (Gopalakrishnan,
Muñoz-Avila, and Kuter 2018), which computed the maximum
similarity.

reverse, collecting the action preconditions and removing
from the preconditions any atom which is in the effects of
chronologically-preceding action.

Current Status
We are using a variant of the Pyhop HTN planner (https:
//bitbucket.org/dananau/pyhop). Our variant in-
troduces nondeterminism in the actions and generates solu-
tion policies as described in (Kuter and Nau 2004).

Our experiments use a nondeterministic variant of the lo-
gistics domain (Veloso 1992). In the domain, packages must
be relocated from one location to another. Trucks transport
packages within cities, and airplanes transport packages be-
tween cities via airports. Nondeterminism is introduced via
the load and unload operators, which have two outcomes,
success (the package is loaded onto/unload from the speci-
fied vehicle) or failure (the package does not move from its
original location). We have also added rockets that transport
packages between cities on different planets via launchpads.
All traces demonstrate a plan for achieving the same goal,
the relocation of a package from a location in one city on the
starting planet to a location in a city on the destination planet.

To ensure that Word2Vec can identify common bridge
atoms across the corpus, the package and each location must
have the same name in all traces. Although Word2Vec typi-
cally works best on a corpus of thousands of texts or more, we
are able to learn reasonable bridge atoms from hundreds of
texts by increasing the number of epochs and lowering learn-
ing rate. For our problem design, a reasonable first bridge
atom is one that involves the package and a rocket or launch-
pad, as transporting the package from the start planet to the
destination planet marks the halfway point in the traces. From
a corpus of 700 traces, with 1000 epochs and a learning rate
of 0.00025, our first bridge atom is the action unload(package,
rocket).

Because word embeddings are sensitive to word con-
text, the trace structure influences the bridge atom hierarchy.
Which atoms are included in the trace and where they are in-
cluded is important. We are experimenting with two different
variants of state expression within traces. In one variant, we
list each action preceded by its deletelist and followed by its
addlist. If an atom occurs in the addlist of one action and the
deletelist of the subsequent action, that atom will only appear
in the addlist of the first action. In another variant, we list
actions preceded by their preconditions and followed by their
effects. In both variants, atoms are listed alphabetically.
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H.; Murdock, J. W.; Wu, D.; and Yaman, F. 2005. Ap-
plications of SHOP and SHOP2. IEEE Intelligent Systems
20(2):34–41.
Nau, D. S. 1994. Manufacturing-operation planning vs AI
planning. In Third International Conference on Information
and Knowledge Management.
Oates, T.; Desai, D.; and Bhat, V. 2002. Learning k-reversible
context-free grammars from positive structural examples. In
International Conference on Machine Learning (ICML), 459–
465.

Ontanón, S.; Mishra, K.; Sugandh, N.; and Ram, A. 2010.
On-line case-based planning. Computational Intelligence
26(1):84–119.
Parr, R. E., and Russell, S. 1998. Hierarchical control
and learning for Markov decision processes. University of
California, Berkeley Berkeley, CA.
Pennington, J.; Socher, R.; and Manning, C. 2014. Glove:
Global vectors for word representation. In Proceedings of the
2014 conference on empirical methods in natural language
processing (EMNLP), 1532–1543.
Pollock, J. L. 1998. The logical foundations of goal-
regression planning in autonomous agents. Artificial Intelli-
gence 106(2):267–334.
Reddy, C., and Tadepalli, P. 1997. Learning goal-
decomposition rules using exercises. In International Con-
ference on Machine Learning (ICML), 843–851.
Richter, S., and Westphal, M. 2010. The lama planner: Guid-
ing cost-based anytime planning with landmarks. Journal of
Artificial Intelligence Research 39:127–177.
Sakakibara, Y. 1997. Recent advances of grammatical infer-
ence. Theoretical Computer Science 185(1):15–45.
Shivashankar, V.; Kuter, U.; Nau, D.; and Alford, R. 2012.
A hierarchical goal-based formalism and algorithm for
single-agent planning. In Proceedings of the 11th Interna-
tional Conference on Autonomous Agents and Multiagent
Systems-Volume 2, 981–988. International Foundation for
Autonomous Agents and Multiagent Systems.
Shivashankar, V.; Alford, R.; Kuter, U.; and Nau, D. 2013.
The godel planning system: a more perfect union of domain-
independent and hierarchical planning. In Proceedings of
the Twenty-Third international joint conference on Artificial
Intelligence, 2380–2386. AAAI Press.
Shivashankar, V.; Alford, R.; Roberts, M.; and Aha, D. W.
2016. Cost-optimal algorithms for hierarchical goal network
planning: A preliminary report. In ICAPS Workshop on
Heuristics and Search for Domain-Independent Planning
(HSDIP).
Shivashankar, V. 2015. Hierarchical Goal Network Plan-
ning: Formalisms and Algorithms for Planning and Acting.
Ph.D. Dissertation, Dept. of Computer Science, University
of Maryland.
Sipser, M. 2006. Introduction to the Theory of Computation,
volume 2. Thomson Course Technology Boston.
Speck, D.; Ortlieb, M.; and Mattmüller, R. 2015. Nec-
essary observations in nondeterministic planning. In
Joint German/Austrian Conference on Artificial Intelligence
(Künstliche Intelligenz), 181–193. Springer.
Tao, F.; Zhao, D.; Hu, Y.; and Zhou, Z. 2008. Resource
service composition and its optimal-selection based on parti-
cle swarm optimization in manufacturing grid system. IEEE
Transactions on industrial informatics 4(4):315–327.
Tate, A. 1976. Project planning using a hierarchic non-
linear planner. Technical Report 25, Department of Artificial
Intelligence, University of Edinburgh.
Ullrich, C. 2005. Course generation based on htn planning.
In LWA, 74–79.

Proceedings of the 2nd ICAPS Workshop on Hierarchical Planning (HPlan)

29



Veloso, M. M. 1992. Learning by analogical reasoning
in general problem solving. PhD thesis CMU-CS-92-174,
School of Computer Science, Carnegie Mellon University.
Veloso, M. M. 1994. Planning and learning by analogical
reasoning. Springer-Verlag.
Wang, H.; Zhou, J.; Zheng, G.; and Liang, Y. 2014. Has:
Hierarchical a-star algorithm for big map navigation in spe-
cial areas. In Digital Home (ICDH), 2014 5th International
Conference on, 222–225. IEEE.
Wilkins, D., and desJardins, M. 2001. A call for knowledge-
based planning. AI Magazine 22(1):99–115.
Wilkins, D. E. 1999. Using the sipe-2 planning system.
Artificial Intelligence Center, SRI International, Menlo Park,
CA.
Winterer, D.; Mattmüller, R.; and Wehrle, M. 2015. Stubborn
sets for fully observable nondeterministic planning. In ICAPS.
AAAI Press.
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Abstract

The hierarchical task network (HTN) planning technique is
used in a growing number of real-world applications. How-
ever in many domains, such as the logistics domain, as there
exist thousands of cases, it is difficult and time-consuming
for humans to specify all HTN methods to cover all desirable
plans. This suggests that it is important to learn HTN
methods to accomplish the tasks via decomposition. The
traditional HTN-method learning approaches require com-
plete executable plans and annotated tasks, which are often
difficult to acquire in real-world applications. In this paper,
we propose a novel framework to learn HTN methods from
HTN instances with incomplete method sets and without
annotated tasks. Besides, previous approaches demand total
orders on the subtasks in the methods while our approach is
capable of learning methods with partial orders. To reduce
the number of methods learned, we consider priorities on
methods and compute the minimal set of methods based on
prioritized preferences. By taking experiments on three well-
known planning domains, we demonstrate that our approach
is effective, especially on solving new HTN problems.

Introduction
The hierarchical task network (HTN) planning technique
(Erol et al. 1994) is increasingly used in a number of real-
world applications (Lin et al. 2008; Behnke et al. 2019). In
the real-world logistics domain, such as Amazon and DHL
Global Logistics, the shipment of packages is arranged via
decomposition into a more detailed shipment arrangement
in a top-down way according to the predefined decomposi-
tion methods. In practice, there exist a vast number of cases
occurring, such as the delay caused by the weather, leading
that it is difficult and time-consuming for humans to find all
complete methods for all actions. This suggests that it is im-
portant to learn methods to help humans to improve the HTN
domain.

Normally the domain experts have partially hierarchical
domain knowledge, which possibly is not sufficient to cover
all desirable solutions (Kambhampati et al. 1998). Different
from classical planning which pursues an executable plan to

*Corresponding author.
Copyright © 2019, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

achieve the declarative goal, the solution to the HTN plan-
ning problem requires to consider the hierarchical proce-
dural goals, which are given by HTN methods. With par-
tially hierarchical domain knowledge, a solution cannot be
found via decomposition according to the given methods.
One main reason lies in that the given method set is incom-
plete, which includes at least an incomplete method lacking
subtasks. Keeping the hierarchical procedural knowledge,
Geier and Bercher (2011) proposed a hybrid planning for-
malization, HTN planning with task insertion (TIHTN plan-
ning), to allow generating plans via decomposing tasks ac-
cording to the methods but also inserting tasks from outside
the given methods. The following example shows an incom-
plete method set.

Example 1. Consider an example in the logistics do-
main, suppose every task has only one method and a de-
composition tree is shown in Figure 1. The initial task
ship(pkg1,whA, shopB) is to ship a package from city A to
city B and it has a method: to ship the package from the
warehouse to the airport by truck, from city A to city B by
plane and from the airport to the shop by truck. But in case
the plane is not in the airport of city A, then the air trans-
portation task cannot be accomplished. When arranging the
plane to airport A, fly(plane1, airpA), is done before load-
ing to the plane, it generates an executable plan. If it is not
allowed to insert actions, there is no plan to achieve the task
ship.

Actually, the plan with the inserted tasks offers a reference
to accomplish the compound tasks, we refine the method
by adding the inserted tasks. For example, the method of
airShip is refined by adding fly as its subtask. By refining
methods, we obtain new methods which generate the miss-
ing tasks, resulting in a new decomposition tree.

In practice, the missing of subtasks happens more likely
on the methods of some compound tasks than on the meth-
ods of some other compound tasks. For example, the task
ship is decomposed into the inter-city shipment and the
intra-city shipment, while decomposing the task airShip
varies with the place where the plane stays. It leads to a pri-
ority on the methods: some methods have a high priority
to be refined. An excess of methods learned will slow down
problem-solving, so we hope to learn as few refined methods
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ship(pkg1,whA,shopB)

cityShip(pkg1,whA,airpA) airShip(pkg1,airpA,airpB) cityShip(pkg1,airpB,shopB)

load drive unload

load(pkg1,plane1) fly unload

load drive unload

fly(plane1,airpA)

Figure 1: This is an Example of a decomposition tree from an incomplete HTN method set. The initial task ship(pkg1,whA, shopB) is
decomposed into a sequence of primitive tasks (the black leaves) according to the original methods. But when the plane1 is not in airport
A, the sequence is not executable. It becomes executable if arranging plane 1 to airport A before loading the package, which implies that
fly(plane1, airpA) should be considered as a subtask of airShip.

as possible. The task is however challenging, as tasks can be
inserted in various methods and an exponential number of
method sets need to be considered.

The traditional approaches to learning HTN methods,
such as (Hogg et al. 2008; Zhuo et al. 2014; Lotinac and Jon-
sson 2016), only concentrate on declarative goals and omit
procedural knowledge obtained from the domain designer,
which cannot be replaced simply by declarative goals. For
example, every package needs a security check before being
uploaded into the plane. If the action model is not complete,
such as the ‘check’ action has not the effect ‘checked’, the
declarative goal may not capture it. Besides, the approaches
(Hogg et al. 2008; Zhuo et al. 2014) require the annotated
preconditions and effects of tasks, which omit the hierarchi-
cal procedural goals and only consider the declarative goals
like classical planning, so they require a complete executable
plan as input. Whereas it is not a simple task to obtain com-
plete plans, particularly when it involves thousands of situ-
ations. Furthermore, in many domains, it is difficult to ver-
ify the correctness of the annotations of tasks when they are
taken as input. In this paper, we propose a novel framework
to learn HTN methods from HTN instances with an incom-
plete method set, which always cannot generate executable
plans only via decomposition. Besides, previous approaches
restrict the tasks in the methods to be totally ordered, while
we allow them to be partially ordered. Last but not least, we
consider a prioritized preference on the methods learned.

Our contributions are listed as follows. First, we propose
an approach to learning new methods by refining the orig-
inal methods based on decomposition trees with task in-
sertion. Second, we give a framework METHODLEARN to
learn HTN methods from HTN instances with an incom-
plete method set. To reduce the number of methods learned,
the method set learned by METHODLEARN is minimal w.r.t.
a given prioritization. Third, we take experiments on three
well-known domains and compare the percentage of solving
new problems on our approach with method sets of differ-
ent incompleteness and a classical learning approach, HTN-
MAKER (Hogg et al. 2008). The experiment result shows
that our approach is effective, especially on solving new
HTN problems.

Related Work
Besides those we mentioned above, there have been action
model learning approaches related with our work. Garland et

al. (2001) proposed an approach to construct and maintain
hierarchical task models from a set of annotated examples
provided by domain experts. Similar to the annotated tasks,
obtaining these annotated examples is difficult and needs a
lot of human effort. Our work also is related to the works
on learning the precondition of HTN methods (Ilghami et
al. 2005; Xu and Muñoz-Avila 2005), which take the hierar-
chical relationships between tasks, the action models, and a
complete description of the intermediate states as input. The
similar work also includes (Nejati et al. 2006) and (Reddy
and Tadepalli 1997), which used means-end analysis to learn
structures and preconditions of the input plans. The precon-
dition and effect of primitive actions can also be learned in
(Zhuo et al. 2009). All these approaches to learning the pre-
condition of methods require a complete method set as input.

The work on hybrid planning which combines classical
planning and HTN planning is also related with our work.
By relaxing the restriction of generating plans only via de-
composition, Geier and Bercher (2011) proposed proposi-
tional TIHTN planning which allows to inserting primitive
tasks to obtain executable plans. Later Alford et al. (2015)
generalized it into lifted TIHTN planning by allowing vari-
ables in actions and predicates. In this paper, we focus on
HTN planning and aim to learn HTN methods with the help
of TIHTN planning.

Problem Definition
We adapt the definitions of propositional HTN planning
(Geier and Bercher 2011). For a propositional language L,
a state is a subset of the propositions in L. In HTN plan-
ning, actions1, noted A, are classified into two categories:
the actions the agent can execute directly are called primi-
tive actions or operators, noted O, while the rest are called
compound actions, noted C. Every primitive action o is a
tuple (pre(o), add(o), del(o)) where pre(o) is a conjunction
of literals called its precondition; add(o) and del(o) are sets
of propositional symbols called its positive and negative ef-
fect. A primitive action o is applicable in a state s if s |=
pre(o), which results in a state γ(s, o)=(s\del(o))∪add(o).
A sequence of primitive actions o1,...,on is executable in
a state s0 iff there is a state sequence s1,...,sn such that
∀1≤i≤n, γ(si−1, oi)=si and oi is applicable in si−1.

Given a set R, we use R to denote the set of all sequences
over R and use |R| to denote the cardinality of R. For its

1“Action” is also called “task name”.
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subset X and a function f : R −→ S, its restriction to X
is f |X = {(r, s) ∈ f | r ∈ X}. For a binary relation Q ⊆
R×R, we define its restriction toX byQ|X = Q∩(X×X).
Task networks. A task network is a tuple tn=(T,≺, α)
where T is a set of tasks, ≺⊆ T × T is a set of ordering
constraints over T and α : T −→ A labels every task with
an action.

Every task is associated to an action and the ordering con-
straints restrict the execution order of tasks. A task t is called
primitive if α(t) is primitive, otherwise called compound. A
task network is called primitive iff it contains only primitive
tasks.

We say two task networks tn = (T,≺, α) and tn′ =
(T ′,≺′, α′) are isomorphic, denoted by tn ∼= tn′, if and
only if there exists a bijection f : T −→ T ′ such that for
all t1, t2∈T , t1≺t2 iff f(t1)≺′f(t2) and α(t1) =α′(f(t1)),
α(t2)=α′(f(t2)).
HTN methods. Compound actions cannot be directly exe-
cuted and need to be decomposed into a task network ac-
cording to HTN methods. Each HTN method m=(c, tnm)
consists of a compound action c and a task network tnm
whose inner tasks are called subtasks. Note that a compound
action c may have more than one decomposition method.

In a task network, the decomposition is done by selecting
a compound task, adding its subtask network and replacing
it. The constraints about the decomposed task t are prop-
agated to its subtasks: the tasks before t are before all its
subtasks and the tasks after t are after all its subtasks.
HTN problems. An HTN planning domain is a tuple D =
(L,O, C,M) where M is a set of decomposition methods
and O ∩ C = ∅. We call a pair (s0, t0) an instance where s0
is the initial state and t0 is the initial task. An HTN problem
is a tuple P = (D, s0, t0).

In different literature, the solution to the HTN problem
has different forms: mostly a plan (such as (Erol et al.
1994)), a primitive task network (such as (Behnke et al.
2017)) and a list of decomposition trees (such as (Zhuo et
al. 2014)). In this paper, we consider a solution to the HTN
problem as a decomposition tree rooted in the initial task t0.

A decomposition tree is a tuple T = (T,E,≺, α, β)
where (T,E) is a tree, with nodes T and with directed
edges E : T −→ T mapping each node to an ordered list
of its children; ≺ is a set of constraints over T ; function
α : T −→ A links tasks and actions; function β : T −→M
labels every inner node with a decomposition method.

We use � to denote the transitive closure of ≺ and the
order defined by E. We say t1 is a predecessor of t2 if t1 �
t2. Dually, we also say t2 is a successor of t1. According to
�, we say the sequence constituted by the leaf nodes of T
is its plan, denoted by ϑ(T ).
Definition 1 (Valid decomposition trees). A decomposition
tree T is valid w.r.t. an HTN problem P = (D, s0, t0) iff its
plan ϑ(T ) is executable in s0 and its root is t0 and for every
inner node t where β(t) = (c, tnm), it satisfies:

1. α(t) = c;
2. (E(t),≺|E(t), α|E(t)) ∼= tnm;
3. if (t, t′) ∈≺ then for every st ∈ E(t), (st, t′) ∈≺;
4. if (t′, t) ∈≺ then for every st ∈ E(t), (t′, st) ∈≺;

5. there are no t1, t2 such that t1 � t2 and t2 � t1.

Solutions. A solution to an HTN problem P = (D, s0, t0)
is a valid decomposition tree T w.r.t. P and we say (s0, t0)
is solved under D and is satisfied by T .

Example 2 (Example 1 cont.). If plane1 is already at air-
port A in s0, the decomposition tree drawn with black ar-
rows shown in Figure 1 is a solution to the HTN problem.
σ1 = 〈load;drive;unload;load;fly;unload;load;drive;unload〉
is its plan.

Method Learning. In this paper, we assume that the origi-
nal methods are kept as they come from the expert knowl-
edge and they are sound in some situations. So, we only con-
sider adding methods into the original domain. For an HTN
domain D = (L,O, C,M) and a method set M′, we use
D+M′ = (L,O, C,M ∪M′) to denote the resulting do-
main by addingM′ into D.

An HTN method learning problem is defined as a tuple
(D, I) where D is an HTN domain and I is a set of in-
stances. A solution of the HTN method learning problem is
a set of methodsM′ which should satisfy:

• all instances in the set I are solved under D+M′;
• the learned method setM′ is as minimal as possible;

• the learned methods inM′ have as little inserted subtasks
as possible.

Refining Methods via Task Insertion
In this paper, we focus on the HTN problem with an incom-
plete method set, where there is no valid decomposition tree
w.r.t. the problem. In other words, there is no executable
plan obtained only by applying methods. By allowing in-
serting tasks, (Geier and Bercher 2011) proposes a hybrid
planning formalization, TIHTN planning. A solution to the
TIHTN problem is a TIHTN plan which is a primitive ac-
tion sequence executable in the initial state and includes all
primitive tasks obtained by applying methods and inserted
primitive tasks. (Alford et al. 2015) gives a progression pol-
icy for TIHTN planning and it is not difficult to design a
progression-based algorithm to find a TIHTN plan and a de-
composition tree which excludes inserted primitive tasks.

Actually, the inserted tasks in the TIHTN plan are subtask
candidates: they provide clues for refining the original meth-
ods by adding them as subtasks. Then, based on a TIHTN
plan, we propose the completion profile to refine methods
and complete decomposition trees.

Inspired by (Alford et al. 2015), we propose a
progression-based algorithm to search TIHTN plans in Al-
gorithm 1. First, we say a task is unconstrained in the current
state if all its predecessors have been done and use uncons
to denote the set of unconstrained tasks in the current state.
In every step, we choose non-determinitiscally an uncon-
strained task to perform or decompose (line 4), where perfor-
mance updates the state (line 9) and decomposition updates
the tree (line 14-15). Once a task is performed or decom-
posed, it is labelled as ‘done’ (line 16). If the precondition
of the primitive task chosen is not satisfied in the current
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Algorithm 1: HPLAN(D, s0, t0)

input : An HTN domain D and an instance (s0, t0)
output: A decomposition tree T and a plan σ

1 s← s0; σ ← ∅;
2 uncons← T ← t0; E ← ∅;
3 while uncons 6= ∅ do
4 choose non-deterministically some t ∈ uncons;
5 if t is primitive then
6 if s 6|= pre(α(t)) then
7 find a plan σ′ to s′ where s′ |= pre(α(t));
8 σ ← σ ◦ σ′;
9 s← s′;

10 σ ← σ ◦ α(t);
11 s← γ(s, α(t));
12 else
13 choose non-deterministically

m = (c, tnm) ∈M s.t. α(t) = c;
14 T ← T ∪ Tm s.t. tnm = (Tm,≺, αm);
15 E ← E ∪ {t× Tm};
16 label t is done;
17 update ≺ and uncons in T ;
18 if all t ∈ T are done then
19 Return σ and T
20 Return fail

state, it searches a plan to satisfy it (line 7) via an off-the-
shelf planner, FF planner, which actually is a classical plan-
ning problem. When all tasks are labelled as done, it returns
a TIHTN plan and a decomposition tree excluding inserted
tasks.

Example 3 (Example 2 cont.). If plane1 is not at air-
port A in s0, the decomposition tree in Example 2 is not
valid as its plan σ1 is not executable in s0. While σ2 =
〈load;drive;unload;fly;load;fly;unload;load;drive;unload〉 is a
TIHTN plan to the problem.

Refining Methods and Completing Decomposition
Trees
Suppose the TIHTN planner outputs a plan σ and a decom-
position tree T , we use Iσ to denote all the inserted tasks in
σ. The TIHTN plan actually is an ordering of primitive tasks
and we extend the� relation of T by considering the exe-
cution order of primitive actions in σ. To get the compound
tasks, we use NT to denote the inner nodes of the decom-
position tree T . Next, we show how to link these inserted
tasks with the inner nodes NT of the decomposition tree T
to generate a new decomposition tree.

Definition 2. We define a completion profile as a function
ρ :Iσ −→ NT , such that for every inserted task t′ ∈ Iσ there
is not a primitive task tp ∈ σ where either both tp� ρ(t′)
and t′ � tp, or ρ(t′)� tp and tp � t′.

Intuitively, every inserted task is associated with a com-
pound task as its subtask. Every inserted task is restricted to
be performed before the predecessors and after the succes-
sors of its corresponding compound task.

Next, we define how to refine a method by inserting tasks.
A completion profile leads to a set of refined methods by
adding the relevant inserted tasks into the original methods.
Formally, for a completion profile ρ, let t be an inner node in
the decomposition tree, we use T tρ={t′ |ρ(t′)= t} to denote
all inserted tasks associated with t. Then we use T (ρ) to de-
note the range of function ρ, i.e., the inner nodes which have
a non-empty set T tρ . The inserted subtasks with the original
subtasks of t compose a new subtask network, written by
tntρ = (T tρ,�|T tρ , ασ), where ασ is the function α from the
plan σ. Every non-empty set T tρ leads to a refined method
mt
ρ=(c, (Tm ∪ T tρ,≺m ∪ �|T tρ , αm ∪ασ)) w.r.t. the origi-

nal method β(t) = m = (c, (Tm,≺m, αm)). We useMρ to
denote the set of refined methods from the completion pro-
file ρ.
Example 4 (Example 3 cont.). For the TIHTN plan σ2
and the decomposition tree in Example 1, we have a com-
pletion profile ρ where ρ(t1) = airShip and α(t1) =
fly(plane1, airpA). The refined method is (airShip, (T ′m,≺′m
, α′m)) where T ′m = {fly, load, fly, unload}.

The completion profile actually completes the decompo-
sition tree: the inserted tasks are connected with their corre-
sponding inner nodes as their children. When we add new
nodes into the decomposition tree, the integrity of ordering
constraints will be destroyed. To avoid that, we define an
operator closure to complete the ordering constraints. For-
mally, for a tree T = (T,E), we define its closure on the
ordering constraint ≺ as closure(T,E,≺), which is given
by:

≺ ∪
⋃

t∈T
{(t′, ch), (ch, t′′)|ch ∈ E(t), t′ ≺ t, t ≺ t′′}.

Intuitively, the closure operation completes the ordering
constraints about the children which should be inherited
from their parent.

Next we show how to complete the decomposition tree
according to the completion profile.

We define the completion of the decomposition tree T
by completion profile ρ w.r.t. TIHTN plan σ as Tρ =
(T ′, E′,≺′, α′, β′), which is given by:

T ′ := T ∪⋃
t∈T (ρ) T

t
ρ

E′ := E ∪ {(t, st) | t ∈ T, st ∈ T (tntρ)}
≺′ := closure(T ′, E′,≺) ∪⋃

t∈T (ρ) �|T tρ
α′ := α ∪ ασ
β′ := (β \ {(t,m) | t ∈ T (ρ)}) ∪ {(t,mt

ρ) | t ∈ T (ρ)}
The procedure of completing a decomposition tree con-

sists of first connecting the inserted tasks with the inner
nodes, then completing the ordering constraints and finally
updating the method applied as the refined method. The de-
composition tree being completed will satisfy the instance:
Proposition 1. Given an HTN problem P = (D, s0, t0), let
σ be one of its TIHTN plans and T be its corresponding de-
composition tree and ρ be one of their completion profiles.
Then the completed decomposition tree Tρ satisfies the in-
stance (s0, t0) under the new domain D+Mρ.
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Proof. First, we show that Tρ is a valid decomposition tree
w.r.t. D+Mρ. For every node t in Tρ with β′(t) = (c, tnρ),
i) the function α is not reduced, so α′(t) = c; ii) the edges
between the task t and its inserted tasks T tρ are added, so
the task network induced by its children is isomorphic with
mt
ρ; iii) closure(T ′, E′,≺) guarantees that all ordering con-

straints of t are propagated to the inserted tasks and �|T tρ
only introduces the ordering constraints among the inserted
subtasks in the same method, so conditions 3. and 4. are sat-
isfied; iv) as the completion profile guarantees that no con-
tradict pair about� is introduced, condition 5. is satisfied.

Without removing nodes, the root of Tρ is still t0. As the
plan ϑ(Tρ) is the TIHTN plan σ executable in s0, Tρ satisfies
the instance (s0, t0).

When an HTN problem has incomplete methods, the com-
pletion profile offers a way to improve the HTN domain:

Theorem 1. If an HTN problemP=(D, s0, t0) has a TIHTN
plan but no solution, then there is a completion profile ρ
where the HTN problem P ′ = (D+Mρ, s0, t0) is solvable.

Proof. Let σ be a TIHTN plan of P with its decomposi-
tion tree T . Suppose ρ is a completion profile w.r.t. σ and
T . By Proposition 1, the decomposition tree Tρ satisfies the
instance (s0, t0) under the new domain D+Mρ. So, σ is a
solution of the HTN problem P ′.

When the completion profile only add decomposition
methods, we have a corollary:

Corollary 2. Every plan of the HTN problem P = (D, I) is
also a plan of the HTN problem P ′ = (D+M′, I).

Proof. As the original methods are still in the domain, the
valid decomposition trees of the original problem P are also
valid decomposition trees of the new HTN problem P ′. So,
plans of P are also plans of P ′.

Prioritized Preferences
To formalize the experience that the missing of subtasks
happens more likely on some methods than other methods,
we consider a priority on the methods. Generally, the priority
comes from the confidences of domain experts on methods:
the method believed to lack subtasks more likely to have a
higher priority.

Given a method set M, we define a prioritization as a
partition on it: P=〈P1, ..., Pn〉 where

⋃
1≤j≤n Pj = M.

Intuitively, the decomposition methods in Pi have a higher
priority to be refined than those in Pj if i > j. We further
consider the prioritized preference in terms of cardinality.

Given a prioritization P=〈P1, ..., Pn〉 ofM, we consider
the prioritized preference ≤P as follows: for M1,M2 ⊆
M, if there is some 1 ≤ i ≤ n such that

• |M1 ∩ Pi|≤|M2∩Pi| and

• for all 1≤j<i, |M1 ∩ Pj |= |M2 ∩ Pj |,
then we writeM1≤PM2. We sayM1 is strictly preferred
overM2 w.r.t. P , written byM1 <P M2, ifM1 ≤P M2

andM2 6≤PM1.

Preferred Completion Profiles
Generally, we hope to find a completion profile changing the
original methods minimally under the prioritized preference.

We first define some notations: for a refined method mt
ρ,

we use τ(mt
ρ) to denote its original method m. For a re-

fined method setM′, we use τ(M′) to denote all the orig-
inal methods of the refined methods in M′, i.e., τ(M′) =
{m ∈M| m = τ(m′),m′ ∈ M′}. Note that several com-
pletions may be associated with the same decomposition
method. For two decomposition methods m′1 and m′2, if
τ(m′1) = τ(m′2), we say m′1 and m′2 are homologous.

Definition 3. Given a TIHTN plan and its decomposition
tree, a completion profile ρ is preferred w.r.t. preference P
if there is not a completion profile ρ′, such that τ(Mρ′) <P
τ(Mρ).

Intuitively, the preferred completion profile refines meth-
ods minimally under the prioritized preference.

Next, we will show how to find the preferred completion
profile, as shown in Algorithm 2. First, we consider all in-
serted tasks in the plan as unlabelled (line 1). Then we scan
all inner nodes from the nodes with a method of higher pri-
ority to the nodes with a method of lower priority (line 2-3).
Next, for an inner node, we find the set of candidate subtasks
∆t from the inserted tasks, which do not violate the ordering
constraints if they were inserted as its subtasks (line 5). More
specially, for the inner node t, the inserted tasks which are
executed between the last task required to be executed ahead
of t and the first task required to be after t, are allowed to be
added as subtasks of t. According to the total order + in the
decomposition tree, we define the subtasks candidate set ∆t

of t as the set of the unlabelled inserted tasks between the
last predecessor of t and the first successor of t. Finally, we
associate all tasks in the subtask candidate set to t (line 5)
and label them as subtasks (line 6). When all inserted tasks
are labelled, it returns a preferred completion profile. It must
terminate and the worst case is that the inserted tasks are as-
sociated with the root task.

Algorithm 2 only scan the nodes of the decomposition tree
once and searching the subtask candidate set can be done in
linear time, so the algorithm terminates in polynomial time.

Algorithm 2: COMPLETE(σ, T , P )

input : A TIHTN plan σ, its decomposition tree T
and a prioritization P = (P1, ..., Pn) onM

output: A completion profile ρ
1 I ← Iσ;
2 for j ← n to 1 do
3 for each t ∈ NT s.t. β(t) ∈ Pj do
4 if I 6= ∅ then
5 for every t′ ∈ ∆t ∩ I , set ρ(t′) = t;
6 I ← I \∆t;

7 return ρ

Actually, to find a preferred completion profile, we only
need to scan the inner nodes in the decomposition tree ac-
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cording to the preference and link appropriate inserted tasks
with inner nodes, which can be done in polynomial time.

Observe that the more detailed tasks are more sensitive
to these situations and more easily to be thoughtless. There
exists a class of HTN domains where actions can be stratified
according to the decomposition hierarchy (Erol et al. 1996;
Alford et al. ). In this case, we assume that an action is more
abstract than its subtasks and we consider a preference in
terms of a stratum-based priority: the more abstract actions
have a lower priority to be refined.

Learning Methods from Instances
As stated above, we only consider to introduce new meth-
ods into the HTN domain. However, an excess of methods
introduced may slow down problem-solving significantly, as
there are excessive choices to decompose tasks. To reduce
the number of methods learned, we consider the minimal
set of methods learned under the prioritized preference. We
propagate the prioritized preference to the refined methods:
if τ(m′) ∈ Pj then m′ ∈ Pj .
Definition 4. Given a method setM′ and its prioritization
P , a subsetM′0 ofM′ is the minimal set w.r.t. P if there is
not a subsetM′1 ofM′ such thatM′1 <P M′0.

To learn as few methods as possible, we first compute a
preferred completion profile w.r.t. the stratum-based priori-
tized preference and then compute the minimal method set.

SupposeM′ is a set of methods learned, we use I(M′) to
denote the solvable subset of I w.r.t. D+M′. Furthermore,
we use T (M′) to denote the set of decomposition trees w.r.t.
D+M′. The decomposition trees and the instances solved
are monotonic w.r.t. the methods learned:

Proposition 2. IfM1 ⊆M2, then T (M1) ⊆ T (M2) and
I(M1) ⊆ I(M2).

Proof. When M1 ⊆ M2, it means that there are more
methods to be chosen to decompose compound tasks, in con-
sequence there will be more decomposition trees generated.

As every HTN plan comes from the decomposition tree,
if an instance i ∈ I(M1) has an HTN plan, then it has
a decomposition tree T i satisfying it, entailing that T i ∈
T (M2). Thus, the instance i also in I(M2).

Method substitution. The completion profiles from various
instances may induce many refined methods which decom-
pose the same compound action and generate similar exe-
cutable plans. The vast increase in the number of methods
will slow down the problem-solving significantly and we
need to reduce the redundant refined methods which can be
replaced by other methods. To compute the minimal set, we
need to remove the redundant refined methods and define a
method substitution operator.

Definition 5. Given a decomposition tree T =(T,E,≺,
α, β), let Tm1

be the inner nodes with method m1 and
m2 = (c, (T2,≺2, α2)) be a homologous method with m1.
We define the decomposition tree that substitutes the method
m1 in T with m2 as sub(T , t,m′) = (T ′, E′,≺′, α′, β′),

given by:

T ′ := (T \⋃t∈Tm1
T add
t (m1)) ∪⋃

t∈Tm1
T add
t (m2)

E′ := E|T ′ ∪⋃
t∈Tm1

({t} × T add
t (m2))

≺′ := closure(T ′, E′,≺ ∪ ≺2)

α′ := α′|T ′ ∪ α2

β′ := (β \ {(t,m1)|t ∈ Tm1}) ∪ {(t,m2)|t ∈ Tm1}

where T add
t (m) denotes the inserted subtasks w.r.t. t for the

refined method m.

After substituting a method m1 with another homologous
method m2, if the resulting decomposition tree still satis-
fies the instance, it means that for this instance, the replaced
method m1 is redundant and can be replaced by m2.

Proposition 3. For two homologous methods m1,m2, let
T ′ = sub(T ,m1,m2). If T satisfies an instance (s0, t0)
and ϑ(T ′) is executable in s0, then T ′ satisfies (s0, t0).

Proof Sektch. It is not difficult to prove T ′ is a valid decom-
position tree, which entails that it satisfies the instance.

Next, we generalize the notion of substitution into the de-
composition tree set: given a decomposition tree set T and
two method setsM′1,M′2, we define the set of the decompo-
sition trees that substitutes every occurrence of every method
m′1 inM′1 with some method m′2 inM′2 which is homolo-
gous with m′1, written by sub(T ,M′1,M′2). With the sub-
stitution operator, we can reduce the refined methods:

Proposition 4. Given an HTN domain D and an instance
set I, let T be its decomposition tree set, each tree of which
satisfies its corresponding instance. For a refined method set
M′ and its subset M′j , if the plan of every decomposition
tree in sub(T ,M′,M′j) is executable in the corresponding
initial state, then I(M′) = I((M′ \H(M′j))∪M′j) where
H(M′j) is the set of methods homologous with the methods
inM′j .

Proof. By Proposition 3, for every instance i = (si0, t
i
I) in I

and its decomposition tree T i ∈ T , if ϑ(sub(T i,M′,M′j))
is executable in si0, then it satisfies i. When the methods in
(H(M′j) \ M′j) are substituted, every instance is satisfied
w.r.t. the remaining methods.

Theorem 3. Given a method set M′ and its prioritization
P , there exists a minimal subset M′0 of M′ w.r.t. P such
that I(M′0) = I(M′).

Proof. AsM′ is finite, the minimal subset exists and in the
worst case,M′ itself is minimal.

Next we give an algorithm for the HTN method learn-
ing problem, as shown in Algorithm 3. The framework con-
sists of two main components: the first iteration for learning
methods by refining methods (line 2-8) and the second it-
eration for reducing refined methods (line 9-11). The first
iteration first finds a TIHTN plan and its decomposition tree
for every instance (line 3) by HPLAN and then computes
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Algorithm 3: METHODLEARN(D, I, P )

input : An HTN domain D, an instance set I and a
prioritization P = (P1, ..., Pn) onM

output: A new method setM′
1 M′ ← ∅; T ← ∅;
2 for each i in I do
3 compute a plan and decomposition tree

(σi, T i) = HPLAN(D, i);
4 ρi = COMPLETE(σi, T i, P );
5 complete the decomposition tree T i to T iρ by ρi;
6 T ← T ∪ T iρ ;
7 construct a new method setMi

ρ from ρi;
8 M′ ←M′ ∪Mi

ρ;

9 for j ← 1 to n do
10 compute the minimal subsetM′j of Pj [M′] s.t.

every tree in sub(T ,M′,M′j) satisfies their
corresponding instance;

11 M′ ← ⋃
1≤j≤nM′j ;

12 returnM′

each preferred completion profile (line 4) by COMPLETE.
Next, these decomposition trees are completed and a set of
refined methods are constructed according to the completion
profiles (line 5-8).

To reduce the refined methods, if the constants in the in-
serted subtasks are identical with the arguments in the sub-
tasks and compound task, we use the corresponding vari-
ables to replace the constants in the inserted subtasks (line
8).

In the second iteration, we use a greedy strategy to find
the minimal set: the refined methods with lower priority are
reduced first, which is the opposite against the procedure
of searching the preferred completion profile. Here we use
Pj [M′] to denote the refined methods in M′ whose orig-
inal methods are in the priority Pj . By Proposition 4, the
refine methods in Pj [M′] can be replaced byM′j for every
instance andM′j is minimal in the priority Pj .

To pursue the refined methods with as few subtasks as
possible, we take a breadth-first strategy to find the inserted
tasks when computing TIHTN plans (line 7 in Algorithm 1).

In fact, our approach outputs a method set which some-
times may be a second-best solution for criterion 2 and 3 of
the solutions, while it satisfies criterion 1:
Theorem 4. Suppose M′ is the method set learned by
METHODLEARN(D, I, P ), if every instance in I has a TI-
HTN plan under the domain D, then it also has a solution
under the domain D+M′.
Proof. As every instance has a TIHTN plan, by Proposition
1, there exists a set of decomposition trees T , each of which
satisfies each instance w.r.t. the domain D+M′′ whereM′′
is a method set obtained via completion profiles (line 2-8
in Algorithm 3). Then M′⊆M′′. By Proposition 4, each
decomposition tree in sub(T ,M′′,M′) satisfies its corre-
sponding instance in I. Thus, every instance is solvable un-
der the new domain D+M′.

Experimental Analysis
We have implemented Algorithm 3 based on Python 3.0 and
developed an HTN method learner METHODLEARN. In this
section, we evaluate METHODLEARN in three well-known
planning domains comparing with HTN-MAKER (Hogg et
al. 2008) on the learning performances.

We consider three domains which are evaluated on in
HTN-MAKER (Hogg et al. 2008), i.e., Logistics, Satellite,
and Blocks-World, to evaluate our approach. We first get
the problem generators from International Planning Com-
petition website2 and randomly generate 100 instances for
each domain and take 75 instances as the training set and
25 instances as the testing set. We run METHODLEARN
and HTN-MAKER with 75 instances growingly as input
and obtain different learned method sets from these two ap-
proaches. The planning instance in the testing set is consid-
ered as solved, if its goal is achieved by a plan computed
under the learned HTN method set via an HTN planner. For
HTN-MAKER we use the well-known HTN planner SHOP2
(Nau et al. 2003) and for our approach METHODLEARN we
still use Algorithm 1 without task insertion. The time bound
of the HTN planner is set to 3600 seconds. In order to check
if an instance is solved, we add a verifying action whose
precondition is the goal and whose effect is empty in the
last subtask of the initial task. The learning performance is
measured via the percentage of the number of the solved in-
stances on that of the testing instances, which is called the
percentage of instance solved.

To simulate the incomplete method set as the input of
METHODLEARN, we take the HTN domain description in
the website3 of SHOP2, and remove different sets of sub-
tasks. Furthermore, to evaluate the influence of the differ-
ent incompleteness of the given method sets on the learning
performance, we consider three removal cases: 1) remove
one primitive task from each method (if exists), with mean-
ing the high completeness, noted by ML-H; 2) remove two
primitive tasks from each method (if exists), noted by ML-
M, with meaning the middle completeness; 3) remove one
more compound task in some method of ML-M, noted by
ML-L, with meaning the low completeness.

Consider the method set shown in Figure 1, For ML-H,
we remove the first drive and the first fly in the methods
cityShip and airShip, respectively, while for ML-M, we re-
move all drive and fly in the methods. For ML-L, the first
cityShip is additionally removed from the method of ship
based on the ML-M setting.

Figure 2 shows the learning performances of our approach
and HTN-MAKER in the three domains. Generally, with the
training set growing, the percentage of the problems solved
increases, which does not violate Proposition 2. For the Lo-
gistics and Satellite domains, in the settings of ML-H and
ML-M, METHODLEARN learns the necessary methods to
solve all testing problems from a few instances. It is because
the structure of these two domains is relatively straightfor-
ward and the decomposition trees still can be constructed by
the incomplete method sets. In the ML-L setting, the com-

2http://ipc02.icaps-conference.org/
3https://www.cs.umd.edu/projects/shop/
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(a) The Logistics Domain (b) The Satellite Domain (c) The Blocks-World Domain

Figure 2: The Percentage of Solving Instances on Our Approach with Different Incomplete Method Sets and HTN-MAKER

pound action removed in the Logistics Domain, cityShip,
contains more arguments, making the methods learned be-
come more case-specific, which cannot contribute to other
instances. For the Blocks-World domain, it cannot achieve
the full convergence in each setting. The reason is that there
are a few special instances which are significantly differ-
ent from the training instances, resulting in that the methods
learned hardly suit these special testing instances.

To evaluate our assumption on the stratum-based priori-
tized preference, we also compare it against a random pri-
oritized preference, denoted by ML-H-RandP in Figure 2.
When a completion profile associates the inserted tasks to a
more abstract tasks, it generates a more case-specific method
which may not suit other instances. It is shown that consider-
ing the stratum-based prioritized preference leads to a better
learning performance.

Discussion and Conclusion
We suppose that in the original method set, every compound
action at least has a method to decompose. Our approach
also can accept classical planning instances which only have
a goal formula: we can trivially introduce a compound action
of achieving the goal which is decomposed into a verifica-
tion action whose precondition is the goal and whose effect
is empty. Note that we only invoke a TIHTN planner to ob-
tain plans for refining methods and focus on HTN problems.
Also, the TIHTN planner needs to search actions to insert
from the vast number of action candidates, a refined method
including the missing subtasks helps to find the plan.

To sum up, we present a framework to learn HTN meth-
ods from HTN instances by refining methods. We also show
that the methods learned by our framework are likely to
solve new instances in the same classical planning domain.
The experiment results demonstrate that our approach out-
performs the traditional method learning approach, HTN-
MAKER, given an appropriately incomplete method set as
input. It is also illustrated that the stratum-based prioritized
preference is effective.
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Abstract

Planning systems usually operate on grounded representa-
tions of the planning problems during search. Further, plan-
ners that use translations into other combinatorial problems
also often perform their translations based on a grounded
model. Planning models, however, are commonly defined in a
lifted formalism. As such, one of the first preprocessing steps
a planner performs is to generate a grounded representation.
In this paper we present a new approach for grounding HTN
planning problems that produces smaller groundings than the
previously published method. We expect this decrease in size
to lead to more efficient planners.

1 Introduction
Most modelling languages for planning problems (such as
PDDL (McDermott 2000)) allow for specifying planning
problems in a lifted fashion, e.g. by allowing the modeller
to specify actions with parameters whose preconditions and
effects are specified using literals referring to these param-
eters. Using a lifted representation, a modeller can easily
write models with a large number of instantiated actions
without the need to enumerate them explicitly. More im-
portantly, a lifted representation of the planning problem
enables the modeller to specify a single planning domain
that can be used in multiple planning problems without any
change to the model. In a grounded formalism, the domain
(e.g. the set of actions) changes depending on the planning
problem at hand, while it does not in a lifted representation.

Unfortunately, to plan directly using only the lifted model
is rather difficult, which is witnessed by the absence of a
large body of work e.g. on lifted heuristics. Most planners
transform the lifted representation of the planning problem
they receive as an input into a grounded representation be-
fore planning. Planning is then performed on the grounded
representation, for which heuristics are readily available.
Naively grounding the lifted representation by simply in-
stantiating all its elements is seldom feasible due to the huge
size of the naively grounded model. Instead, the grounding
procedure aims to remove as many unnecessary instantia-
tions as possible. Smaller groundings are generally advanta-
geous to planners, as their per-search-node effort decreases
and the quality of heuristics can improve. Even small de-
creases in the size of the grounding can have a huge impact

on the efficiency of the planner. As such, grounding is a crit-
ical step in the process of planning.

For Hierarchical Task Network (HTN) planning (Bercher,
Alford, and Höller 2019), there is – as far as we know
– only a single paper explicitly concerned with grounding
HTN planning domains (Ramoul et al. 2017). Several other
HTN planners plan in a grounded way (e.g. FAPE (Dvorak
et al. 2014) and PANDA (Bercher, Keen, and Biundo 2014;
Bercher et al. 2017)), but there is no published work about
their grounding procedures.

In this paper we report on the grounding procedure used
in a variety of systems based on the PANDA framework,
e.g. the plan-space-based system (Bercher, Keen, and Bi-
undo 2014; Bercher et al. 2017), the progression-based sys-
tem (Höller et al. 2018; Höller et al. 2019b), the SAT-
based system for totally and partially ordered HTN planning
(Behnke, Höller, and Biundo 2018a; 2018b; 2019a; 2019b),
and the SAT-based HTN plan verifier (Behnke, Höller, and
Biundo 2017). PANDA and its grounder have also already
been used in practical applications where a fast grounding
procedure is necessary. Notably, we have used it to create
plans instructing novice users on how to use electronic tools
for DIY home-improvement projects (Behnke et al. 2018;
2019). We start by describing the lifted HTN planning for-
malism, then give an overview of grounding in planning,
describe the grounding procedure used by PANDA, and
lastly compare our grounding against the grounding found
by GTOHP (Ramoul et al. 2017).

2 Lifted HTN Planning Formalism
Before explaining our HTN grounding procedure, we start
by briefly describing the formalism of lifted HTN planning.
We have based our formalism on the lifted one by Alford,
Bercher, and Aha (2015), which in turn is based on the for-
malism by Geier and Bercher (2011).

Assume that L = (P, T, V, C) is a quantifier- and
function-free first-order predicate logic with the following
elements. P is a finite set of predicate symbols. A predi-
cate’s arity defines its number of parameter variables (taken
from V ), each having a certain type (defined in T ). T is a
finite set of type symbols. V is a finite set of typed variable
symbols to be used by the parameters of the predicates in P .
C is a finite set of typed constants. Based on the predicate
logic L, we denote with S the power set of all ground facts
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navigate(?s, ?f)

pay-toll(?s, ?f)

load(?p, ?f)

navigate(?f, ?t)

pay-toll(?f, ?t)

unload(?p, ?t)

Figure 1: A task network in a simple transportation domain.
If performed, it will transport a package from its initial lo-
cation to its target location. We assume that there is just one
transporter. The variables ?s (start location), ?f (initial pack-
age location), and ?t (target package location) are of type
location. The variable ?p is of type package. Parallelism be-
tween the pay-toll and navigate tasks models that the toll can
be paid at any time while the transporter is on its way from
the one location to another.

over L.
The most basic data structure in HTN planning is a task

network. It represents a partially ordered multi-set of tasks.
HTN planning distinguishes two types of tasks: primitive
and abstract ones. Task networks can contain both primitive
and abstract tasks. Each task is identified by its task name
and a parameter sequence. For instance, a (primitive) task
for driving from a source location ?ls1 to a destination loca-
tion ?ld is denoted by the first-order atom drive(?ls, ?ld). We
do not differentiate between the expressions task and task
names – both are used synonymously.

Definition 1 (Task Network). A task network tn over a set
of task names X (first-order atoms) is a tuple (I,≺, α,VC )
with the following elements:
1. I is a finite (possibly empty) set of task identifiers.
2. ≺ is a strict partial order over I .
3. α : I → X × V maps task symbols to task names and

their parameter variables
4. VC is a set of variable constraints. Each constraint can

bind two task parameters to be (non-)equal or it can con-
strain a task parameter to be (non-)equal to a constant.

For simplicity, we only allow variables as arguments for
tasks. If it is desired that an argument of a task should be a
constant, one can simply introduce a new variable and bind
it to the value of the constant in VC . As an example for a
task network consider the one shown in Fig. 1.

Task networks can contain primitive and abstract tasks.
Primitive tasks are identical to actions in classical planning.
They are identified via first-order atoms like drive(?f, ?t) and
are specified via their preconditions pre and effects eff. For
the purposes of this paper, we assume that pre is a conjunc-
tion of positive first-order literals over L’s predicates and eff
is a conjunction of (positive and negative) first-order literals.
The variables occurring in pre and eff must be parameters of
name. Note that for more complex preconditions and effects,
this normal form can be achieved via compilation into (po-

1We adopt the convention of PDDL (McDermott 2000) to de-
note variables with a prefixed question mark. I.e. ?a is a variable,
while a denotes a constant.

tentially) multiple new actions. However a native approach
for handling them is usually more efficient.

Abstract tasks are identified by their name and arguments,
e.g. navigate(?f, ?t). Their semantics is given in terms of
pre-defined means for performing them, which are described
by decomposition methods M . A decomposition method
m ∈ M is a tuple (c, tn,VC ) consisting of an abstract
task name c, a task network tn, and a set of variable con-
straints VC . The variable constraints VC allow to specify
(co)designations between the parameters of c and either the
variables in the task network tn or constants.

An HTN planning problem consists of the problem’s
primitive and abstract tasks, all available decomposition
methods, the initial state and the initial task network.
Definition 2 (Planning Problem). A lifted HTN planning
problem P is a tuple (L, TP , TC ,M, sI , tnI), where:
• L is a quantifier- and function-free first-order predicate

logic.
• TP and TC are finite sets of primitive and abstract tasks.
• M is a finite set of decomposition methods with abstract

tasks from TC and task networks over the names TP ∪TC .
• sI ∈ S is the initial state, i.e., a ground conjunction

of positive literals over the predicates assuming closed
world assumption.

• tnI is the initial task network, not necessarily ground.
An HTN planning problem is called ground if all predi-

cates of its predicate logic have arity zero (i.e. they have no
parameters).

The aim in an HTN planning problem is to refine a given
initial abstract task sI into an executable, ground, primitive
task network. A task network is primitive if all tasks in it are
primitive. It is ground if all variables are assigned to con-
stants via variable constraints. It is further executable if there
is a linearisation of its tasks that is executable in the ini-
tial state. The refinement of the initial task network is per-
formed via repeatedly applying decomposition methods to
the abstract tasks contained in it and the resulting task net-
works. Applying a decomposition method (c, tnc,VC ) to a
task network tnmeans to replace an occurrence of the task c
in tn by the contents of the task network tnc and to add the
variable constraints VC to the resulting task network. In ad-
dition we have to add variable constraints that co-designate
the parameter variables of the abstract task in the method
with the actual parameters of the task c that is decomposed
inside tn.
Definition 3 (Decomposition). Let m =
(c(?x1, . . . , ?xn), tnm) with tnm = (Im,≺m, αm,VCm))
be a decomposition method, tn1 = (I1,≺1, α1,VC 1) a task
network. We assume that Im ∩ I1 = ∅ and that the sets of
variables occurring in tn1 and tnm are disjunct, which can
be achieved by renaming. Then, m decomposes a task iden-
tifier i ∈ I1 into a task network tn2 = (I2,≺2, α2,VC 2) if
and only if α1(i) = c(?y1, . . . , ?yn) and

I2 = (I1 \ {i}) ∪ Im
≺2 = (≺1 ∪ ≺m∪

{(i1, i2) ∈ I1 × Im | (i1, i) ∈ ≺1} ∪
{(i1, i2) ∈ Im × I1 | (i, i2) ∈ ≺1})
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navigate(?f, ?t) unload(?p, ?t)

navigate(?a ,?c) 7→ drive(?a, ?b) navigate(?b, ?c)

drive(?f, ?b) navigate(?b, ?t) unload(?p, ?t)

Figure 2: The first row shows a task network tn1. The sec-
ond row shows a method for the navigate task. The result of
applying this method to the navigate task in tn1 results in
the task network shown in the third row.

\ {(i′, i′′) ∈ I1 × I1 | i′ = i or i′′ = i}
α2 = (α1 ∪ αm) \ {(i, c(?y1, . . . , ?yn))}

VC 2 = VC 1 ∪VC 2 ∪ {?xi =?yi | 1 ≤ i ≤ n}
Instead of introducing additional equality constraints over

the variables, we could also replace all occurrences of ?xi
in tn1 with ?y1, which is more useful in practice as it in-
troduces variables only if necessary. Further, variable con-
straints are simply added and not propagated. This elimi-
nates the necessity for handling constraints between propa-
gated variables. Of course, an implementation would always
propagate variable constraints as far as possible.

In Def. 1, we allowed a task network to contain no tasks at
all, i.e. we allowed for I to be the empty set. Thus methods
may decompose abstract tasks into such task networks. This
is sensible and occurs (somewhat) frequently in practice.
Consider the abstract task navigate(?f, ?t) where ?f =?t.
Such a task can be achieved without doing anything, i.e. by
the empty task network. All ordering constraints relating to
it are not lost, as their transitive implications are kept during
decomposition. Similarly, the parameter variables of the de-
composed abstract task remain variables of the decomposed
task network, i.e. no constraints can be lost.

As an example for applying a decomposition method,
consider the task networks and the method shown in Fig. 2.

3 Grounding Planning Problems
As in classical planning, both theoretical reserach (see e.g.
(Höller et al. 2014; Behnke, Höller, and Biundo 2015; Höller
et al. 2016; Behnke et al. 2016; Bercher et al. 2016; Al-
ford et al. 2016)) and practical research (Behnke et al. 2018;
2019) on hierarchical planning is usually done on grounded,
i.e. variable-free models instead of lifted models. Especially
newer search-based HTN planners like FAPE (Dvorak et al.
2014), GTOHP (Ramoul et al. 2017), or PANDA (Bercher,
Keen, and Biundo 2014; Bercher et al. 2017) ground a given
lifted planning problem prior to search. A grounded model
allows for both a more efficient implementation of the search
itself and for easier to compute and more concise heuristics.
In contrast, the translation technique by Alford et al. (2016)
is executed on the lifted model – grounding is only per-
formed on the resulting classical model.

In theory, computing a grounded model based on a given
lifted model is easy. One has to compute all possible in-
stantiations of lifted predicates, primitive and abstract tasks,

and methods and replace their lifted versions appropriately
by them. For details regarding the full grounding process
we refer to the work of Alford, Bercher, and Aha (2015).
Naturally such a grounding will be exponential in size with
respect to the original domain. As such, a fully grounded
model is not useful in many practical cases, as handling it
within given memory and time limits is hard or even impos-
sible.

In many planning problems, computing all instantiations
of all predicates, tasks, and methods is not necessary. For ex-
ample, it is not necessary to create a grounding drive(l1, l2)
of the drive action if there is no road between the locations
l1 and l2. For such an instantiation drive(l1, l2), we know
a priori that its precondition can never be fulfilled2. Thus
this action cannot be part of any plan. Ideally, we would like
to compute only those groundings of predicates, tasks, and
methods that occur in some solution to the planning prob-
lem. Determining (exactly) whether this is the case is unfor-
tunately undecidable. This is caused by the fact that deciding
whether a given HTN planning problem has a solution or not
is undecidable (Erol, Hendler, and Nau 1996). If determin-
ing that a task occurs in no solution would (in general) be
decidable, we would have a finite-time procedure for testing
whether a given HTN planning problem is solvable: simply
run the test on all its primitive tasks. A solution exists if
and only if at least one of them is contained in any solution
(excluding the detectable case of a possible empty solution,
which can be tested in advance in polynomial time).

Instead, we aim at computing an approximation of this
property. I.e. we are looking for a subset of all ground
instances of predicates, tasks, and methods such that all
ground instances not included in that set are not contained
in any solution. As such, we do not include a grounding if
we can prove that it cannot be contained in a solution.

This technique of approximate grounding is widely used
in classical planning. In general, an action is not included in
the grounding if it cannot be part of any executable plan in
the delete-relaxation of the problem. The delete-relaxation
of a planning problem is a copy of the problem in which all
negative effect literals are removed. For a given action one
can determine in polynomial time whether it is part of any
delete-relaxed plan (Bylander 1994). The set of these actions
is usually computed via a planning graph (Blum and Furst
1997). Often, this reduction leads to a significant decrease in
the size of the grounded problem. Some planning systems,
like FF (Hoffmann and Nebel 2001) first compute the full
grounding and subsequently prune actions3. This, however,
does not eliminate the bottle-neck of grounding, but makes
the grounding smaller for the planning process itself. An ef-
ficient implementation based on DATALOG was proposed
by Helmert (2009), which does not have this bottle-neck of
a full instantiation.

To the best of our knowledge there is currently only
one publication in the field of HTN planning devoted

2Assuming that there is no means to build new roads.
3Note that FF uses the concept of inertia (Koehler and Hoff-

mann 2000) to simplify the preconditions and effects before full
grounding.
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to grounding in more detail, which is the grounder of
GTOHP (Ramoul et al. 2017). It uses a grounding proce-
dure similar to that of FF (Hoffmann and Nebel 2001) and
similarly uses the concept of inertia (Koehler and Hoff-
mann 2000). Inertia of a predicate describes the ways its
truth value can change while a plan is executed – not at
all, only from negative to positive (or vice versa), or in both
directions. In inertia-based simplification, a primitive task
whose precondition evaluates to false under the computed
inertia values is removed from the planning problem, as it
can never become executable. Subsequently, all methods it
is contained in are removed as well. If an abstract task has
no applicable method remaining it is likewise removed.

Note that the procedure used by GTOHP removes effect-
less actions from the methods they are contained in (Ramoul
et al. 2017). The respective methods are not pruned after-
wards (which would be incorrect), but considered part of the
correct grounding without the removed effectless actions.
According to the formalisation of HTN planning, these ac-
tions can however be contained in plans – and pose con-
straints in them. As such as it makes any found solution (po-
tentially) invalid as it may not adhere to the solution criteria
of HTN planning. As a notable example, a state-based goal
description (like used in classical planning) can be encoded
in an HTN planning problem as an additional effectless ac-
tion, which would be pruned by GTOHP. As such, the plan-
ner would not be obliged to reach a goal state. Also “mov-
ing” the preconditions of these effectless actions to other ac-
tions within the same method is not correct (i.e. equivalent
transformation). Moving the precondition would require it to
hold in conjunction with the precondition of another action,
which is not required in the original problem, as another ac-
tion could be ordered in between. Secondly, the implemen-
tation of GTOHP does not allow for two parameters of one
action or method to be instantiated with the same constant.
Consider as an example a method that paints two wooden
boards ?b1 and ?b2 in colours ?c1 and ?c2. GTOHP enforces
that ?c1 and ?c2 are different without this constraint being
a part of the domain. This leads to an invalid grounding,
this time when the (only) solution uses the method where
both colours are, e.g. red, as we only have red paint. For our
evaluation (Sec. 5), we have fixed both issues in the code of
GTOHP.

4 Grounding HTNs
Our grounding procedure includes three steps: a lifted do-
main simplification, computing delete-relaxed reachability,
and a hierarchical reachability analysis based on a graph
called the Task Decomposition Graph (TDG) (Elkawkagy
et al. 2012; Bercher et al. 2017).

4.1 Parameter Splitting
As a first step, we perform simplification operations on the
lifted model. For example, we compile disjunctions in pre-
conditions into additional actions, and compile away nega-
tive preconditions. Similarly, we compile away variables oc-
curring in preconditions and effects (i.e. those that are con-
tained in quantified expressions) into additional parameters.

Beside these common simplifications known from classi-
cal planning, our grounder performs an HTN-specific sim-
plification operation on the lifted model with the aim of
reducing the size of the grounding. In some HTN plan-
ning domains, lifted decomposition methods contain vari-
ables that are (1) used only as parameters of a single or very
few subtasks and (2) which are not parameters of the ab-
stract task. As an example, consider an abstract task A(?x)
with a method decomposing it into the tasks B(?x, ?y) and
C(?x, ?z). Further assume that all variables have the same
type t which contains the constants C = {c1, . . . , cn}. If we
ground this method, it has n3 ground instances. Notably, we
have to ground every possible combination of the otherwise
independent parameters ?y and ?z.

We can equivalently represent this method by three new
methods while introducing two new abstract tasks. Let these
abstract tasks be B∗(?x) and C∗(?x). The three decompo-
sition methods are A(?x) 7→ B∗(?x), C∗(?x)4, B∗(?x) 7→
B(?x, ?y), and C∗(?x) 7→ C(?x, ?z). For these three meth-
ods, there are 2n2+n groundings plus an additional 2n new
groundings of abstract tasks (B∗ and C∗), which is a signif-
icant improvement over the original model.

In general, we can perform this operation whenever there
is a variable ?x in a method that is only a parameter of one
of the subtasks A and its variable constraints connect it only
to the other parameters of A. We can sometimes also per-
form this splitting of parameters into additional methods if
the variable occurs in multiple subtasks A1, . . . , Ak. Since
we have to equivalently transform the model, we have to as-
sure that by applying multiple decompositions, the original
method is still correctly represented in the model. As such,
we only split away a group of actions A1, . . . , Ak if all of
them have the same relative ordering against the other tasks
in the method. We then replace them by a new single abstract
task A∗ with this relative order and a method for A∗ decom-
posing it intoA1, . . . , Ak with their internal order. By apply-
ing the method for A∗ to the instance of A∗ in the changed
main decomposition method, we obtain the original method.
Note that A∗ can have more parameter variables than the in-
dividual actions, i.e. it can increase the number of abstract
tasks significantly. Their number is however limited by the
number of ground methods. Thus we assume that this com-
pilation is not an issue in practice.

4.2 Delete-Relaxed Reachability
After the initial simplification of the domain, we perform
a delete-relaxed reachability analysis to determine which
groundings of primitive tasks can possibly occur in any exe-
cutable task network. Our implementation is succinct in the
sense that it never considers groundings that are not delete-
relaxed reachable, similar to the DATALOG-based imple-
mentation by Helmert (2009). We have opted for a native
implementation of the planning graph algorithm.

4.3 TDG-based Hierarchical Reachability
Our hierarchical reachability analysis is based on a data-
structure called the Task Decomposition Graph (TDG).

4To remain correct, B∗ and C∗ have the order of B and C.
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We first introduce the definition as given by Bercher et
al. (2017). After introducing the declarative definition, we
describe how it is built algorithmically (in the next section).

Definition 4 (Task Decomposition Graph (TDG)). Let P =
〈L, TP , TC ,M, sI , tnI 〉 be an HTN planning problem. With-
out loss of generality, we assume that tnI contains just a sin-
gle ground abstract task TOP for which there is exactly one
method in M .5

The bipartite graph G = 〈VT , VM , ET→M , EM→T 〉, con-
sisting of a set of task vertices VT , method vertices VM , and
edges ET→M and EM→T is called the TDG of P if it holds:

1. Base Case (task vertex for the given task)
TOP ∈ VT , the TDG’s root.

2. Method Vertices (derived from task vertices)
Let c ∈ VT and there is a method (c, tn,VC ) ∈M . Then,
for all groundings vm that satisfy the variable constraints
in VC it holds that:
• vm ∈ VM
• (vt, vm) ∈ ET→M .

3. Task Vertices (derived from method vertices)
Let vm ∈ VM with vm = (c, tn,VC ) and tn =
(I,≺, α,VC ). Then, for all tasks i ∈ I with α(i) = vt
the following holds:
• vt ∈ VT
• (vm, vt) ∈ EM→T .

4. Tightness
G is minimal, such that 1. to 3. hold.

A TDG is a directed graph. Nodes represent either ground
tasks or ground methods. A task node has outgoing edges to
each applicable ground method, and each method has outgo-
ing edges to its ground subtasks. This means the graph is a
representation of hierarchical reachability, i.e. which ground
tasks and methods can possibly be reached via decomposi-
tion. As can be seen from the definition, it is bound linearly
in the number of ground methods. It can be constructed in
linear time in case the planning problem P is ground and in
exponential time in case P is lifted.

Note that the TDG can represent HTN planning problems
that contain cyclic methods. A cyclic decomposition is a se-
quence of decompositions of a grounded task c that results
in a task network containing c again. If the planning problem
contains such a cycle, the edge representing the method that
produces the recursive occurrence of c simply points back to
the vertex created for the first occurrence of c.

TDGs constructed based on the definition contain only
those groundings reachable from the initial task by decom-
position. As proposed by Elkawkagy, Schattenberg, and Bi-
undo (2010) one can delete those method nodes that con-
tain a primitive task not reachable in a state-based reach-
ability analysis like the planning graph. As a consequence
of removing those methods6, there may be abstract tasks in
the TDG that cannot be decomposed into a task network

5If the problem specifies an initial partial plan tnI we can ob-
tain the required form by adding a new artificial (parameter-free)
abstract task TOP that decomposes exactly into tnI .

6Or in rare cases by a mistake of the modeller.

containing only primitive actions any more. For example,
removing a method containing a not delete-relaxed reach-
able action might remove the only option to exit a recursive
method structure. If such an abstract task occurs in a task
network during decomposition, we know that it is impossi-
ble to refine that task network into a solution. We can thus
prune the abstract task – and consequently all methods it is
contained it. Removing these methods may again allow us to
remove other abstract tasks, thus one can repeat this process
until convergence (Def. 2b). These tasks can be identified
in polynomial time by relying on a bottom-up reachability
analysis (Alford et al. 2014, proof of Thm. 3.1).

We parametrize the previous definition of a TDG by spec-
ifying an additional set of primitive ground tasks: these are
the actions that are (supposed to be) reachable (like, e.g. the
actions reachable in the planning graph).

Definition 5 (Pruned TDG). Let P = 〈L, TP , TC ,
M, sI , tnI 〉 be an HTN planning problem and G =
〈VT , VM , ET→M , EM→T 〉 the respective TDG according to
Def. 4. Let X be the set of actions as given above.

Then, the pruned TDG GX = 〈V ′T , V ′M , E′T→M , E
′
M→T 〉

that exploits the reachability information for the actions in
X is given as the minimal connected subgraph containing
TOP such that:

1. Remove Useless Method Vertices
A method vertex vm = (c, tn,VC ) ∈ VM with tn =
(I,≺, α,VC ) is in V ′M if and only if I does not contain
a task i with α(i) 6∈ X in case α(i) is primitive or with
α(i) being useless, in case it is abstract (see below).

2. Identify Useless Abstract Task Vertices
An abstract task vertex vt ∈ V ′T is called useless if one of
the following holds:
(a) the pruned TDG GX does not contain children for vt

(i.e., all successors of vt were pruned)
(b) there is no acyclic connected subgraph of the pruned

TDG GX with root vt, in which every abstract method
vertex has exactly one outgoing edge and no vertex is
useless (i.e., the task vt cannot be decomposed into a
set of primitive tasks)

Whereas the parameter splitting described before is pro-
posed in this paper the very first time, the TDG-based
grounding procedure in contrast has a rather long history.
Initial ideas were first proposed by Elkawkagy, Schatten-
berg, and Biundo (2010) showing how to compute a pruned
decomposition tree (TDT), which was exploited during
search. They described the key ideas of deleting actions that
cannot be reached by a delete-relaxed reachability analysis,
triggering further deletions of methods and possibly abstract
tasks. The TDT was subsequently extended to a graph (Elka-
wkagy et al. 2012), but without altering the deployed reach-
ability analysis. Later, we extended the reachability analysis
to also prune those abstract tasks from the TDG that cannot
be refined into a primitive task network (Bercher et al. 2017).
However, we did not yet provide a formal, declarative defini-
tion of the resulting pruned TDG there. Furthermore, similar
to the work by Elkawkagy, Schattenberg, and Biundo (2010;
2012) we only explained that this pruned TDG may be used
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as a basis for heuristics. Here we explain how it also serves
the purpose of obtaining a ground model. The following sec-
tion is another yet unpublished contribution that is essential
for the efficiency of the grounding/TDG construction proce-
dure.

4.4 Avoiding the Bottleneck
Beside the final size of the grounding, it is – in practice – cru-
cial to avoid large sets of intermediate groundings during the
computation process. A naive idea would be to compute the
full TDG and prune it afterwards. This corresponds to com-
puting a full instantiation of all actions in classical planning
and performing a reachability analysis on them. Both the full
TDG and the full instantiation of actions usually contain un-
necessary groundings that will be pruned afterwards. In this
section we describe how the pruned TDG can be computed
(somewhat) efficiently, without the need to compute the full
TDG first.

When building the TDG in a top-down manner, it will
initially include the initial task and is iteratively extended
by adding nodes for each applicable method and its sub-
tasks. To handle cyclic decompositions, we keep a set of
created task groundings. Whenever we add a new decom-
position method, we check for all its subtasks whether they
are contained in the set of already created task groundings.
If so, we use that already existing node to add the respective
edge implied by the method to the graph and don’t recurse
through that grounding – as it has already been (or is in the
process of being) fully expanded. This way, the procedure
terminates also on cyclic HTN planning problems and it is
ensured that tasks that are not reachable via the hierarchy are
never included. However, when primitive tasks are added to
the graph, it has to be checked whether these are reachable
via state transition, and given that they are not, the graph has
to be pruned as given in Def. 5.

Alternatively, one could construct a superset of the pruned
TDG in a bottom-up manner. We start with nodes for the
primitive tasks that are reachable under delete-relaxation.
Then, for each method where all subtasks are included in
the graph, nodes for the method and for the task the method
decomposes are included. Methods and tasks are added until
convergence. We again use a set of created task groundings
to handle cyclic decompositions in the planning problem.
That way, the graph never includes tasks that would need
to be pruned based on state-based reachability information.
However, it might include tasks and methods that are not
reachable from the initial task. These can be removed by a
depth-first search afterwards.

When using both the top-down and the bottom-up compu-
tation, state-based and hierarchical reachability analysis in-
fluence each other. The hierarchy might e.g. exclude actions
that are necessary to fulfil other actions’ preconditions. An
action a1 pruned due to state-based reachability may exclude
a method that has been the only source of reachability of an-
other action a2. This means that the two analyses should be
iterated until the grounding converged. PANDA’s grounding
does so.

The question is now if a system should rely on the
top-down or the bottom-up building process. There is no
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Figure 3: Number of primitive tasks in groundings computed
by GTOHP and our grounder. Green indicates that PANDA
finds the smaller grounding, red that GTOHP does and blue
indicates that both groundings have equal size.

(domain-independent) answer to this question. It is easy to
construct planning problems that result in large intermediate
graphs for both ways of construction. Which one works bet-
ter depends on the specific structure of the problem at hand.
We do not yet know how to determine which algorithm will
perform better a priori. Therefore we developed a way of
construction that combines the benefits of both procedures.

We start with a top-down construction, but instead of cre-
ating the grounded nodes directly, it maintains for each pa-
rameter of each task and method a list of all constants that
might be assigned to the parameter. This avoids the cre-
ation of all combinations of constants, to the cost of los-
ing the information which parameter combinations are valid.
When primitive tasks are reached, the constant set is fur-
ther reduced via state-based reachability, and this reduction
is propagated through the graph. In a second step, top-down
grounding is performed using the reduced constant sets.

5 Evaluation
The implementation of the described grounding procedure is
included in the PANDA planner. It is primarily implemented
in Scala. The grounder accepts HTN planning problems for-
mulated in HDDL as its input (Höller et al. 2019a).

In this preliminary evaluation we do not compare the run-
time of the different approaches (top-down, bottom-up, two-
way), but compare the size of the resulting grounding with a
system from related work. We are currently re-implementing
the grounder and will present runtime results in a follow-up
paper.

We have compared our grounding procedure against
GTOHP (Ramoul et al. 2017), which is the so-far only pub-
lished grounding procedure for HTN planning. In the evalu-
ation, we have included all 202 instances used in the recent
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Figure 5: Number of abstract tasks in groundings computed
by GTOHP and our grounder. Green indicates that PANDA
finds the smaller grounding, red that GTOHP does and blue
indicates that both groundings have equal size.

evaluation of Tree-Rex (Schreiber et al. 2019), which uses
the GTOHP grounder.

Except for one domain (TRANSPORT), we always found
at most as many primitive tasks in the grounding as GTOHP.
In TRANSPORT, we usually needed a few more ground
instances, as its actions contain disjunctive preconditions
which we compile away while GTOHP handles them na-
tively. A scatter plot of the results is shown in Fig. 3. We
find smaller groundings in 96 instances, larger ones in 5, and
101 groundings of equal size. On average our groundings
are 26.19% smaller with a maximum of 90.64% or 205.913
tasks reduction.

For the number of methods, results are shown in Fig. 4.
We find smaller groundings in 132 instances, larger ones in
18, and 52 groundings of equal size. On average our ground-
ings are 37.38% smaller with a maximum of 98.22% or
249.828 methods reduction.

For the number of abstract tasks, results are shown in
Fig. 5. We find smaller groundings in 113 instances, larger
ones in 80, and 8 groundings of equal size. On average our
groundings are 24.02% smaller with a maximum of 98.59%
or 11.980 abstract tasks reduction. As we can see from the
scatter plot, if we produce a larger grounding, it is usu-
ally not significantly larger. At the maximum, our grounding
contains 381 more abstract tasks due to our parameter split-
ting, which produces significantly fewer methods in several
instances.

6 Conclusion
Most recent systems in HTN planning realise the planning
process in a fully grounded way. A smaller grounding usu-
ally improves the performance of the planner. For example,
a smaller grounding allows for heuristics to be computed
faster – and for them to be more precise. Further, the search
mechanics of the planner is faster the smaller the ground-
ing is, as fewer actions and methods have to be considered.
Lastly, a smaller grounding also reduces the size of encod-
ings, e.g. into propositional logic, which makes the trans-
lated problem (potentially) easier to solve. Despite these ad-
vantages, little work has been published on grounding tech-
niques especially for HTN planning. We present our ground-
ing procedure and discuss how to compute it efficiently. Our
empirical evaluation shows that it leads to smaller ground-
ings than related work.
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Behnke, G.; Höller, D.; Bercher, P.; and Biundo, S. 2016.
Change the plan – How hard can that be? In Proceedings of
the 26th International Conference on Automated Planning
and Scheduling (ICAPS 2016), 38–46. AAAI Press.
Behnke, G.; Schiller, M.; Kraus, M.; Bercher, P.; Schmautz,
M.; Dorna, M.; Minker, W.; Glimm, B.; and Biundo, S.
2018. Instructing novice users on how to use tools in DIY
projects. In Proceedings of the 27th International Joint
Conference on Artificial Intelligence and the 23rd European
Conference on Artificial Intelligence (IJCAI-ECAI 2018),
5805–5807. IJCAI.
Behnke, G.; Schiller, M.; Kraus, M.; Bercher, P.; Schmautz,
M.; Dorna, M.; Dambier, M.; Minker, W.; Glimm, B.; and
Biundo, S. 2019. Alice in DIY-wonderland or: Instructing
novice users on how to use tools in DIY projects. AI Com-
munications 32(1):31–57.
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Abstract

Hierarchical planning, in particular, Hierarchical Task Net-
works, was proposed as a method to describe plans by decom-
position of tasks to sub-tasks until primitive tasks, actions, are
obtained. Plan verification assumes a complete plan as input,
and the objective is finding a task that decomposes to this
plan. In plan recognition, a prefix of the plan is given and the
objective is finding a task that decomposes to the (shortest)
plan with the given prefix. This paper describes how to ver-
ify and recognize plans using a common method known from
formal grammars, by parsing.

Introduction
Hierarchical planning is a practically important approach
to automated planning based on encoding abstract plans
as hierarchical task networks (HTNs) (Erol, Hendler, and
Nau 1996). The network describes how compound tasks are
decomposed, via decomposition methods, to sub-tasks and
eventually to actions forming a plan. The decomposition
methods may specify additional constraints among the sub-
tasks such as partial ordering and causal links.

As of this writing, there exist only two systems for ver-
ifying if a given plan complies with the HTN model, that
is, if a given sequence of actions can be obtained by de-
composing some task. One system is based on transforming
the verification problem to SAT (Behnke, Höller, and Bi-
undo 2017) and the other system is using parsing of attribute
grammars (Barták, Maillard, and Cardoso 2018). Only the
parsing-based system supports HTN fully (the SAT-based
system does not support the decomposition constraints).

Parsing became popular in solving the plan recognition
problem (Vilain 1990) as researchers realized soon the sim-
ilarity between hierarchical plans and formal grammars,
specifically context-free grammars with parsing trees close
to decomposition trees of HTNs. The plan recognition prob-
lem can be formulated as the problem of adding a sequence
of actions after some observed partial plan such that the joint
sequence of actions forms a complete plan generated from
some task (more general formulations also exist). Hence
plan recognition can be seen as a generalization of plan ver-
ification. There exist numerous approaches to plan recogni-
tion using parsing or string rewriting (Avrahami-Zilberbrand

and Kaminka 2005; Geib, Maraist, and Goldman 2008; Geib
and Goldman 2009; Kabanza et al. 2013), but they use hier-
archical models that are weaker than HTNs. The languages
defined by HTN planning problems (with partial-order, pre-
conditions and effects) lie somewhere between context-free
(CF) and context-sensitive (CS) languages (Höller et al.
2014) so to model HTNs, one needs to go beyond the CF
grammars. Currently, the only grammar-based model that
fully covers HTNs uses attribute grammars (Barták and
Maillard 2017). Moreover, the expressivity of HTNs makes
the plan recognition problem undecidable (Behnke, Höller,
and Biundo 2015). At the moment, there is only one ap-
proach for HTN plan recognition. This approach relies on
translating the plan recognition problem to a planning prob-
lem (Höller et al. 2018), which is a technique that was first
introduced in (Ramírez and Geffner 2003).

In this paper, we focus on verification and recognition of
HTN plans using parsing. The uniqueness of the proposed
methods is that they cover full HTNs including task inter-
leaving, partial order of sub-tasks, and other decomposition
constraints (prevailing constraints, specifically). The meth-
ods are derived from the plan verification technique pro-
posed in (Barták, Maillard, and Cardoso 2018).

There are two novel contributions of this paper. First, we
will simplify the above mentioned verification technique by
exploiting information about actions and states to improve
practical efficiency of plan verification. Second, we will ex-
tend that technique to solve the plan (task) recognition prob-
lem. We will show that the verification algorithm can be
much simpler and, hence, it is expected to be more effi-
cient. For plan recognition, the method proposed in (Höller
et al. 2018) can in principle support HTN fully, if a full
HTN planner is used (which is not the case yet as prevail-
ing conditions are not supported). However, like other plan
recognition techniques it requires the top task (the goal) and
the initial state to be specified as input. A practical differ-
ence of our methods is that they do not require information
about possible top (root) tasks and an initial state as their
input. This is particularly interesting for plan/task recogni-
tion, where existing methods require a set of candidate tasks
(goals) to select from (in principle, they may use all tasks as
candidates, but this makes them inefficient).
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Background on Planning
In this paper, we work with classical STRIPS plan-
ning (Fikes and Nilsson 1971) that deals with sequences of
actions transferring the world from a given initial state to
a state satisfying certain goal conditions. World states are
modelled as sets of propositions that are true in those states,
and actions are are modelled to change the validity of certain
propositions.

Classical Planning
Formally, let P be a set of all propositions modelling prop-
erties of world states. Then a state S ⊆ P is a set of propo-
sitions that are true in that state (every other proposition
is false). Later, we will use the notation S+ = S to de-
scribe explicitly the valid propositions in the state S and
S− = P \S to describe explicitly the propositions not valid
in the state S.

Each action a is described by three sets of propositions
(B+

a , A
+
a , A

−
a ), where B+

a , A
+
a , A

−
a ⊆ P,A+

a ∩ A−a = ∅.
Set B+

a describes positive preconditions of action a, that
is, propositions that must be true right before the action a.
Some modeling approaches allow also negative precondi-
tions, but these preconditions can be compiled away. For
simplicity reasons we assume positive preconditions only
(the techniques presented in this paper can also be extended
to cover negative preconditions directly). Action a is appli-
cable to state S iff B+

a ⊆ S. Sets A+
a and A−a describe posi-

tive and negative effects of action a, that is, propositions that
will become true and false in the state right after executing
the action a. If an action a is applicable to state S then the
state right after the action a is:

γ(S, a) = (S \A−a ) ∪A+
a . (1)

γ(S, a) is undefined if an action a is not applicable to state
S.

The classical planning problem, also called a STRIPS
problem, consists of a set of actions A, a set of proposi-
tions S0 called an initial state, and a set of goal propo-
sitions G+ describing the propositions required to be true
in the goal state (again, negative goal is not assumed as it
can be compiled away). A solution to the planning prob-
lem is a sequence of actions a1, a2, . . . , an such that S =
γ(...γ(γ(S0, a1), a2), ..., an) and G+ ⊆ S. This sequence
of actions is called a plan.

The plan verification problem is formulated as follows:
given a sequence of actions a1, a2, . . . , an, and goal propo-
sitions G+, is there an initial state S0 such that the sequence
of actions forms a valid plan leading from S0 to a goal state?
In some formulations, the initial state might also be given as
an input to the verification problem.

Hierarchical Task Networks
To simplify and speeed up the planning process, several ex-
tensions of the basic STRIPS model were proposed to in-
clude some control knowledge. Hierarchical Task Networks
(Erol, Hendler, and Nau 1996) were proposed as a planning
domain modeling framework that includes control knowl-
edge in the form of recipes on how to solve specific tasks.

The recipe is represented as a task network, which is a set of
sub-tasks to solve a given task together with the set of con-
straints between the sub-tasks. Let T be a compound task
and ({T1, ..., Tk}, C) be a task network, where C are its
constraints (see later). We can describe the decomposition
method as a derivation (rewriting) rule:

T → T1, ..., Tk [C]

The planning problem in HTN is specified by an initial
state (the set of propositions that hold at the beginning) and
by an initial task representing the goal. The compound tasks
need to be decomposed via decomposition methods until
a set of primitive tasks – actions – is obtained. Moreover,
these actions need to be linearly ordered to satisfy all the
constraints obtained during decompositions and the obtained
plan – a linear sequence of actions – must be applicable to
the initial state in the same sense as in classical planning.
We denote an action as ai, where the index i means the or-
der number of the action in the plan (ai is the i-th action in
the plan). The state right after the action ai is denoted Si,
S0 is the initial state. We denote the set of actions to which
a task T decomposes as act(T ). If U is a set of tasks, we
define act(U) = ∪T∈Uact(T ). The index of the first ac-
tion in the decomposition of T is denoted start(T ), that is,
start(T ) = min{i|ai ∈ act(T )}. Similarly, end(T ) means
the index of the last action in the decomposition of T , that
is, end(T ) = max{i|ai ∈ act(T )}.

We can now define formally the constraints C used in the
decomposition methods. The constraints can be of the fol-
lowing three types:
• t1 ≺ t2: a precedence constraint meaning that in every

plan the last action obtained from task t1 is before the
first action obtained from task t2, end(t1) < start(t2),

• before(U, p): a precondition constraint meaning that in
every plan the proposition p holds in the state right before
the first action obtained from tasks U , p ∈ Sstart(U)−1,

• between(U, V, p): a prevailing condition meaning that in
every plan the proposition p holds in all the states between
the last action obtained from tasks U and the first action
obtained from tasks V ,
∀i ∈ {end(U), . . . , start(V )− 1}, p ∈ Si.
The HTN plan verification problem is formulated as fol-

lows: given a sequence of actions a1, a2, . . . , an, is there an
initial state S0 such that the sequence of actions is a valid
plan applicable to S0 and obtained from some compound
task? Again, the initial state might also be given as an input
in some formulations.

The HTN plan recognition problem is formulated as fol-
lows: given a sequence of actions a1, a2, . . . , an, is there an
initial state S0 and actions an+1, . . . , an+m for somem ≥ 0
such that the sequence of actions a1, a2, . . . , an+m is a valid
plan applicable to S0 and obtained from some compound
task? In other words, if the given actions form a prefix of
some plan obtained from some compound task T . We will
be looking for such a task T minimizing the value m (the
number of added actions to complete the plan). If only the
task T is of interest (not the actions an+1, . . . , an+m) then
it can be referred to as the task (goal) recognition problem.
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The Plan Verification Algorithm
The existing parsing-based HTN verification algo-
rithm (Barták, Maillard, and Cardoso 2018) uses a
complex structure of a timeline. This structure maintains
the decomposition constraints so that they can be checked
when composing sub-tasks to a compound task. We propose
a simplified verification method that does not require this
complex structure, as it checks all the constraints directly in
the input plan. This makes the algorithm easier to implement
and also potentially faster. Another difference is that we do
not assume that the initial state is passed as input, instead
we set the initial state as the preconditions of the first action
in the plan. However, adding support for it is trivial as we
would only have to add the initial state that was given as
input to the preconditions of the first action in the plan.

The novel hierarchical plan verification algorithm is
shown in Algorithm 1. It first calculates all intermediate
states (lines 2-8) by propagating information about propo-
sitions in action preconditions and effects. At this stage, we
actually solve the classical plan validation problem as the
algorithm verifies that the given plan is causally consistent
(action precondition is provided by previous actions or by
the initial state). The original verification algorithm did this
calculation repeatedly each time it composed a compound
task. It is easy to show that every action is applicable, that
is, B+

ai
⊆ Si−1 (lines 2 and 4). Next, we will show that

γ(Si, ai+1) = Si+1 = (Si \ A−ai+1
) ∪ A+

ai+1
. Left-to-right

propagation (line 4) ensures that (Si \ A−ai+1
) ∪ A+

ai+1
⊆

Si+1. Right-to-left propagation (line 6) ensures that precon-
ditions are propagated to earlier states if not provided by
the action at a given position. In other words, if there is a
proposition p ∈ Si+1 \ A+

ai+1
then this proposition should

be at Si. Line 6 adds such propositions to Si so it holds
(Si \ A−ai+1

) ∪ A+
ai+1

= Si+1. However, if p ∈ A−ai+1
then

p would be deleted by the action ai+1, which means that the
plan is not valid. The algorithm detects this at lines 7-8.

When the states are calculated, we apply a parsing algo-
rithm to compose tasks. Parsing starts with the set of primi-
tive tasks (line 9), each corresponding to an action from the
input plan. For each task T , we keep a data structure describ-
ing the set act(T ), that is, the set of actions to which the task
decomposes. We use a Boolean vector I of the same size as
the plan to describe this set; ai ∈ act(T ) ⇔ I(i) = 1. To
simplify checks of decomposition constraints, we also keep
information about the index of first and last actions from
act(T ). Together, the task is represented using a quadruplet
(T, b, e, I) in which T is a task, b is the index in the plan
of the first action generated by T , e is the index in the plan
of the last action generated by T (we say that [i, j] repre-
sents the interval of actions over which T spans), and I is a
Boolean vector as described above.

The algorithm applies each decomposition rule to com-
pose a new task from already known sub-tasks (line 12).
The composition consists of merging the sub-tasks, when
we check that every action in the decomposition is ob-
tained from a single sub-task (line 20), that is, act(T0) =⋃k

j=1 act(Tj) and ∀i 6= j : act(Ti) ∩ act(Tj) = ∅. We also
check all the decomposition constraints; the pseudo-code is

Data: a plan P = (a1, ..., an) and a set of decomp.
methods

Result: a Boolean equal to true if the plan can be
derived from some compound task, false
otherwise

1 Function VERIFYPLAN
2 S0 ← B+

a1

3 for i = 1 to n do
4 Si ← B+

ai+1
∪ (Si−1\A−ai

) ∪A+
ai

5 for i = n-1 down to 0 do
6 Si ← Si ∪ (Si+1\A+

ai+1
)

7 if Si ∩A−ai
6= ∅ then

8 return false

9 sp← ∅; new← {(Ai, i, i, Ii) |i ∈ 1..n}
Data: Ai is a primitive task corresponding to action

ai, Ii is a Boolean vector of size n, such that
∀i ∈ 1..n, Ii(i) = 1, ∀j 6= i, Ii(j) = 0

10 while new 6= ∅ do
11 sp← sp∪new; new← ∅
12 foreach decomposition method R of the form

T0 → T1, ..., Tk [≺,pre,btw] such that
{(Tj , bj , ej , Ij)|j ∈ 1..k} ⊆ sp do

13 if ∃(i, j) ∈≺: ¬(ei < bj) then
14 break
15 b0 ← min{bj |j ∈ 1..k}
16 e0 ← max{ej |j ∈ 1..k}
17 for i = 1 to n do
18 I0(i)←

∑k
j=1 Ij(i);

19 if I0(i) > 1 then
20 break

21 if ∃(U, p) ∈ pre : p 6∈ Smin{bj |j∈U}−1 then
22 break
23 if ∃(U, V, p) ∈ btw ∃i ∈ max{ej |j ∈

U}, . . . ,min{bj |j ∈ V } − 1 : p 6∈ Si then
24 break
25 new← new∪{(T0, b0, e0, I0)}
26 if ∀k, I0(k) = 1 then
27 return true

28 return false
Algorithm 1: Parsing-based HTN plan verification

a direct rewriting of constraint definitions. If all tests pass,
the new task is added to a set of tasks (line 25). Then we
know that the task decomposes to actions, which form a sub-
sequence (not necessarily continuous) of the plan to be ver-
ified. The process is repeated until a task that decomposes
to all actions is obtained (line 27) or no new task can be
composed (line 10). The algorithm is sound as the returned
task decomposes to all actions in the input plan. If the al-
gorithm finishes with the value false then no other task can
be derived. As there is a finite number of possible tasks, the
algorithm has to finish, so it is complete.
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The Plan Recognition Algorithm
Any plan verification algorithm, for example, the one from
the previous section, can be extended to plan recogni-
tion by feeding the verification algorithm with actions
a1, . . . , an+k, where we progressively increase k. The ac-
tions a1, . . . , an are given as an input, while the actions
an+1, . . . , an+k need to be generated (planned). However,
this generate-and-verify approach would be inefficient for
larger k as it requires exploration of all valid sequences of
actions with the prefix a1, . . . , an. Assume that there could
be 5 actions at the position n+1 and 6 actions at the position
n+2. Then the generate-and-verify approach explores up to
30 plans (not every action at the position n + 2 could fol-
low every action at the position n+ 1) and for each plan the
verification part starts from scratch as the plans are different.

This is where the verification algorithm from (Barták,
Maillard, and Cardoso 2018) can be used as it does not
require exactly one action at each position. The algorithm
stores actions (sub-tasks) independently and only when it
combines them to form a new task, it generates the states be-
tween the actions and checks the constraints for them. This
resembles the idea of the Graphplan algorithm (Blum and
Furst 1997). There are also sets of candidate actions for each
position in the plan and the plan-extraction stage of the al-
gorithm selects some of them to form a causally valid plan.
We use compound tasks together with their decomposition
constraints to select and combine the actions (we do not use
parallel actions in the plan).

The algorithm from (Barták, Maillard, and Cardoso 2018)
extended to the plan recognition problem is shown in Al-
gorithm 2. It starts with actions a1, . . . , an (line 2) and
it finds all compound tasks that decompose to subsets of
these actions (lines 4-30). This inner while-loop is taken
from (Barták, Maillard, and Cardoso 2018), we only syn-
tactically modified it to highlight the similarity with the ver-
ification algorithm from the previous section. If a task that
decomposes to all current actions is found (line 30) then we
are done. This is the goal task that we looked for and its
timeline describes the recognized plan. Otherwise, we add
all primitive tasks corresponding to possible actions at posi-
tion n+ 1 (line 33). Note that these are not parallel actions,
the algorithm selects exactly one of them for the plan.

Now, the parsing algorithm continues as it may compose
new tasks that include one of those recently added primi-
tive tasks. Notice that the algorithm uses all composed tasks
from previous iterations in succeeding iterations so it does
not start from scratch when new actions are added. This pro-
cess is repeated until the goal task is found. The algorithm is
clearly sound as the task found is the task that decomposes
to the shortest plan with a given prefix. This goes from the
soundness and completeness of the verification algorithm (in
particular, no task that decomposes to a shorter plan exists).
The algorithm is semi-complete as if there exists a plan with
the length n + k and with a given prefix, the algorithm will
eventually find it at the (k + 1)-th iteration. If no plan with
a given prefix exists then the algorithm will not stop. How-
ever, recall that the plan recognition problem is undecidable
(Behnke, Höller, and Biundo 2015) so any plan recognition
approach suffers from this deficiency.

Data: a plan P = (a1, ..., an), Ai is a primitive task
corresponding to action ai, and a set of
decomposition methods

Result: a Task that decomposes to a plan with prefix P
1 Function RECOGNIZEPLAN
2 new← {(Ai, i, i, {(B+

ai
, ∅, ai, A+

ai
, A−ai

)i})|i ∈
1..n} ;

3 sp← ∅; l← n;
4 while new 6= ∅ do
5 sp← sp∪new; new← ∅;
6 foreach decomposition method R of the form

T0 → T1, ..., Tk[≺,pre,btw] such that
{(Tj , bj , ej , tlj)|j ∈ 1..k} ⊆ sp do

7 if ∃(i, j) ∈≺: ¬(ei < bj) then
8 break
9 b0 ← min{bj |j ∈ 1..k}

10 e0 ← max{ej |j ∈ 1..k}
11 tl← {(∅, ∅, empty, ∅, ∅)i|i ∈ b0..e0}
12 for j = 1 to k; i = bj to ej do
13 (Pre+1 ,Pre

−
1 , a1,Post

+
1 ,Post

−
1 )i ∈ tl

14 (Pre+2 ,Pre
−
2 , a2,Post

+
2 ,Post

−
2 )i ∈ tlj

15 if a1 6= empty, a2 6= empty then
16 break
17 Pre+1 ← Pre+1 ∪Pre+2
18 Pre−1 ← Pre−1 ∪Pre−2
19 Post+1 ← Post+1 ∪Post−2
20 Post−1 ← Post−1 ∪Post−2
21 if a1 = empty then
22 a1 ← a2

23 APPLYPRE(tl, pre);
24 APPLYBETWEEN(tl, btw);
25 PROPAGATE(tl, b0, e0 − 1);
26 if ∃(Pre+,Pre−, a,Post+,Post−) ∈ tl :

Pre+ ∩Pre− 6= ∅ then
27 break
28 new← new∪{(T0, b0, e0, tl)}
29 if b0 = 1, e0 = l,∀(_, _, aj , _, _)j ∈ tl :

aj 6= empty then
30 return (T0, tl)

31 l← l + 1;
32 new← {(A, l, l, {(B+

a , ∅, a, A+
a , A

−
a )l})|

33 action a can be at position l;A is a primitive task for a}
34 goto 4

Algorithm 2: Parsing-based HTN plan recognition

The algorithm maintains a timeline for each compound
task to verify all the constraints. This is the major difference
from the above verification algorithm that points to the origi-
nal plan. This timeline has been introduced in (Barták, Mail-
lard, and Cardoso 2018), where all technical details can be
found. We include a short description to make the paper self-
contained. A timeline is an ordered sequence of slots, where
each slot describes an action, its effects, and the state right
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before the action. For task T , the actions in slots are exactly
the actions from act(T ). Both effects and states are mod-
elled using two sets of propositions, Post+ and Post− mod-
eling positive and negative effects of the action and Pre+

and Pre− modeling propositions that must and must not be
the true in the state right before the action. Two sets are used
as the state is specified only partially and propositions are
added to it during propagation so it is necessary to keep
information about propositions that must not be true in the
state.

The timeline always spans from the first to the last ac-
tion of the task. Due to interleaving of tasks (actions from
one task might be located between the actions of another
task in the plan), some slots of the task might be empty.
These empty slots describe “space” for actions of other
tasks. When we are merging sub-tasks (lines 12-22), we
merge their timelines, slot by slot. This is how the actions
from sub-tasks are put together in a compound task. Notice,
specifically, that it is not allowed for two merged sub-tasks
to have actions in the same slot (line 15). This ensures that
each action is generated by exactly one task.

Data: a set of slots, a set of before constraints
Result: an updated set of slots

1 Function APPLYPRE(slots, pre)
2 foreach (U, l) ∈ pre do
3 id = min{bj |j ∈ U};
4 Pre+id ← Pre+id ∪{p|l = p};
5 Pre−id ← Pre−id ∪{p|l = ¬p}

Algorithm 3: Apply before constraints

Data: a set of slots, a set of between constraints
Result: an updated set of slots

1 Function APPLYBETWEEN(slots, between)
2 foreach (U, V, l) ∈ between do
3 s = max{ei|i ∈ U}+ 1;
4 e = min{bi|i ∈ V };
5 for id = s to e do
6 Pre+id ← Pre+id ∪{p|l = p};
7 Pre−id ← Pre−id ∪{p|l = ¬p}

Algorithm 4: Apply between constraints

Propositions from before and between constraints are
“stored” in the corresponding slots (Algorithms 3 and 4) and
their consistency is checked each time the slots are modified
(line 26 of Algorithm 2). Consistency means that no proposi-
tion is true and false at the same state. Information between
subsequent slots is propagated similarly to the verification
algorithm (see Algorithm 5). Positive and negative proposi-
tions are now propagated separately taking in account empty
slots. If there is no action in the slot then effects are unknown
and hence propositions cannot be propagated.

Data: a set of slots slots
Result: an updated set of slots

1 Function PROPAGATE(slots, lb, ub)
/* Propagation to the right */

2 for i = lb to ub do
3 if ai 6= empty then
4 Pre+i+1 ←

Pre+i+1 ∪(Pre+i \Post−i ) ∪ Post+i ;
5 Pre−i+1 ←

Pre−i+1 ∪(Pre−i \Post+i ) ∪ Post−i

/* Propagation to the left */
6 for i = ub down to lb do
7 if ai 6= empty then
8 Pre+i ← Pre+i ∪(Pre+i+1 \Post+i );
9 Pre−i ← Pre−i ∪(Pre−i+1 \Post−i )

Algorithm 5: Propagate

Example
A unique property of the proposed techniques is handling
task interleaving – actions generated from different tasks
may interleave to form a plan. This is the property that pars-
ing techniques based on CF grammars cannot handle.

The example in Figure 1 demonstrates how the timelines
are filled by actions as the tasks are being derived/composed
from the plan. Assume, first, that a complete plan consist-
ing of actions a1, a2, . . . , a7 is given. The plan recognition
algorithm can also handle such situations, when a complete
plan is given, so it can serve for plan verification too (the
verification variant of Algorithm 2 should stop with a failure
at line 33 as no action can be added during plan verifica-
tion). In the first iteration, the algorithm will compose tasks
T2, T3, T4 as these tasks decompose to actions directly. No-
tice, how the timelines with empty slots are constructed. We
know where the empty slots are located as we know the ex-
act location of actions in the plan. In the second iteration,
only the task T1 is composed from already known tasks T3
and T4. Notice how the slots from these tasks are copied to
the slots of a new timeline for T1. On the contrary, the slots
in original tasks remain untouched as these tasks may merge
with other tasks to form alternative decomposition trees (see
the discussion below). Finally, in the third iteration, tasks
T1 and T2 are merged to a new task T0 and the algorithm
stops there as a complete timeline that fully spans the plan
is obtained (condition at line 30 of Algorithm 2 is satisfied).

Let us assume that there is a constraint
between({a1}, {a3}, p) in the decomposition method
for T3. For example, this constraint may model a causal
link between a1 and a3. When composing the task T3, the
second slot of its timeline remains empty, but the proposi-
tion p is placed there (see Algorithm 4). This proposition
is then copied to the timeline of task T1, when merging
the timelines (line 17 of Algorithm 2), and finally also
to the timeline of task T0. During each merge operation,
the algorithm checks that p can still be in the slot, in
particular, that p is not required to be false at the same slot
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a2 a3 a4 a5 a6 a7

a1 a2 a3 a4 a5 a6 a7T0

T2

T1

T4

T3

plan

a1 a2 a3 a4 a5

a1 a2 a3 a4 a5 a6

a1 a2 a3 a4 a5 a6 a7

T0

T2

T1

T4T3

T0 ⇢ T1 T2
T1 ⇢ T3 T4
T2 ⇢ a2 a7
T3 ⇢ a1 a3 a5
T4 ⇢ a4 a6

Figure 1: Example of parsing-based plan verification/recognition (the right side shows the decomposition tree with the decom-
position rules above it; the left side shows the tasks with timelines and filled slots)

(line 26). Algorithm 2 repeatedly checks the constraints
from methods.

The new plan verification algorithm (Algorithm 1) han-
dles the method constraints more efficiently as it uses the
complete plan with states to check them. Moreover, the
propagation of states is run just once in Algorithm 1 (lines 2-
8), while Algorithm 2 runs it repeatedly each time the task
is composed from subtasks. Hence, each constraint is ver-
ified just once in Algorithm 1, when a new task is com-
posed. In particular, the constraint between({a1}, {a3}, p)
is verified with respect to the states when task T3 is intro-
duced. Otherwise, both Algorithm 1 and Algorithm 2 derive
the tasks in the same order (if the decomposition methods
are explored in the same order). Instead of timelines, Al-
gorithm 1 uses the Boolean vector I to identify actions be-
longing to each task. For example, for task T3 the vector
is [1, 0, 1, 0, 1, 0, 0] and for task T4 it is [0, 0, 0, 1, 0, 1, 0].
When composing task T1 from T3 and T4 the vectors are
merged to get [1, 0, 1, 1, 1, 1, 0] (see the loop at line 17). No-
tice that the vector always spans the whole plan, while the
timelines start at the first action and finish with the last ac-
tion of the task (and hence the same timeline can be used for
different plan lengths).

Assume now that only plan prefix consisting of
a1, a2, . . . , a6 is given. The plan recognition algorithm (Al-
gorithm 2) will first derive tasks T3 and T4 only. Specifically,
task T2 cannot be derived yet as action a7 is not in the plan.
In the second iteration, the algorithm will derive task T1 by
merging tasks T3 and T4, exactly as we described above. As
no more tasks can be derived, the inner loop finishes and the
algorithm attempts to add actions that can follow the prefix

a1, a2, . . . , a6 (line 33). Let action a7 be added at the 7-th
position in the plan; actually all actions, that can follow the
prefix, will be added as separate primitive tasks at position 7.
Now the inner loop is restarted and task T2 will be added in
its first iteration. In the next iteration, task T0 will be added
and this will be the final task as it satisfies the condition at
line 30.

Assume, hypothetically, that the verification Algorithm 1
is used there. When it is applied to plan a1, a2, . . . , a6, the
algorithm derives tasks T1, T3, T4 and fails as no task spans
the whole plan and no more tasks can be derived. After
adding action a7, the algorithm will start from scratch as
the states might be different due to propagating some propo-
sitions from the precondition of a7. Hence, the algorithm
needs to derive the tasks T1, T3, T4 again and it will also add
tasks T0, T2 and then it will finish with success.

It may happen, that action a5 can also be consistently
placed to position 7. Then, we can derive two versions of
task T3, one with the vector [1, 0, 1, 0, 1, 0, 0] and the other
one with vector [1, 0, 1, 0, 0, 0, 1]. Let us denote the sec-
ond version as T ′3. Both versions can then be merged with
task T4 to get two versions of task T1, one with the vector
[1, 0, 1, 1, 1, 1, 0] and one with the vector [1, 0, 1, 1, 0, 1, 1].
Let us denote the second version as T ′1. The Algorithm 1
will stop there as no more tasks can be derived. Notice that
tasks T1, T3, T4 were derived repeatedly. If we try a5 earlier
than a7 at position 7 then tasks T1, T3, T4 will actually be
generated three times before the algorithm finds a complete
plan. On the contrary, Algorithm 2 will add actions a5 and
a7 together as two possible primitive tasks at position 7. It
will use tasks T1, T3, T4 from the previous iteration, it will
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add tasks T ′1, T
′
3 as they can be composed from the primitive

tasks (using the last a5), it will also add tasks T0, T2 (using
the last a7), and will finish with success. Notice that T ′1 can-
not be merged with T2 to get a new T ′0 as T ′1 has action a5
at the 7-th slot while T2 has a7 there so the timelines cannot
be merged (line 15 of Algorithm 2).

Possible Extensions
To describe the verification and recognition algorithms, we
used a “pure” model of HTN. Specifically, each task de-
composes to a non-empty set of sub-tasks, meaning that
the right-hand side of each derivation rule is non-empty. In
some practical applications, it might be useful to also use de-
composition methods with empty task networks. Imagine a
task describing that some agent moves to a specific location.
This task can be full-filled by action move so there will be a
method, where the task decomposes to this action. However,
if the agent is already at the specific location then no action
is necessary and the task is already full-filled. This can be
modeled by an alternative method that decomposes the task
to an empty task network with the precondition (before) con-
straint specifying that the agent is at the required location.
Such empty methods can be compiled away, for example,
using the techniques for converting grammars to a normal
form. Nevertheless, the presented verification and recogni-
tion algorithms can also be extended to handle derivation
rules with empty right-hand side. We will demonstrate this
extension for the verification Algorithm 1. Note, that tasks
that decompose to an empty task network are treated in a
similar way as tasks that decompose directly to actions, that
is, they are added in the initialization stage (line 9). We only
need to identify the proper location indexes of these tasks
and this is where the before constraint can be used. Assume
the following method with empty right-hand side:

T → ∅ [before(∅, p)].
First, the constraint before(U, p) has originally been de-

fined for a non-empty subset U of tasks in the task net-
work, but the task network is now empty so, in this spe-
cial case, we allow U = ∅. Second, the verification algo-
rithm already calculated all the states Si between the ac-
tions. The precondition constraint tells us, where the task
T can be inserted. Specifically, if p ∈ Si, that is, the precon-
dition constraint holds at state Si, then we add a primitive
task (T, i + 0.1, i + 0.1, I) to the initial set of tasks new
(line 9 of Algorithm 1), where the Boolean vector I consists
of zeros only (the task T does not decompose to any action).
We use the (i + 0.1) index as the task T is sitting between
actions Ai and Ai+1 and we need to ensure that possible
precedence constraints involving T work fine. The rest of the
verification algorithm remains without further modification,
we only need to properly round the indexes when checking
the state constraints.

The second extension, that we are going to discuss, is
about the top task to be recognized/verified. Recall, that nei-
ther of the proposed techniques requires a top task to be
given at input. In some applications, a task network with
constraints is given as input and the plan should corre-
spond to this network. This can be trivially handled by the

proposed techniques by introducing, to the HTN model, a
dummy root task that decomposes to this task network and
modifying the terminal conditions of the algorithms to look
for this specific root task rather than for any task (line 27
of Algorithm 1 and line 30 of Algorithm 2). However, what
if the plan consists of interleaved sub-plans obtained from
several tasks that are not known a priori? This situation can
also be handled by modifying the termination condition. In-
stead of looking for a single task that spans the whole plan,
we need to look for a set of already recognized tasks such
that they do not share any action and, together, they span the
whole plan. Note, however, that such a test can be computa-
tionally expensive if implemented in a naive way by check-
ing all subsets of tasks.

Conclusions
In the paper, we proposed two versions of a parsing tech-
nique for verification of HTN plans and for recognition of
HTN plans. To the best of our knowledge, these are the
only approaches that fully cover HTN, including all de-
composition constraints. These approaches can be applied
to solve both verification and recognition problems, but as
we demonstrated using an example, each of them has some
deficiencies when applied to the other problem.

The next obvious step is implementation and empirical
evaluation of both techniques. There is no doubt that the
novel verification algorithm is faster than the previous ap-
proaches (Behnke, Höller, and Biundo 2017) and (Barták,
Maillard, and Cardoso 2018). The open question is how
much faster it will be, in particular for large plans. The ef-
ficiency of the novel plan recognition technique in compar-
ison to existing compilation technique (Höller et al. 2018)
is less clear as both techniques use different approaches,
bottom-up vs. top-down. The disadvantage of the compila-
tion technique is that it needs to re-generate the known plan
prefix, but it can exploit heuristics to remove some over-
head there. On the contrary, the parsing techniques looks
more like generate-and-test, but controlled by the hierarchi-
cal structure. It also guarantees finding the shortest extension
of plan prefix.
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