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Foreword

Planning as heuristic search remains among the dominating approaches to many variations of domain-independent planning,
including classical planning, temporal planning, planning under uncertainty and adversarial planning, for nearly two decades.
The research on both heuristics and search techniqes is thriving, now more than ever, as evidenced by both the quality and the
quantity of submissions on the topic to major AI conferences and workshops.

This workshop seeks to understand the underlying principles of current heuristics and search methods, their limitations,
ways for overcoming those limitations, as well as the synergy between heuristics and search. To this end, this workshop intends
to offer a discussion forum and a unique opportunity to showcase new and emerging ideas to leading researchers in the area.
Past workshops have featured novel methods that have grown and formed indispensable lines of research.

This year is the 11th edition of the workshop series on Heuristics for Domain-independent Planning (HDIP), which was
first held in 2007. HDIP was subsequently held in 2009 and 2011. With the fourth workshop in 2012, the organizers sought to
recognize the role of search algorithms by acknowledging search in the name of the workshop, renaming it to the workshop on
Heuristics and Search for Domain-independent Planning (HSDIP). The workshop continued flourishing under the new name
and has become an annual event at ICAPS.

Guillem Francès, Florian Geißer, Daniel Gnad, Patrik Haslum,
Florian Pommerening, Miquel Ramirez, Jendrik Seipp, and Silvan Sievers

July 2019
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Reshaping Diverse Planning: Let There Be Light!

Michael Katz and Shirin Sohrabi
IBM T.J. Watson Research Center

1101 Kitchawan Rd, Yorktown Heights, NY 10598, USA

Abstract

The need for multiple plans to a planning problem has been
established by various applications. In some, solution quality
has the predominant role, while in others diversity is the key
factor. Most recent work takes both plan quality and solution
diversity into account under the generic umbrella of diverse
planning. There is no common agreement, however, on a col-
lection of computational problems that fall under that generic
umbrella. This in particular might lead to a comparison be-
tween planners that have different solution guarantees or op-
timization criteria in mind. In this work we revisit diverse
planning literature in search of such a collection of compu-
tational problems, classifying the existing planners to these
problems. We formally define a taxonomy of computational
problems with respect to both plan quality and solution di-
versity, extending the existing work. We propose a novel ap-
proach to diverse planning, exploiting existing classical plan-
ners via planning task reformulation and choosing a subset of
plans of required size in post-processing. Based on that, we
present planners for two computational problems, that most
existing planners solve. Our experiments show that the pro-
posed approach significantly improves over the best perform-
ing existing planners in terms of coverage, the overall solu-
tion quality, and the overall diversity according to various di-
versity metrics.

1 Introduction
Many applications of planning require generating multiple
plans rather than one. Some examples include malware de-
tection (Boddy et al. 2005), automated analysis of stream-
ing data (Riabov et al. 2015), and risk management (Sohrabi
et al. 2018). Planners that produce multiple plans were also
found useful in the context of re-planning and plan monitor-
ing (Fox et al. 2006), user preferences (Myers and Lee 1999;
Nguyen et al. 2012), as well as the engine for plan recogni-
tion and its related applications (Sohrabi, Riabov, and Udrea
2016). All these applications justify the need for finding a
diverse set of plans while keeping quality in mind.

Many diverse planners were developed over the last
decade, each one focused on addressing a particular diver-
sity metric. For example, while DLAMA focuses on find-
ing a set of plans by considering a landmark-based diver-
sity measure (Bryce 2014), LPG-d and DIV focus on find-
ing a set of plans with a particular minimum action dis-
tance (Nguyen et al. 2012; Coman and Muñoz-Avila 2011).

Goldman and Kuter (2015) propose a diversity metric based
on information retrieval literature. Roberts, Howe, and Ray
(2014) suggest another diversity metric, introducing sev-
eral planners, such as itA∗ and MQA, which, in addition to
the diversity metrics, consider plan quality. Recently, Vadla-
mudi and Kambhampati (2016) suggested “cost-sensitive”
diverse planners, first finding all cost sensitive plans and
then finding a diverse set of plans among these. Top-k plan-
ners (e.g., Katz et al. 2018b) or top-quality planners (Katz,
Sohrabi, and Udrea 2019b) can also be viewed as diverse
planners, which find a set of plans purely addressing the
quality metric.

Despite the large number of existing tools and diversity
metrics, there is no adopted collection of computational
problems in diverse planning, making the comparison of dif-
ferent approaches challenging. Further, mixing quality and
diversity creates an additional challenge for comparing var-
ious planners, especially if they have different optimality
guarantees. However, even for the same computational prob-
lem, planner comparison can be challenging. Every plan-
ner can have a different implementation of the same diver-
sity metric, and many planners produce a collection of plans
without specifying the metric used, or the solution value un-
der that metric. To the best of our knowledge, there exists no
external validation tool for a collection of plans, producing
the solution value under a given diversity metric. Addition-
ally, most of the diverse planning approaches compute the
set of plans by repeatedly solving the same task. To obtain a
different behavior, planner’s heuristic guidance is modified
to account for already found plans, with a specific focus on
a particular metric. This requires (a) having an intimate fa-
miliarity with the way a particular planner works, and (b)
creating a separate modification for each metric. However,
the outcome is not always as intended. Tweaking the heuris-
tic function does not necessarily result in a different plan
and planners have to discard many equal plans and repeat
unnecessary iterations.

In this work, we address the computational problems in
diverse planning as well as the diverse planner construction
paradigm. Similarly to the separation in classical planning,
we distinguish between optimal, bounded, and satisficing
diverse planning and map the existing planners to their re-
spective categories. We propose a new quality metric for a
set of plans, measuring how close the plans are to the best
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subset of all known plans. We create an external validation
tool for the metrics considered in this paper, allowing us to
compute the diversity values of the solutions produced by
existing planners. We introduce an alternative planner con-
struction paradigm, a diverse planning algorithm that instead
of modifying a planner, modifies a planning task. Follow-
ing the ideas of Katz et al. (2018b), we suggest reformu-
lating the planning task after each iteration, forbidding sets
of plans. Next, we post-process the found plans to derive a
subset of plans of the required size, according to the given
metric. Our approach, Forbid Iterative (FI), is not restricted
to any planner and can exploit the recent advances in classi-
cal planning. To demonstrate this advantage, we experiment
with one of the recent best-performing approaches to agile
planning, heuristic novelty of the red-black planning heuris-
tic (Katz et al. 2017; Katz, Hoffmann, and Domshlak 2013;
Domshlak, Hoffmann, and Katz 2015), a core component
for several participants of the recent International Planning
Competition (IPC) 2018 (Katz et al. 2018a; Katz 2018).
Based on this approach, we create planners for two of the
introduced computational problems. We show that the same
approach outperforms the dedicated planners built for spe-
cific metrics on these metrics and on their linear combina-
tions, for both computational problems.

2 Preliminaries and Related Work
A SAS+ planning task (Bäckström and Nebel 1995) is given
by a tuple 〈V,A, s0, s∗〉, where V is a set of state variables,
A is a finite set of actions. Each state variable v ∈ V has
a finite domain dom(v). A pair 〈v, ϑ〉 with v ∈ V and ϑ ∈
dom(v) is called a fact. A (partial) assignment to V is called
a (partial) state. Often it is convenient to view partial state
p as a set of facts with 〈v, ϑ〉 ∈ p if and only if p[v] = ϑ.
Partial state p is consistent with state s if p ⊆ s. We denote
the set of states of a planning task by S. s0 is the initial
state, and the partial state s∗ is the goal. Each action a is
a pair 〈pre(a), eff (a)〉 of partial states called preconditions
and effects. An action cost is a mapping C : A → R0+. An
action a is applicable in a state s ∈ S if and only if pre(a)
is consistent with s. Applying a changes the value of v to
eff (a)[v], if defined. The resulting state is denoted by sJaK.
An action sequence π = 〈a1, . . . , ak〉 is applicable in s if
there exist states s0, · · · , sk such that (i) s0 = s, and (ii) for
each 1 ≤ i ≤ k, ai is applicable in si−1 and si = si−1JaiK.
We denote the state sk by sJπK. π is a plan iff π is applicable
in s0 and s∗ is consistent with s0JπK. We denote by P(Π)
(or just P when the task is clear from the context) the set of
all plans of Π. The cost of a plan π, denoted by C(π) is the
summed cost of the actions in the plan.

The distance between two plans π, π′ is defined as
δ(π, π′) = 1− sim(π, π′), where the similarity measure sim
is between 0 (two plans are unrelated) and 1 (equivalent).
The diversity of a set of plans,D(P ), P ⊆ P is then defined
as some aggregation (e.g., min or average) of the pairwise
distance within the set P . While some domain-dependent
similarity measures exist (e.g., Myers and Lee 1999; Co-
man and Muñoz-Avila 2011), recent research has focused
on domain-independent measures, comparing plans based
on their actions, states, causal links, or landmarks (Nguyen

et al. 2012; Bryce 2014).
Stability similarity (inverse of the plan distance (Fox et al.

2006; Coman and Muñoz-Avila 2011)) measures the ratio of
the number of actions that appear on both plans to the total
number of actions on these plans, referring to plans as action
sets, ignoring repetitions. Given two plans π, π′, it is de-
fined as simstability(π, π′) = |A(π)∩A(π′)|/|A(π)∪A(π′)|,
where A(π) is the set of actions in π. Uniqueness similar-
ity (Roberts, Howe, and Ray 2014) is another measure that
considers plans as action sets. It measures whether two plans
are permutations of each other, or one plan is a partial plan
(subset) of the other plan. State similarity measures similar-
ity between two plans based on representing the plans as a
sequence of states, where each state is a set of predicates.
While there are multiple ways to define state similarity, we
adapt the following definition from (Nguyen et al. 2012),
modifying it based on use of similarity rather than distance
between plans. Let (s0, s1, . . . , sk) and (s0, s

′
1, . . . , s

′
k′) be

the sequences of states traversed by the plans π and π′,
respectively. Let ∆(s, s′) = |s ∩ s′|/|s ∪ s′| be the sim-
ilarity between two states. Assuming k′ ≤ k, the state
similarity measure is defined as follows: simstate(π, π

′) =∑k′

i=1 ∆(si, s
′
i) k. Note, each state s′k′+1, ..., sk is consid-

ered to not contribute to the similarity measure (i.e., zero
is considered). The combination of the state and uniqueness
measures address some of the major weaknesses of the sta-
bility measure raised by recent research (Goldman and Kuter
2015). Thus, since our focus in this work is not on met-
rics, we omit the description of the landmark-based distance
(Bryce 2014).

While there seems to be no widely adopted definitions
of diverse planning problems, previous work has introduced
some such definitions. In these definitions, d is a threshold
on the distance and c is a threshold of the cost of the plans.
The variant introduced by Nguyen et al. (2012) requires the
distance between every pair of plans in the solution to be of
bounded diversity. Formally, the search problem is depicted
as follows:

dDISTANTkSET : find P with P ⊆ P,
|P | = k, min

π,π′∈P
δ(π, π′) ≥ d. (1)

Another variant, by Vadlamudi and Kambhampati (2016)
extends the previous search problem by requiring each in-
dividual plan in the solution to be of bounded quality. For-
mally:

cCOSTdDISTANTkSET : find P with P ⊆ P,
|P | = k, min

π,π′∈P
δ(π, π′) ≥ d,C(π) ≤ c ∀π ∈ P. (2)

While Eq. 2 considers plan costs, Eq. 1 only considers
the distance between plan pairs. Note that both definitions
require finding k distinct plans.

We denote the diversity of a set of plans P , computed as
an average over the pairwise dissimilarity of the set P , under
the similarity measures of stability, uniqueness, and state by
Da, Du, and Ds, respectively, dropping P for readability.
Also, Dma denotes the diversity metric computed as mini-
mum over the pairwise stability dissimilarity.
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3 Quality Metric
While most work in diverse planning focused on the di-
versity metrics, not much was done for quality metrics.
One possible quality metric is the summed cost of plans
Q =

∑
π∈P C(π). In order to normalize its value, it is pos-

sible, as with the International Planning Competition (IPC)
quality metric for individual plans, to divide the best known
solution value by the value of the given planner. One down-
side of such a metric is that a single plan’s quality can have
a large effect on the overall quality. For example, the quality
of a set of plans, where all plans are optimal except for one,
of a much higher cost, may get a quality score worse than a
set where all plans are not optimal. Thus, we suggest a qual-
ity metric that will allocate a score to each plan in the set,
aggregating these scores into a single score.

Given n diverse planners, let P = P1 ∪ P2... ∪ Pn be
the set of all plans found by these planners. Let π1, . . . πk
be k plans with the lowest cost, ordered by their cost from
smallest to largest and let ci = C(πi). For a planner j, the
quality of the solution Pj is measured relatively to the best
known k plan costs c1, . . . , ck as follows. Let πj1, . . . π

j
k be

an ordering of plans in Pj according to their costs and let
cji = C(πji ). The quality metric is defined as follows.

Q(Pj) :=
1

k
×

k∑

i=1

ci

cji
. (3)

Note that cji ≥ ci, since Pj ⊆ P , and thus πji has at least
i − 1 plans of no larger cost in P . Thus, each sum compo-
nent is between 0 and 1, and thus the whole score is a value
between 0 and 1. Further, a solution Pj will get the score 1 if
and only if it consists of k cheapest plans found by any plan-
ner. In other words, if there exists no plan in P \ Pj (found
by any of the other planners) that is cheaper than a plan in
Pj . The suggested metric is similar in spirit to the parsimony
ratio (Roberts, Howe, and Ray 2014). The parsimony ratio is
defined as s(πk, πl) = |πk|/|πl|, where for each πl (|πl| = l)
we need to find an optimal plan, πk (|πk| = k), such that
πk ⊆ πl, k ≤ l. This can be challenging by itself, since it re-
quires finding optimal plans. The parsimony ratio also only
considers unit cost plans. Both these limitations do not exist
in our suggested metric: it can handle general costs and the
computation is relative to the set of known plans.

4 Diverse Planning Revisited
In this section, we define a collection of computational prob-
lems in diverse planning for two optimization criteria, qual-
ity and diversity. Following previous definitions, depicted in
Eqs. 1 and 2, we define a solution to a diverse planning prob-
lem as a set of plans of a required size. In contrast to previous
definitions, in case there exist fewer plans than requested,
the set of all plans is also considered to be a valid solution.

Definition 1 (Diverse planning solution) Let Π be a plan-
ning task and P be the set of all plans for Π. Given a nat-
ural number k, P ⊆ P is a k-diverse planning solution if
|P | = k or P = P if |P| < k.

Restricting our attention to two optimization criteria,
quality and diversity, let us introduce some terminology. We
say that a solution is quality-optimal (diversity-optimal) if
there exists no solution of better quality (diversity). In other
words, given solution quality mappingQ (diversity mapping
D), a solution P is quality-optimal (diversity-optimal) if for
all solutions P ′ we have Q(P ′) ≤ Q(P ) (D(P ′) ≤ D(P )).
Given a bound b, we say that a solution P is quality-bounded
(diversity-bounded) if Q(P ) ≥ b (D(P ) ≥ b).

For both quality and diversity, one could either strive to
find optimal or bounded solutions, or impose no restriction
on solution quality. Unfortunately, these two optimization
criteria can interfere with each other. Thus, in what follows,
we define various search and optimization problems.

4.1 Satisficing Diverse Planning
We start with imposing no restrictions. Thus, the Satisficing
Diverse Planning problem can be defined as follows.

sat-k : Given k, find a k-diverse planning solution.

Note that the objective is to find any set of k plans with-
out any restrictions on either quality or diversity. This is the
category under which most diverse planners fall (e.g., Bryce
2014; Roberts, Howe, and Ray 2014). To compare planners
in this category, it is sufficient to compare the quality and
diversity of their solutions. Note, many of the satisficing di-
verse planners incorporate the distance measure into their
search and focus on finding diverse plans with respect to that
particular distance measure in mind. Hence, while they may
perform well for one diversity metric, they may do poorly in
another one.

4.2 Bounded Diverse Planning
Continuing now by restricting either quality or diversity by
imposing a bound, we introduce a Bounded Quality (Diver-
sity) Diverse Planning. We do that by restricting the set of
feasible solutions.

Definition 2 (Diversity-bounded solution) Let Π be a
planning task,D be some diversity metric, b be some bound,
and P be the set of all Π’s plans. Given a natural number k,
P ⊆ P is a b-diversity-bounded k-diverse planning solution
if it is a k-diverse planning solution and D(P ) ≥ b.

Definition 3 (Quality-bounded solution) Let Π be a plan-
ning task, Q be some quality metric, c be some bound, and
P be the set of all Π’s plans. Given a natural number k,
P ⊆ P is a c-quality-bounded k-diverse planning solution
if it is a k-diverse planning solution and Q(P ) ≥ c.

Given the definitions above, we can now define the fol-
lowing search problems:

bD-k : Given k and b,find a b-diversity-bounded
k-diverse planning solution,

bQ-k : Given k and c,find a c-quality-bounded
k-diverse planning solution.
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Note that solutions for bQ-k can be obtained from solu-
tions to the Top-quality planning problem (Katz, Sohrabi,
and Udrea 2019b).

The search problem bD-k generalizes the definition in Eq.
1 by Nguyen et al. (2012), for a diversity score Dma de-
fined as the minimum over the pairwise stability dissimi-
larity. Note that this measure differs from Da, that aver-
ages over the pairwise stability dissimilarity. For bounded
diverse planning, Dma dominates Da in the sense that solu-
tions to the diversity-bounded diverse planning under Dma

are necessarily solutions to the diversity-bounded diverse
planning under Da with the same bound, but not the other
way around. The planner LPG-d implements the approach of
Nguyen et al. (2012), for a variant of Dma, where the stabil-
ity similarity is computed over multisets, instead of sets. We
denote this diversity metric by Dmma. Thus, LPG-d can be
thought of as a diversity-bounded diverse planner forDmma

but not for any of the other metrics. Further, while LPG-d is a
sound planner, it is not complete, since it can only add plans
to the collection of previously found plans, and never recon-
siders the decision to add a plan. Thus, in principle LPG-d
might not be able to find a solution to the diversity-bounded
diverse planning problem when a solution exists.

Restricting both quality and diversity results in an addi-
tional search problem, one we call Bounded Quality and Di-
versity Diverse Planning.

bQbD-k : Given k, b, and c,find a c-quality-bounded
and b-diversity-bounded k-diverse planning solution.

The search problem bQbD-k generalizes the definition in
Eq. 2 by Vadlamudi and Kambhampati (2016), for diversity
score that uses min as the aggregation method and quality
score defined as a maximum over the individual plan costs. It
is worth noting here that in all these definitions, as in classi-
cal planning, if the bound is super-optimal, the search prob-
lem is considered to be unsolvable.

4.3 Optimal Diverse Planning
Restricting now either the quality or diversity to be optimal,
we define two optimization problems, Optimal Quality (Di-
versity) Diverse Planning.

optQ-k : Given k, find a quality-optimal
k-diverse planning solution.

optD-k : Given k,find a diversity-optimal
k-diverse planning solution.

Top-k planners (e.g., Riabov, Sohrabi, and Udrea 2014;
Katz et al. 2018b) can be viewed as planners for optQ-k, op-
timizing the quality metric Q =

∑
π∈P C(π). To the best of

our knowledge, there are no existing planners for the optD-k
optimization problem. In fact, it is not clear how to create
such non-trivial planners, without the need to generate the
set of all plans.

If we further restrict the other optimization function, this
results in additional optimization problems. The first two

sat-k

bD-k

bQbD-k

bQ-k

bDoptQ-k bQoptD-koptQ-koptD-k

opt-k

Figure 1: Hierarchy between the computational problems.

are Optimal Quality Bounded Diversity Diverse Planning
and Optimal Diversity Bounded Quality Diverse Planning,
as follows.

bDoptQ-k : Given k and b,find a quality-optimal
among b-diversity-bounded k-diverse planning solutions.

bQoptD-k : Given k and c,find a diversity-optimal
among c-quality-bounded k-diverse planning solutions.

Note that the solutions to the optimization problems
bDoptQ-k and bQoptD-k are relative to the restricted set of
solutions as in Definitions 2 and 3, respectively. This means
that a solution to, e.g., bQoptD-k is not necessarily a solu-
tion to optD-k. One possible way to obtain solutions to the
bQoptD-k optimization problem is by using a top-k planner
to generate a set of all plans of bounded quality and then
select an optimal subset of size k from the generated set ac-
cording to some diversity metric.

We can further restrict a set of feasible solutions to
quality-optimal (diversity-optimal) diverse planning solu-
tions and choose the best according to the diversity (qual-
ity) metric among those. Instead, our last optimization prob-
lem we simply call Optimal Diverse Planning. The objec-
tive of optimal diverse planning is to find a solution that is
pareto-optimal, that is for all solutions P ′ we have either
Q(P ′) ≤ Q(P ) and for all P ′′ with Q(P ) = Q(P ′′) we
have D(P ′′) ≤ D(P ) or D(P ′) ≤ D(P ) and for all P ′′
with D(P ) = D(P ′′) we have Q(P ′′) ≤ Q(P ). In words,
optimal solutions are solutions on the pareto frontier of qual-
ity and diversity. We denote the optimization problem stated
above by opt-k.

The hierarchy between the presented computational prob-
lems is depicted in Figure 1. Edges represent solution set
inclusion, i.e., whether a solution for one problem is nec-
essarily a solution for another, assuming a solution exists.
For example, a pareto-optimal solution is a solution to either
optD-k or optQ-k, but not necessarily to either bQoptD-k or
bDoptQ-k, since the latter two optimize over the solutions
that are of bounded quality and diversity, respectively. The
diagram does not reflect the transitive inclusion, which, in
this case, means that solutions to all problems are solutions
to the satisficing diversity planning problem.
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5 Satisficing Diverse Planning with a
Satisficing Classical Planner

Previous work has focused on modifying existing planners,
either heuristic search or local search based ones, to come
up with plans that differ from previously found ones. These
modified planners were then applied to the same planning
task, over and over again. We suggest a different approach,
using possibly the same planner, iteratively modifying the
planning tasks to forbid plan sets (Katz et al. 2018b). Below,
we list some of the benefits to such an approach: (1) it al-
lows us to exploit state-of-the-art classical planners without
the need to modify them, taking advantage of the progress
in classical satisficing planning; (2) it removes the need for
modifying the behaviour of the existing planners, allowing
these planners to work as intended; (3) this allows us to take
the selection of a subset of plans that is diverse according to
a specific metric and postprocess them, thus also allowing
us to define and use more sophisticated metrics.

5.1 Forbidding a Plan as a Multiset of Actions
Existing literature suggests one such task reformulation, for-
bidding exactly the given set of plans (Katz et al. 2018b).
This was done in the context of top-k planning, where plans
could not be safely discarded from consideration. In satisfic-
ing diverse planning, there is no such limitation. As a result,
it is possible to forbid additional plans. One could envision
a metric-dependent reformulation, forbidding also the plans
that are similar according to the given metrics. With the sta-
bility metric in mind, we suggest a reformulation that ig-
nores orders between actions in a plan and thus, also forbids
all possible reorderings of a given plan. Below, we present
the detailed description of such a reformulation.

Definition 4 Let 〈V, A, s0, s∗〉 be a planning task and X
be a multiset of actions. The task Π−X = 〈V ′, A′, s′0, s′∗〉 is
defined as follows.
• V ′ = V ∪ {v} ∪ {vo | o ∈ X}, with v being a binary

variable, and dom(vo) = {0, . . . ,mo}, where mo is the
number of occurences of o in X ,

• A′ = {oe | o ∈ A \X} ∪ {or, od | o ∈ X} ∪⋃mo

i=1{o
f
i |

o ∈ X}, where

oe = 〈pre(o), eff (o) ∪ {〈v, 0〉}〉,
or = 〈pre(o) ∪ {〈v, 0〉}, eff (o)〉,
od = 〈pre(o) ∪ {〈v, 1〉, 〈vo,mo〉}, eff (o) ∪ {〈v, 0〉}〉,
ofi = 〈pre(o) ∪ {〈v, 1〉, 〈vo, i-1〉}, eff (o) ∪ {〈vo, i〉}〉,
C ′(oe)=C ′(or)=C ′(od)=C ′(of )=C(o),

• s′0[v] = s0[v] for all v ∈ V , s′0[v] = 1, and s′0[vo] = 0 for
all o ∈ X , and

• s′∗[v]=s∗[v] for all v∈V s.t. s∗[v] defined, and s′∗[v]=0.

Let us explain the semantics of the reformulation in Def-
inition 4. By Xπ we denote the multiset of actions in a plan
π. The variable v starts from the value 1 and switches to
0 when an action is applied that is not from the multiset
X = Xπ . Once a value 0 is reached indicating a deviation

Algorithm 1 Iterative diverse planning scheme.
Input: Planning task Π, number of diverse plans k, number

of total plans for search phase K, diversity metric D
P ← ∅
Π′ ← Π
while |P | < K do

π ← some solution to Π′

P ← P ∪ {π′ | π′ is symmetric to π}
X ← ⋃

π∈P Xπ

Π′ ← Π−X according to Definition 4
end while
return choose k diverse plans from P , according to D

from plan π, it cannot be switched back to 1. Variables vo
encode the number of applications of the action o. The ac-
tions or and od are copies of the action o in X for the cases
when π is already discarded from consideration (variable v
has switched its value to 0) and for discarding π from con-
sideration (switching v to 0), respectively. The latter happens
if the action o was already applied as many times as it ap-
pears in X . ofi are copies of the action o in X , counting the
number of applications of o, as long as the number is not
higher than the number of times it appears in X . These ac-
tions are applicable only while the plan is still followed. As
mentioned above, ignoring plan reorderings sits well with
the stability metric, but also with the uniqueness metric. For
the state metric, note that although different reorderings of
the same plan produce different sequences of states, these se-
quences will mostly be quite similar. Thus, we believe that
it is more beneficial to spend the time on finding additional
plans that are “set”-different instead of finding additional re-
orderings of the found plans. Note that in principle we could
do both, if time permits.

When a set of plans is available, obtained, e.g., by apply-
ing structural symmetries (Shleyfman et al. 2015), one op-
tion would be to reformulate via a series of reformulations
as in Definition 4. Another option is to forbid possibly more
than just that set of plans by exploiting Definition 4 for for-
bidding a multiset of actions that is a superset of all plans in
the set. In our implementation, we decided to follow the lat-
ter approach, depicted in Algorithm 1. Each iteration starts
from the original task and forbids all plans found so far. In
the last step, the algorithm selects a diverse subset of plans
out of the set of plans found so far. In what follows, we dis-
cuss how such a selection can be done.

5.2 Selecting a Diverse Subset of Plans
The idea of selecting a set of plans in a post-processing
phase is not new. A basic filtering and then clustering was
performed over the set of plans for a top-k planning prob-
lem (Sohrabi et al. 2016; 2018). These approaches, however,
may become time consuming when metric computation is
computationally expensive. Hence, in this work, we instead
apply a simple greedy algorithm, with a negligible computa-
tional overhead. We first order the found plans by their cost.
Then, going from the cheapest plans to the more expensive
ones, we find a pair of plans with the largest diversity score.
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Starting with the found pair of plans, we iteratively construct
the set by greedily choosing the next plan to add to the set,
maximizing the diversity of the resulting set at that iteration
step. We stop once the set reaches the requested size k. We
note that the quality of the solution obtained by such an al-
gorithm may be considerably improved. However, as we see
next, even such a naive algorithm produces quite encourag-
ing results.

6 Diversity-Bounded Diverse Planning
As previously mentioned, LPG-d as described by Nguyen et
al. (2012) is a sound diversity-bounded diverse planner, al-
though not complete. Similarly, our suggested approach can
be used to produce a sound diversity-bounded diverse plan-
ner by post-processing the obtained plans differently. In gen-
eral, such a post-processing procedure should find a collec-
tion of plans that adhere to certain constraints and that often
corresponds to solving an NP-hard computational problem.
For Dmma, that corresponds to finding a clique of size at
least k, for a graph over vertices that correspond to plans
found during the search phase and edges that correspond to
pairs of plans of stability dissimilarity of at least d. Such
cliques can be found using, e.g., mixed-integer linear pro-
gram tools. In what follows, we use binary variables, one
for each graph vertex to encode whether the vertex is a part
of the selected clique. For each pair of vertices that are not
connected by an edge, at most one of these vertices can be-
long to a clique. Thus, we introduce a constraint stating that
if there is no edge between two vertices, then the sum of the
two corresponding binary variables cannot exceed 1. An ad-
ditional constraint requires the sum of all binary variables to
be greater or equal to k, the number of the requested plans.
Thus, valid assignments to the binary variables correspond
exactly to cliques of size at least k. As a result, any optimiza-
tion criteria can be chosen. Here, we choose to minimize
the size of the obtained clique, finding a clique of size ex-
actly k. This is done by minimizing the sum of all variables.
Note that, while it is not required by the diversity-bounded
diversity-bounded diverse planning problem, one can opti-
mize other criteria while keeping the same set of constraints,
and choosing a clique, e.g., maximizing the sum of pairwise
stability measures.

7 Experimental Evaluation
In order to evaluate the feasibility of our suggested approach
for deriving diverse sets of plans according to various exist-
ing metrics, we have implemented our approach on top of
the Fast Downward planning system (Helmert 2006). Our
planners, ForbidIterative (FI) diverse planners are available
as part of the collection of ForbidIterative planners (Katz,
Sohrabi, and Udrea 2019a). Further, we implemented an ex-
ternal component, that given a set of plans and a metric re-
turns the score of the set under that metric (Katz and Sohrabi
2019).

We compare our approach for satisficing diverse planning
to existing satisficing diverse planners, namely DLAMA
planner (Bryce 2014), DIV (Coman and Muñoz-Avila
2011), itA∗, RWS, MQAd, MQAs, MQAtd, and MQAts

(Roberts, Howe, and Ray 2014), on state, stability, unique-
ness, as well as a uniform linear combination over all sub-
sets of these metrics, seven diversity metrics overall, shown
in Table 1. Our diversity-bounded diverse planner is com-
pared to the only existing diversity-bounded diverse planner
LPG-d (Nguyen et al. 2012), on the Dmma metric, varying
the diversity parameter d to obtain values 0.15, 0.25, and 0.5
(see Table 2). We also varied the value of k, the number of
required plans, for k∈{5, 10, 100, 1000}. For completeness,
we include a comparison to LPG-d viewed as a satisficing di-
verse planner. To compare to all selected existing planners,
we restrict our benchmark set to STRIPS domains with uni-
form action costs from the International Planning Competi-
tions (IPC). This results in 1276 tasks in 40 domains.

The experiments were performed on Intel(R) Xeon(R)
CPU E7-8837 @2.67GHz machines, with time and memory
limits of 30min and 2GB, respectively. Our suggested ap-
proach iteratively solves a planning task, finds a set of plans,
and creates a new task that forbids a superset of the plans
found so far. Considering plans as multisets, ignoring the or-
der between the actions, this superset is defined as the union
of all plans found so far. Thus, we forbid reorderings of
found plans, but also, possibly additional plans, correspond-
ing to a union of multiple found plans. We are restricting
the number of found plans to 1000. For solving the (orig-
inal and reformulated) planning tasks, we use an existing
state-of-the-art agile planner. The planner that was chosen is
MERWIN (Katz et al. 2018a). It performs a greedy best-first
search (GBFS), alternating between four queues, novelty of
the red-black heuristic, landmark count, preferred operators
from the red-black heuristic, and preferred operators from
the landmark count heuristic. The configuration has shown
an exceptionally good performance on the IPC domains in
our benchmark set (Katz et al. 2017). Note that while we re-
port only results for MERWIN, we have also experimented
with LAMA (Richter and Westphal 2010). The results were
similar, therefore we report here only the results for MER-
WIN. A minor restriction in our choice of an external plan-
ner is the ability to work directly on SAS+ representation,
since our task reformulation is performed directly on SAS+

and results in a SAS+ task. This restriction is indeed some-
what minor, since most state-of-the-art planners do work on
the grounded SAS+ representation. In some cases, however,
an adaptation might be required, since our implementation
uses the input format of the Fast Downward planning sys-
tem (Helmert 2006).

The solution to the computational problem of interest is
chosen in the post-processing step from the found plans.
Focusing first on satisficing diverse planning, if the desired
number of plans k is lower, we then greedily1 choose a sub-
set of size k according to the given diversity metrics, as de-
scribed in Section 5.2. Note that this can result in different
subsets of plans chosen for different metrics. The algorithm
is implemented as part of the external component (Katz and
Sohrabi 2019). Each technique gets a score between 0 and
1 for each task and each metric, as described in previous

1We have experimented with exact techniques, based on mixed-
integer linear programs, but found them to be prohibitively slow.
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FI DIV DLAMA itA* LPG-0.15 LPG-0.25 LPG-0.5 MQAd MQAs MQAtd MQAts RWS
k=

5
coverage 1143 95 178 611 705 701 680 277 499 2 615 51
Qc 1095.66 84.69 127.26 539.13 527.10 526.46 488.91 190.37 447.37 1.80 533.03 39.25
Da 736.88 33.65 123.07 271.77 402.72 412.39 455.86 213.83 277.70 0.40 322.17 30.62
Ds 585.34 45.01 96.35 200.58 321.62 322.02 336.41 144.86 143.73 1.09 229.62 25.32
Du 1093.70 53.10 176.00 527.70 688.10 689.10 671.90 275.20 486.70 0.60 539.40 41.20
Ds Da 640.46 39.33 108.60 236.17 362.13 367.17 396.03 179.34 210.71 0.74 275.90 27.97
Ds Du 837.18 49.06 136.19 364.14 504.81 505.55 504.14 210.03 315.21 0.85 384.51 33.26
Du Da 915.87 43.37 149.50 399.74 545.39 550.74 563.87 244.51 382.20 0.50 430.79 35.91
Da Du Ds 791.81 43.92 131.11 333.35 470.75 474.45 487.97 211.30 302.71 0.70 363.73 32.38

k=
10

coverage 1113 1 133 422 661 652 610 168 398 0 430 31
Qc 1060.08 0.93 92.43 376.64 508.15 500.38 433.88 106.96 361.55 0.00 363.00 23.68
Da 681.08 0.48 88.79 191.66 384.80 394.07 418.92 136.97 222.69 0.00 219.30 21.38
Ds 534.93 0.52 71.32 164.53 300.97 302.22 307.07 93.88 114.76 0.00 175.29 15.84
Du 1054.53 1.00 132.62 353.76 648.07 645.27 608.53 167.60 394.91 0.00 365.40 28.91
Ds Da 590.98 0.50 79.38 178.10 342.86 348.10 362.80 115.43 168.73 0.00 197.29 18.61
Ds Du 792.08 0.76 101.92 259.14 474.51 473.71 457.80 130.74 254.84 0.00 270.34 22.37
Du Da 868.10 0.74 110.68 272.71 516.42 519.66 513.73 152.28 308.80 0.00 292.35 25.15
Da Du Ds 745.40 0.67 97.09 236.65 444.59 447.13 444.71 132.82 244.12 0.00 253.33 22.04

k=
10

0

coverage 909 0 11 37 550 535 433 32 170 0 78 15
Qc 849.21 0.00 7.28 31.80 450.36 431.24 296.07 17.41 165.39 0.00 66.48 11.61
Da 492.55 0.00 6.89 22.12 339.17 337.18 319.36 27.02 100.35 0.00 51.24 11.53
Ds 404.63 0.00 5.78 17.90 262.98 258.64 227.79 18.96 57.49 0.00 34.09 7.70
Du 834.18 0.00 11.00 32.70 548.63 534.11 432.95 31.99 169.99 0.00 76.74 14.95
Ds Da 438.70 0.00 6.29 20.01 301.04 297.85 273.43 22.99 78.92 0.00 42.67 9.61
Ds Du 617.02 0.00 8.39 25.30 405.77 396.35 330.36 25.48 113.74 0.00 55.42 11.33
Du Da 661.18 0.00 8.94 27.41 443.91 435.63 376.15 29.51 135.17 0.00 63.99 13.24
Da Du Ds 569.55 0.00 7.86 24.24 383.55 376.58 326.60 25.99 109.28 0.00 54.02 11.39

k=
10

00

coverage 552 0 0 0 406 363 234 0 0 0 0 7
Qc 543.14 0.00 0.00 0.00 361.52 313.51 170.68 0.00 0.00 0.00 0.00 5.96
Da 263.58 0.00 0.00 0.00 244.58 224.01 174.19 0.00 0.00 0.00 0.00 5.38
Ds 206.54 0.00 0.00 0.00 194.19 173.49 118.10 0.00 0.00 0.00 0.00 3.66
Du 490.44 0.00 0.00 0.00 405.93 362.92 234.00 0.00 0.00 0.00 0.00 7.00
Ds Da 233.82 0.00 0.00 0.00 219.35 198.71 146.10 0.00 0.00 0.00 0.00 4.52
Ds Du 348.47 0.00 0.00 0.00 300.05 268.20 176.05 0.00 0.00 0.00 0.00 5.33
Du Da 375.79 0.00 0.00 0.00 325.25 293.45 204.11 0.00 0.00 0.00 0.00 6.20
Da Du Ds 318.92 0.00 0.00 0.00 281.54 253.44 175.40 0.00 0.00 0.00 0.00 5.35

Table 1: Overall summed scores for various metrics, for k=5, 10, 100, and 1000.Da stands for stability,Ds for state, andDu for
uniqueness diversity metrics. Rows that correspond to a linear combination of diversity metrics are marked with all combined
metrics. Qc stands for cost quality metric. Best results are highlighted in bold.

sections. If not enough unique plans were found by some
planner on a task, the planner gets the score of 0 for that
task. Table 1 depicts the summed scores for all planners on
all metrics, for various values of k, from 5 to 1000. First,
note that our approach excels on all metrics, for both diver-
sity and quality. This is due in part to an increased coverage,
by 62% for k = 5, 68% for k = 10, 65% for k = 100,
and 36% for k = 1000. However, as we later see, that is
not the only source of improved performance. For the qual-
ity metric, we improve by over 100% for the smaller values
of k = 5 and 10, by 88% for k = 100, and by 50% for
k = 1000. For various diversity metrics, the improvement
is between 59% and 74% for k = 5 and 10, and between
45% and 54% for k = 100. For k = 1000, the improvement
is much more modest: 6% for the state metric, 8% for the
stability metric, and 21% for the uniqueness metric. Note
that while for smaller k values there are several techniques
that are somewhat comparable in their performance to ours,
larger k values seem to be challenging for most techniques.

The only exception is LPG-d, which performs rather well
even for large k values. In fact, despite solving a different
computational problem, LPG-d is the strongest competitor
to our approach for all tested values of k.

In order to go beyond the aggregated results, Figure 2
shows the comparison between our technique and LPG-d
with d = 0.5, the best performing contestant for k = 5. The
plots show two diversity metrics, stability and state. Each
task corresponds to a single point, with coordinates repre-
senting the metric value. All points above the diagonal are
in favor of LPG-d, and below the diagonal are in favor of
our technique. The points on the axes correspond to tasks
that either were solved by one technique but not the other
or the score obtained by one of the techniques was 0. For
the metric stability in Figure 2(a), there are 884 tasks be-
low the diagonal, 490 of these tasks are on the x axis. There
are 286 tasks above the diagonal, 41 of these tasks are on
the y axis. For the metric state in Figure 2(b), there are 938
tasks below the diagonal, with 495 tasks on x axis and 237
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Figure 2: Comparison of our technique (FI) to the LPG-d planner with d = 0.5 on (a) Da and (b) Ds metrics for k = 5.

0.15 0.25 0.5
k bFI LPG-d Dom bFI LPG-d Dom bFI LPG-d Dom
5 1011 675 28/6 974 671 25/8 890 652 24/10

10 946 632 26/7 912 623 27/9 771 586 25/10
100 569 532 17/13 454 517 15/15 213 433 8/16

1000 152 396 7/17 80 359 3/18 3 234 1/15

Table 2: Comparison of bounded-diversity score (total num-
ber of solved tasks) for k=5, 10, 100, and 1000 for the sta-
bility metric (Dmma). Best results are bolded. Dom shows #
of domains with superior performance for bFI/LPG-d.

tasks above the diagonal, with 39 tasks on y axis. Observe
that most of the tasks are not near the diagonal, and thus
these techniques are rather complementary. We note that for
FI, the score was computed with a greedy algorithm. Exact
solutions, although slower, might have got a better score.

Moving now to diversity-bounded diverse planning, we
increased the bound on the number of plans found in the first
phase to 2000, to give the planner some choice for k = 1000.
The solution here is obtained by solving the binary linear
program, as described in Section 4.2 with the CPLEX solver
in its default configuration. The implementation is available
as part of the external component (Katz and Sohrabi 2019).
While in general these programs have up to 2K binary vari-
ables and up to 4M constraints, we observe that the run
time of the solver is rarely above 10 seconds, with the peak
reaching 47 seconds. If binary linear program was solved by
the solver (feasible solution found), the planner gets 1, and
otherwise (infeasible) 0. We post-process the set of plans
from both our approach and LPG-d in the same way. Ta-

ble 2 shows the overall summed scores over all instances,
as well as the number of domains where each approach ex-
hibits superior performance. As a reminder, our approach
chooses k plans out of the found plans with Dmma above
the given threshold. Thus, our approach has a clear disad-
vantage when there is little or no choice, as in the case of
the largest k values in our experiment. For smaller k values
(k = 5, 10), there is a clear advantage to our approach, for
all tested bounds on Dmma.

8 Summary and Future Work
We have presented various diverse planning computational
problems and classified the existing diverse planners with
their respective problems. Key contributions of this paper
include: (1) characterization of optimal, bounded, and sat-
isficing diverse planning problem; (2) introducing an exter-
nal validation component for diverse planning; (3) address-
ing the satisficing and bounded-diversity diverse planning
problems by iteratively solving a modified planning task us-
ing existing classical planners, escaping the need to adapt a
planner to each new diversity metric. We have empirically
demonstrated the benefits of using such an approach, con-
siderably improving the state-of-the-art in satisficing diverse
planning and favorably competing with the state-of-the-art
in bounded-diversity diverse planning.

For future work, in satisficing diverse planning, we intend
to explore alternative ways of reformulating a planning task,
aiming at tackling a specific diversity metric. For various
optimal diverse planning computational problems, it is often
not clear how to create a non-trivial planner for that prob-
lem at all. For example, an optD-k optimization problem,
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requires to generate a set of plans that is diversity-optimal.
A naive solution might require generating all possible plans
first, which might be infeasible, especially in cases when the
set of all plans is infinite. Focusing on such planning prob-
lems is a promising research direction.

References
2015. Proceedings of the Twenty-Ninth AAAI Conference on Arti-
ficial Intelligence (AAAI 2015), AAAI Press.
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Abstract

The need for finding a set of plans rather than one has been
motivated by a variety of planning applications. The prob-
lem is studied in the context of both diverse and top-k plan-
ning: while diverse planning focuses on the difference be-
tween pairs of plans, the focus of top-k planning is on the
quality of each individual plan. Recent work in diverse plan-
ning introduced additionally restrictions on solution quality.
Naturally, there are application domains where diversity plays
the major role and domains where quality is the predominant
feature. In both cases, however, the amount of produced plans
is somewhat an artificial constraint, and the actual number has
little meaning.
Inspired by the recent work in diverse planning, we propose
a new computational problem called top-quality planning,
where solution validity is defined through plan quality bound
rather than an arbitrary number of plans. Switching to bound-
ing plan quality allows us to implicitly represent sets of plans.
In particular, it makes it possible to represent sets of valid
plan reorderings with one plan. We formally define the cor-
responding computational problem and present the first plan-
ner for that problem. We empirically demonstrate the superior
performance of our approach compared to a top-k planner-
based baseline, ranging from 49% increase in coverage for
finding all optimal plans to 69% increase in coverage for find-
ing all plans of quality up to 120% of optimal plan cost.

1 Introduction
While the main focus in classical planning was on producing
a single plan, a variety of applications has shown the need
for finding a set of plans rather than one. These applications
include malware detection (Boddy et al. 2005), plan recog-
nition as planning and its applications (Riabov et al. 2015;
Sohrabi, Riabov, and Udrea 2016; Sohrabi et al. 2018;
Shvo, Sohrabi, and McIlraith 2018), human team planning
(Kim et al. 2018), explainable AI (Chakraborti et al. 2018),
re-planning and plan monitoring (Fox et al. 2006).

The problem of finding a set of plans is studied in the con-
text of both diverse planning (e.g., Nguyen et al. 2012) and
top-k planning (e.g., Katz et al. 2018). Diverse planning fo-
cuses on the difference between pairs of plans, evaluating
a set of plans by aggregating over the pairwise differences
between plans in the set. Recent work in diverse planning
introduced additional restrictions on solution quality, requir-
ing each plan in the set to also be of bounded quality (Vad-

lamudi and Kambhampati 2016; Katz and Sohrabi 2019).
Top-k planning is a generalization of cost-optimal planning.
The focus of top-k planning is on the quality of each indi-
vidual plan, guaranteeing that no plan of better cost exists
outside the solution of a requested size.

Naturally, there are application domains where diver-
sity plays the major role and domains where quality is the
predominant feature. The latter include plan recognition
(Sohrabi, Riabov, and Udrea 2016), multi-agent plan recog-
nition (Shvo, Sohrabi, and McIlraith 2018), human team
planning (Kim et al. 2018), and explainable AI (Chakraborti
et al. 2018). These applications exploit top-k planners to
derive a large number of plans. In these domains, though,
the focus on the number of plans provided is somewhat
artificial, and is intended solely to ensure that a sufficient
number of plans is found. Further, ordering of actions in
a plan can be of less importance in some applications.
Plan recognition is one such example application. In plan
recognition as planning (Sohrabi, Riabov, and Udrea 2016;
Shvo, Sohrabi, and McIlraith 2018), a planning task con-
sists of actions that explain/discard observations. There is
no meaning to the order among these actions. Some spe-
cific practical applications for plan recognition are hypoth-
esis generation (Sohrabi et al. 2016) and scenario planning
advisor (Sohrabi et al. 2018). These applications use a top-k
planner with a large bound on the number of required plans
k, and the obtained plans are post-processed to discard re-
orderings and cluster similar plans. This would also apply
to e.g., problems with actions that correspond to informa-
tion gathering, where no particular ordering is required. The
clear disadvantage of a top-k planner in such cases is that it
would generate all possible orderings before proceeding to
plans of a higher cost. Thus, the number of required plans
used in practice is often a crude over-approximation. Fur-
ther, even quite large numbers are often not sufficient to en-
sure that the set of plans includes enough plans of interest,
since plans can easily have millions of valid reorderings. A
top-k planner would have to generate all these plans before
it can get to a plan of a higher cost. Diverse planners (Bryce
2014; Nguyen et al. 2012; Coman and Muñoz-Avila 2011;
Roberts, Howe, and Ray 2014; Vadlamudi and Kambham-
pati 2016) tackle the issue by defining diversity criteria over
a set of plans, but only a handful of works take the plan qual-
ity into consideration (Roberts, Howe, and Ray 2014; Vad-
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Figure 1: Example logistics task.

lamudi and Kambhampati 2016; Katz and Sohrabi 2019).
While some computational problems in diverse planning do
require to provide some guarantees on solution quality (Katz
and Sohrabi 2019), existing diverse planners still do not pro-
vide such guarantees.

In this paper, we propose a new family of computational
problems called top-quality planning. The objective of top-
quality planning is to find and concisely represent a set of all
plans of bounded quality, for a given (absolute) bound. That
is, we suggest an alternative definition of solution validity,
by bounding the solution quality instead of bounding the
number of plans. This allows us to define an equivalence re-
lation on plans and implicitly represent equivalence classes
plans without knowing the exact number of plans in the set.
In particular, in this work, we focus on the equivalence rela-
tion that is defined by all possible reorderings of each plan,
represented by one canonical plan. Furthermore, we propose
a first planner for unordered top-quality planning that itera-
tively finds a single plan of top quality and forbids at once
all plans found so far, including all their possible reorder-
ings. For that, we adapt a recently proposed diverse planning
reformulation that forbids a single multiset of actions (Katz
and Sohrabi 2019) to forbid exactly a collection of multi-
sets. Our adaptation of the existing reformulation allows us
to forbid multiple sets of plans at each iteration while pre-
serving soundness and completeness of our approach. We
empirically compare our approach to unordered top-quality
planning to the only available baseline – a top-k planner with
a large k bound. Our approach exhibits a superior perfor-
mance, ranging from 49% increase in coverage for finding
all optimal plans to 69% increase in coverage for finding all
plans of cost up to 120% of optimal plan cost.

2 Preliminaries
We consider classical planning tasks in the well-known
SAS+ formalism (Bäckström and Nebel 1995), extended
with action costs. Such planning tasks Π = 〈V ,O, s0, s?〉
consist of V , a finite set of finite-domain state variables,
O, a finite set of actions, s0, an initial state, and s?, the
goal. Each variable v ∈ V is associated with a finite domain
dom(v) of variable values. These variable, value pairs are
called facts. A partial assignment p maps a subset of vari-
ables vars(p) ⊆ V to values in their domains. For a variable
v ∈ V and partial assignment p, the value of v in p is de-
noted by p[v] if v ∈ vars(p) and we say p[v] is undefined
if v /∈ vars(p). A partial assignment s with vars(s) = V ,
is called a state. State s is consistent with partial assignment
p if they agree on all variables in vars(p), shortly denoted
by p ⊆ s. The product S =

∏
v∈V dom(v) is called the
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Figure 2: Three example cost-optimal plans for the example
task.

state space of planning task Π. s0 is a state and s? is a par-
tial assignment. A state s is called a goal state if s? ⊆ s
and the set of all goal states is denoted by Ss? . Each ac-
tion o in O is a pair 〈pre(o), eff (o)〉 where pre(o) is a par-
tial assignment called precondition and eff (o) is a partial
assignment called effect. Further, o has an associated natu-
ral number cost(o), called cost. An action o is applicable in
state s if pre(o) ⊆ s. Applying action o in state s results
in a state denoted by sJoK where sJoK[v] = eff (o)[v] for
all v ∈ vars(eff ) and = sJoK[v] = s[v] for all other vari-
ables. An action sequence π = 〈o1, · · · , on〉 is applicable in
state s if there are states s0, · · · , sn such that oi is applica-
ble in si−1 and si−1JoiK = si for 0 ≤ i ≤ n. We denote
sn by sJπK. For convenience we often write o1, · · · , on in-
stead of 〈o1, · · · , on〉. An action sequence with s0JπK ∈ Ss?
is called a plan. The cost of a plan π, denoted by cost(π)
is the summed cost of the actions in the plan. For a plan-
ning task Π = 〈V ,O, s0, s?〉, the set of all plans is denoted
by PΠ. A plan π is optimal if its cost is minimal among all
plans in PΠ. For a plan π, we denote by MS(π) the multi-
set1 of actions in π. Note that two different plans π and π′
can have MS(π) = MS(π′). We call such plans reordering
of each other. Reoderings of actions of a plan that are plans
are called valid reorderings.

In this paper, we will use a logistics task, depicted in Fig-
ure 1, as our running example. This task has two cities, with
two locations each, L1 and L2, three trucks, T1 (left), and
T2, T3 (right), that can drive within their cities, one airplane,
A, that can fly between the airport locations, Apt1 and Apt2,
and four packages, P1 to P4, that need to be transported from
their initial locations to some specified goal locations. The
initial and goal locations of all objects are shown in Figure 1
and marked with dashed arrows. Assuming all actions hav-

1A set with possible multiple occurences of the same element.

11



ing unit cost, a cost-optimal plan for this task will consists
of 20 actions. Example plans πa, πb, and πc are depicted in
Figure 2.

Given a plan π, it is sometimes possible to obtain a differ-
ent plan of equivalent cost without solving the planning task
again. Two of such possible ways: action reordering and de-
riving symmetric plans, are exploited by state-of-the-art top-
k planners (Katz et al. 2018). While action reordering is per-
formed using search and may be time consuming, symmetric
plans can be obtained using structural symmetries (Shleyf-
man et al. 2015). Structural symmetries are permutations of
variable values and actions that induce automorphisms of
the state transition graph. Here, we present the definition of
structural symmetries for SAS+ as was given by Sievers et
al. (2017).

Definition 1 (structural symmetry) For a SAS+ planning
task Π = 〈V ,O, s0, s?〉, let F be the set of Π’s facts, i. e.
pairs 〈v, d〉 with v ∈ V , d ∈ dom(v). A structural symmetry
for Π is a permutation σ : V ∪F ∪O → V ∪F ∪O, where:

1. σ(V) = V and σ(F ) = F such that σ(〈v, d〉) = 〈v′, d′〉
implies v′ = σ(v);

2. σ(O) = O such that for o ∈ O, σ(pre(o)) = pre(σ(o)),
σ(eff (o)) = eff (σ(o)), cost(σ(o)) = cost(o);

3. σ(s?) = s?;
where σ({x1, . . . , xn}) := {σ(x1), . . . , σ(xn)}, and s′ :=
σ(s) is the partial state obtained from the partial state s s.t.
for all v∈vars(s), σ(〈v, s[v]〉)=〈v′, d′〉 implies s′[v′]=d′.

A structural symmetry σ stabilizes the state s if σ(s) = s.
Given a plan π = o1 . . . on and a structural symmetry σ
that stabilizes the initial state, applying the permutation σ
to each action in the plan results in a necessarily valid plan
σ(π) = σ(o1) . . . σ(on) of the same cost. Note that σ(π) is
not a reordering of π, since σ may map actions from π to
actions outside of π.

In our example, the structural symmetries can detect sym-
metries between two of the trucks T2 and T3, between the
two packages that are initially in L1, and between the two
packages that are initially in L2. Thus, structural symmetries
can be used to obtain additional plans from a given plan. In
our example, the plan πc in Figure 2 can be obtained from
πa using the symmetry between the trucks T2 and T3. Note
that these two plans use different actions and thus are not
reorderings of each other. The plan πb, on the other hand,
is a reordering of πa, changing the order between the first
two actions. These two plans are not symmetric, since map-
ping the action (load P4 T2 L2) to (load P3 T2 L2) would
also require mapping (unload P4 T2 L2) to (unload P3 T2

L2). Naturally, there exist pairs of plans that are both sym-
metric and reordering of each other. There are 6602112 cost-
optimal plans in our example, half of them are reorderings
of the plan πa and the other half are reordering of πc.

Lastly, the top-k planning problem (Sohrabi et al. 2016;
Katz et al. 2018) is defined as follows.

Definition 2 (top-k planning problem) Given a planning
task Π = 〈V ,O, s0, s?〉 and a natural number k, find a set
of plans P ⊆ PΠ such that:

(i) for all plans π ∈ P , if there exists a plan π′ for Π with
cost(π′) < cost(π), then π′ ∈ P , and

(ii) |P | ≤ k, with |P | < k implying P = PΠ.
An instance of the top-k planning problem 〈Π, k〉, is called
solvable if |P | = k and unsolvable if |P | < k.

The objective of top-k planning is finding k plans of lowest
costs for a planning task Π and thus optimal planning is the
special case of top-1 planning.

3 Top-quality Planning
We start by formally defining the top-quality planning prob-
lem as the problem of finding all plans of bounded quality.

Definition 3 (top-quality planning problem)
Given a planning task Π = 〈V ,O, s0, s?〉 and a natural
number q, find the set of plans P ={π ∈ PΠ | cost(π) ≤ q}.

The top-quality planning problem is well-defined and al-
ways has a solution. Note that one can exploit existing tools
for top-k planning to derive solutions to the top-quality plan-
ning problem, by setting k to a large value and adding an-
other stopping criteria, once a plan π of cost(π) > q was
obtained. In such cases, P would explicitly contain all plans
with cost(π) ≤ q. This was done by Vadlamudi and Kamb-
hampati (2016) as the first step in their algorithm, although
they do not formally define the top-quality problem. These
explicit sets of plans can get prohibitively large. Further,
some of the plans in that set, although different as sequences
of actions, could be considered equivalent from the underly-
ing application perspective. If, in addition, it would be pos-
sible to escape the need for generating all these equivalent
plans, the performance of the planners could improve sig-
nificantly.

Let N be some equivalence relation on the set of plans
PΠ. For a plan π ∈ PΠ, by N [π] we denote the equivalence
class of π, which is a set of all plans that are equivalent to
π under N . Slightly abusing the notation, for a set of plans
P , by N [P ] we denote the union of the equivalence classes⋂
π∈P N [π]. Using that equivalence relation, we can define

the quotient top-quality problem as follows.

Definition 4 (quotient top-quality planning problem)
Given a planning task Π = 〈V ,O, s0, s?〉, an equivalence
relation N over its set of plans PΠ, and a natural number
q, find a set of plans P ⊆ PΠ such that

⋃
π∈P N [π] is the

solution to the top-quality planning problem.

For equivalence relations that preserve plan cost the quo-
tient top-quality planning problem always has a solution.
Note that solutions to top-quality planning are solutions to
the quotient top-quality planning under the identity equiva-
lence relation. Further, while there is one possible solution
to the top-quality planning problem, there can be many so-
lutions to a quotient top-quality problem, defined by rep-
resentatives of each equivalence class. Further, nothing in
our definition prevents a solution from including more than
one plan per equivalence class, the only restriction is that all
equivalence classes have to be represented.
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In this paper, we focus on one specific equivalence rela-
tion, considering two plans to be equivalent if their action
multi-sets are. Formally, we consider the equivalence rela-
tion

UΠ = {(π, π′) | π, π′ ∈ PΠ,MS(π) = MS(π′)}.
Thus, the main computational problem we consider in this

paper is as follows.

Definition 5 (unordered top-quality planning problem)
Given a planning task Π = 〈V ,O, s0, s?〉 and a natural
number q, find a set of plans P ⊆ PΠ such that P is a
solution to the quotient top-quality planning problem under
the equivalence relation UΠ.

Note that while the solution to the top-quality planning
problem can be obtained from a solution to the unordered
top-quality planning problem, using a simple algorithm that
generates all possible valid reordering for each plan in the
solution, this is not the focus of current work. Focusing
on the unordered top-quality planning problem allows us to
generate reorderings of the same plan only if and when these
reorderings are actually needed.

4 Computation of Top-quality Plans
In order to obtain a solver for the computational problem
specified above, we take an approach similar to Katz et al.
(2018), and iteratively generate plans using an existing cost-
optimal planner, and construct planning tasks with a reduced
set of plans, by forbidding exactly the plans found so far. In
contrast to Katz et al. (2018), we forbid not only a specific
plan, but also all its possible reorderings. In order to achieve
that, we thus instead of forbidding plans as sequences of ac-
tions, forbid plans as multi-sets. To be able to do that, we
need to come up with a reformulation of a planning task that
forbids all plans with the exact number of appearances for
each action. Similar reformulation was recently suggested
by Katz and Sohrabi (2019) for diverse planning. The refor-
mulation can forbid a single multi-set, and thus for a set of
plans, the union of their multi-sets was forbidden in each
consecutive iteration. That way, possibly additional plans
were forbidden. For diverse planning, that did not pose a
problem. In our case, however, we need to ensure that we
forbid exactly the set of plans that were previously found.
For that, in what follows, we adapt the reformulation of Katz
and Sohrabi (2019) accordingly.

Alternatively, the reformulation of Katz and Sohrabi
(2019) can be used directly, creating a sequence of plan-
ning tasks, similarly to the way it was done in top-k plan-
ning (Katz et al. 2018). This. however, poses two problems:
the reformulated planning task size grows fast with each it-
eration, and, as in the iterative top-k planner, the mapping
between the reformulated and original actions must be con-
stantly maintained.

In this work, at each iteration we reformulate the original
planning task to forbid all plans found so far. In this case,
we do not need to maintain the mapping between the refor-
mulated and original actions and keep the reformulated task

size smaller. In the rest of this section we adapt the defini-
tion of Katz and Sohrabi (2019) to a set of plans (as multi-
sets), present an algorithm that exploits the adapted defini-
tion to derive top-quality solutions, and prove its soundness
and completeness. We start by presenting the definition.

4.1 Forbidding a Plan as a Multi-set of Actions
Slightly simplifying the definition of Katz and Sohrabi
(2019), we present a task reformulation that ignores orders
between actions in a plan and thus also forbids all possible
reorderings of a given plan, as well as all sub-plans.

Definition 6 Let 〈V,O, s0, s?〉 be a planning task and π be
a plan. The task Π−π = 〈V ′,O′, s′0, s′?〉 is defined as follows.
• V ′ = V ∪ {v} ∪ {vo | o ∈ π}, with v being a binary

variable, and dom(vo) = {0, . . . ,mo}, where mo is the
number of occurences of o in π,

• O′ = {oe | o ∈ O \ π} ∪⋃mo

i=0{o
f
i | o ∈ π}, where

pre(oe) = pre(o), eff (oe) = eff (o) ∪ {〈v, 0〉},
pre(ofi ) = pre(o) ∪ {〈vo, i〉},
for 0 ≤ i < mo, eff (ofi ) = eff (o) ∪ {〈vo, i+1〉},
eff (ofmo

) = eff (o) ∪ {〈v, 0〉}, and

cost′(oe)=cost′(ofi )=cost(o), 0 ≤ i ≤ mo,
• s′0[v] = s0[v] for all v ∈ V , s′0[v] = 1, and s′0[vo] = 0 for

all o ∈ π, and
• s′?[v]=s?[v] for all v∈V s.t. s?[v] defined, and s′?[v]=0.

The semantics of the reformulation is as follows. The vari-
able v starts from the value 1 and switches to 0 when an ac-
tion is applied that is not from plan π treated as a multi-set.
Once a value 0 is reached indicating a deviation from plan π,
it cannot be switched back to 1. The finite-domain variables
vo encode the number of applications of the action o. The
actions ofi are copies of the action o in π, counting the num-
ber of applications of o, as long as the number is not higher
than the number of times it appears in π. Once the number
of applications exceeds mo, v is set to 0.

4.2 Forbidding Multiple Plans Exactly
In order to forbid multiple plans, the greedy approach of
Katz and Sohrabi (2019) forbids the super-set of these plans
by taking a super-set of the multi-sets representing the plans.
In our case, when optimality is required, we cannot follow
the same approach. Instead, we present a reformulation that
forbids exactly these plans and their sub-plans, and the pos-
sible reorderings. Our reformulation extends the one in Def-
inition 6, by introducing a binary variable for each plan, en-
coding whether the plan was deviated from.

Definition 7 Let 〈V,O, s0, s?〉 be a planning task, P be a
set of plans, and OP = {o | o ∈ π, π ∈ P}. The task
Π−P = 〈V ′,O′, s′0, s′?〉 is defined as follows.
• V ′ = V ∪ {vπ | π ∈ P} ∪ {vo | o ∈ OP }, with vπ being

binary variables, and dom(vo) = {0, . . . ,mo}, where
mo = maxπ∈P {mπ

o} and mπ
o is the number of occur-

rences of o in π,
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• O′ = {oe | o ∈ O \ OP } ∪ {ofi | o ∈ OP , 0 ≤ i ≤ mo},
where

pre(oe)=pre(o), eff (oe)=eff (o)∪{〈vπ, 0〉 | π ∈ P},
pre(ofi ) = pre(o) ∪ {〈vo, i〉},
eff (ofi ) = eff (o) ∪ {〈vo, i+1〉} ∪ {〈vπ, 0〉 | i = mπ

op}
for 0 ≤ i < mo,
eff (ofmo

) = eff (o) ∪ {〈vπ, 0〉 | π ∈ P}, and

cost′(oe)=cost′(ofi )=cost(o), 0 ≤ i ≤ mo,
• s′0[v] = s0[v] for all v ∈ V , s′0[vπ] = 1 for all π ∈ P ,

and s′0[vo] = 0 for all o ∈ OP , and
• s′?[v]=s?[v] for all v∈V s.t. s?[v] defined, and s′?[vπ]=0

for all π ∈ P .

4.3 Using the Reformulation
Algorithm 1 exploits the reformulation in Definition 7 to
find a solution to the unordered top-quality planning prob-
lem. The algorithm incrementally finds the set P of top qual-
ity plans. Starting with the empty set P = ∅ and assuming
Π−∅ = Π, we use an optimal planner iteratively to find an op-
timal plan π to the planning task Π−P . Once a plan is found,
it is added to the set of found plans P . Then, the new re-
formulation Π−P is constructed from Π for the next iteration.
The algorithm stops when a plan π is generated such that
cost(π) > q. Note that the algorithm results in a set P of se-
quential plans, with no two plans being reorderings of each
other. Similarly to Katz et al. (2018), at each iteration, after
the plan π was found, we use structural symmetries to gen-
erate from π additional plans that are symmetric (Shleyfman
et al. 2015) to π, and add these that are not reorderings of π
to the set P . Finally, since the first step results in an optimal
plan, the quality can be defined relatively to the cost of the
optimal plan rather than an absolute number.

Theorem 1 Algorithm 1 is sound and complete for un-
ordered top-quality planning when using cost-optimal plan-
ners that find shortest (in the number of actions) cost-
optimal plans.

Proof: Let P be the set of plans returned by Algorithm 1 and
let πf be the plan found when the algorithm breaks. Since
πf is an optimal plan to Π−P and cost(πf ) > q, we need to
show that Π−P forbids exactly the plans in UΠ[P ]. For a plan
π ∈ P , Π−P has a variable vπ that reaches its goal value only
when the number of applications of some action exceeds the
number of appearances of that action in π. Thus, π is not
a plan for Π−P . Since Definition 7 treats plans as multi-sets,
this is true also for all π′ ∈ UΠ[π].

Let P1, . . . , Pn denote the sets of plans at the beginning
of each algorithm iteration and let π1, . . . , πn = πf be the
optimal plans found by the algorithm in these iteration, with
πi being an optimal plan to Π−Pi

. Let π be a plan for Π such
that cost(π) ≤ q. If π 6∈ UΠ[P ], there exists k such that π
is a plan for Π−Pk

, but not for Π−Pk+1
. Let P ′ = Pk+1 \Pk

be the plans forbidden in Π−Pk+1
but not in Π−Pk

. Then, there
exists π′ ∈ P ′ such that MS(π) ⊆ MS(π′). If MS(π) =
MS(π′), then π ∈ P and we are done. Assume that MS(π)

Algorithm 1 Iterative unordered top-quality planning.
Input: Planning task Π, quality bound q
P ← ∅
Π′ ← Π
while True do

π ← optimal plan to Π′

if cost(π) > q then
break

end if
P ← P∪{π}∪{π′ |π′ is symmetric to π, π′ 6∈UΠ[π]}
Π′ ← Π−P according to Definition 7

end while
return P

is a proper subset of MS(π′). Note that π′ is a reordering
of a plan that is symmetric to πk, which was the optimal
plan found for Π−Pk

. Assuming that our optimal planner finds
shorter optimal plans before longer ones, a plan π for Π−Pk

would be found before πk, contradicting the assumption that
MS(π) is a proper subset of MS(π′). �

5 Experimental Evaluation
In order to evaluate the feasibility of our suggested approach
for unordered top-quality planning, we have implemented
our approach as part of the ForbidIterative planners collec-
tion (Katz, Sohrabi, and Udrea 2019), which is implemented
on top of the Fast Downward planning system (Helmert
2006). The collection, among other, includes the implemen-
tation of the iterative top-k planner (Katz et al. 2018). The
experiments were performed on Intel(R) Xeon(R) CPU E7-
8837 @2.67GHz machines, with the time and memory limit
of 30min and 2GB, respectively. The benchmark set con-
sists of all STRIPS benchmarks from optimal tracks of In-
ternational Planning Competitions (IPC) 1998-2018, a total
of 1797 tasks in 64 domains. Our baseline for the compari-
son is a simple approach, using a top-k planner with a large
k value, 109, stopping if a plan of quality above the bound
was reached. We use NaiveS, the best perfoming configu-
ration of the iterative top-k planner (Katz et al. 2018), that
exploits both symmetries and plan reorderings. The purpose
of setting k to a large number is to allow the top-k planner to
exploit the entire 30min time interval. Among tasks solved,
the largest number of plans found by the top-k planner was
60480. For tasks not solved, the maximal number of plans
found by the top-k planner was 767501. Note that reading
and writing such large amounts of plans is time consum-
ing by itself. For each task, the quality bound is computed
using the cost of the first found (optimal) plan, multiplied
by a constant2. We experiment with four different quality
bound multipliers, namely qm = 1.0 (optimal plans only),
1.05, 1.1, and 1.2 of the optimal plan cost. For larger quality
bounds, both approaches had low coverage, and thus we do
not report these results. Note, q can be any natural number
as mentioned in Definition 5.

2This is not an overhead, as at least one optimal planner run
needs to be performed anyway.
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qm=1.00 qm=1.05 qm=1.10 qm=1.20
Coverage K-tq tq K-tq tq K-tq tq K-tq tq
airport 7 21 7 18 6 17 6 17
blocks 16 17 16 17 10 13 8 9
data-network18 0 1 0 0 0 0 0 0
depot 2 2 2 2 0 2 0 1
driverlog 5 9 5 9 1 7 1 4
floortile11 0 2 0 2 0 0 0 0
ged14 5 7 5 7 5 7 5 7
gripper 1 4 1 3 0 2 0 2
logistics00 3 16 3 13 1 10 0 6
logistics98 0 4 0 2 0 1 0 0
miconic 18 27 18 26 11 16 10 12
movie 0 1 0 1 0 1 0 0
mprime 18 19 18 19 18 19 6 11
mystery 20 20 20 20 20 20 13 15
nomystery11 9 13 7 11 4 8 2 5
openstacks08 0 2 0 2 0 2 0 2
parcprinter08 6 15 5 12 5 12 5 11
parcprinter11 3 11 2 8 2 8 2 7
pegsol08 21 23 21 23 21 22 8 17
pegsol11 8 13 8 13 8 12 2 5
pipes-notank 5 11 5 11 3 7 1 4
pipes-tank 2 4 2 4 2 4 1 1
psr-small 37 46 26 40 22 36 16 24
rovers 3 6 3 6 2 4 0 3
satellite 2 5 2 5 1 1 0 1
scanalyzer08 4 5 4 5 4 4 3 3
scanalyzer11 1 2 1 2 1 1 1 1
spider18 5 5 3 4 0 0 0 0
storage 8 14 8 14 7 11 6 7
tetris14 1 2 1 2 1 2 0 1
tidybot11 5 7 2 5 1 3 1 1
tpp 4 6 4 5 2 5 2 5
transport08 6 7 1 1 1 1 0 0
transport14 0 1 0 0 0 0 0 0
trucks 1 2 1 2 0 1 0 0
visitall11 8 8 7 7 5 6 5 5
woodwork08 3 8 2 6 1 4 0 2
woodwork11 0 3 0 1 0 0 0 0
zenotravel 7 7 7 7 4 5 3 4
Sum other 25 25 23 23 21 21 18 18
Sum (1797) 269 401 240 358 190 295 125 211

Table 1: The coverage results comparing to top quality plan-
ning via top-k planning, for various quality bounds.

Table 1 depicts the per-domain summed coverage, com-
paring our technique, tq, to the baseline, K-tq, for four qual-
ity bound multipliers. Each task gets a coverage of 1 if and
only if the planner proved there is no other plan within qual-
ity bound, by either finding a plan above the bound or prov-
ing there are no other plans. Note first that out of the 64 do-
mains, there are 18 domains where all optimal plans could
not be found for any tasks, with any approach. There are
7 more domains where there is no difference in coverage
between the baseline and our approach, for all tested qual-
ity bounds. These 25 domains are summarized in the Sum
other row of Table 1. Out of the remaining 39 domains, the
coverage never gets worse and it gets better (often signifi-
cantly better) for at least one of the tested quality bounds.
Extreme examples are AIRPORT, LOGISTICS00, and PSR-
SMALL where the increase in coverage for some quality
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Figure 3: Per-task comparison of the solution encoding size.

bounds is by 10 instances or more. Overall, there is a clear
benefit of the suggested approach over the baseline.

Another benefit of our approach is a compact representa-
tion of the solution. Figure 3 shows a per-task comparison
of the number of plans in the solution for each of the ap-
proaches, for the quality bound multiplier qm = 1.0, for
tasks solved by both approaches. First, out of the total of
263 such tasks, there are 111 tasks on the diagonal. Out of
the remaining 152 tasks (all above the diagonal), 73 tasks
have a single optimal plan found by our approach, while the
baseline needs to find multiple optimal plans, which are all
reorderings of the same plan, with the maximal number of
60480 reorderings found. When the number of valid reorder-
ing is larger, the baseline approach fails before being able to
find all optimal plans.

Finally, Figure 4 compares the reformulated task size of
our approach to the baseline one. We compare the last gener-
ated task reformulation, for tasks solved by both approaches,
for the quality bound multiplier qm = 1.0. The task size is
measured here by the number of facts, i. e., variable value
pairs. While the larger tasks are not necessarily harder for a
classical planner, this is usually the case. Our experiments
clearly show that our approach creates tasks of sizes almost
two orders of magnitude smaller than the baseline approach.

6 Conclusions and Future Work
In this work we have shown a way of obtaining all plans
of bounded solution quality, representing plan reorderings
implicitly and thus escaping the need for counting plans.
We have presented a novel reformulation of a planning task
that forbids exactly the set of given plans, their reorderings,
and all subplans thereof. We have formally defined the fam-
ily of computational problems in top-quality planning and
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Figure 4: Final constructed task size in terms of the number
of facts.

have implemented a first planner for unordered top-quality
planning. The planner, exploiting the new reformulation, has
empirically shown to perform significantly better than the
straightforward approach of exploiting top-k planners with
a large bound k, as it is often done in practice.

For future work, one promising direction is exploring
the use of top-quality instead of top-k planners in planning
applications. Another possible direction is creating a top-
k planner based on the unordered top-quality planner, ex-
ploiting the more compact task representation. Further, (un-
ordered) top-quality planners can be used to obtain solutions
to diverse planning, when solution cost is also considered
(Vadlamudi and Kambhampati 2016).
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Abstract

The performance of domain-independent planning systems
heavily depends on how the planning task has been modeled.
This makes task reformulation an important tool to get rid of
unnecessary complexity and increase the robustness of plan-
ners with respect to the model chosen by the user. In this pa-
per, we represent tasks as factored transition systems (FTS),
and use the merge-and-shrink (M&S) framework for task re-
formulation for optimal and satisficing planning. We prove
that the flexibility of the underlying representation makes the
M&S reformulation methods more powerful than the coun-
terparts based on the more popular finite-domain representa-
tion. We adapt delete-relaxation and M&S heuristics to work
on the FTS representation and evaluate the impact of our re-
formulation.

Introduction
Classical planning deals with the problem of finding a se-
quence of actions that achieve a set of goals, given a model
of the world that describes an initial state and a set of
available actions. For representing the problem, different
planning formalisms can be used, the most common be-
ing STRIPS or finite-domain representation (FDR). The
choice of formalism does not change the complexity of
the problem, which is PSPACE-complete (Bylander 1994;
Bäckström and Nebel 1995). However, it may impact the
so-called accidental complexity, when the structure of the
task is disguised by how it is encoded (Haslum 2007). Ac-
cidental complexity can be dealt with by reformulating the
planning task prior to solving it. There are several refor-
mulation methods based on, e.g., downward-refinable ab-
stractions (Haslum 2007) or tunnel macros (Coles and Coles
2010), which can be combined to reduce the size of FDR
tasks (Tozicka et al. 2016).

Merge-and-Shrink (M&S) is a general framework to gen-
erate abstractions, originally defined in the model-checking
area (Dräger, Finkbeiner, and Podelski 2006; 2009), that can
be used to derive an admissible heuristic (Helmert, Haslum,
and Hoffmann 2007; Helmert et al. 2014) and/or detect un-
solvability (Hoffmann, Kissmann, and Torralba 2014). Fur-
ther work on the topic noticed that this can be understood as
applying transformations to a set of transition systems (Siev-
ers, Wehrle, and Helmert 2014) and hence as a method to
transform planning tasks in the factored transition system

(FTS) representation (Torralba and Kissmann 2015). How-
ever, these methods perform the search on an FDR task, only
using M&S to derive heuristics or remove irrelevant actions.

In this paper, we use M&S as a task reformulation method
on FTS tasks. We show that some of the M&S transforma-
tions originally devised for constructing abstraction heuris-
tics can also be used for optimal and satisficing reformu-
lation. To do so, we provide algorithms that transform so-
lutions for the reformulated task into plans for the original
task. We also show that our M&S reformulations dominate
their counterparts based on FDR representations, i.e., a suit-
able combination of existing M&S transformations can al-
ways do the same (and sometimes more) simplifications to
any task.

To search on the FTS representation, planning algorithms
and heuristics originally devised for STRIPS or FDR tasks
must be adapted. As the FTS formalism is slightly more
expressive than FDR, this is similar to adapting algorithms
to support (a limited form of) disjunctive preconditions and
conditional effects. We adapt heuristic search methods with
M&S and delete-relaxation heuristics for the FTS represen-
tation. Our experimental study shows the potential of these
reformulations to reduce the state space and speed-up the
search. Full proofs and additional experimental results are
included in a technical report (Torralba and Sievers 2019).

Representation of Planning Tasks
A planning task is a compact representation of a TS. A tran-
sition system (TS) is a tuple Θ = 〈S,L, T, sI ,S?〉 where S
is a finite set of states, L is a finite set of labels each associ-
ated with a label cost c(`) ∈ R+

0 , T ⊆ S × L × S is a set
of transitions, sI ∈ S is the initial state, and S? ⊆ S is the
set of goal states. We use s ∈ Θ to refer to states in Θ and
s `−→ t ∈ Θ to refer to its transitions. An s-plan for a state s
is a path from s to any s∗ ∈ S?. Its cost is the summed label
costs of all labels of the path. The perfect heuristic, h∗(s),
is the cost of a cheapest s-plan. An s-plan is optimal iff its
cost equals h∗(s). A plan for Π is an sI -plan.

An abstraction is a function α mapping states in Θ to a
set of abstract states Sα. The abstract state space Θα is
〈Sα, L, Tα, sIα,S?α〉, where α(s) `−→ α(s′) ∈ Tα iff s `−→ s′

in Θ, sIα = α(sI), and S?α = {α(s) | s ∈ S?}.
An FDR task is a tuple ΠV = 〈V,A, sI ,G〉. V is a finite

set of variables v, each with a finite domain Dv . A partial
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state is a function s on a subset V(s) of V , so that s(v) ∈ Dv

for all v ∈ V(s); s is a state if V(s) = V . sI is the initial
state and the goal G is a partial state. A is a finite set of
actions. Each a ∈ A is a tuple 〈prea, eff a, c(a)〉where prea
and eff a are partial states, called its precondition and effect,
and c(a) ∈ R+

0 is its cost. An action a is applicable in a
state s if ∀v∈V(prea)s(v) = prea(v). Applying it yields the
successor state sJaK with sJaK(v) = eff a(v) if v ∈ V(eff a)
and sJaK(v) = s(v) otherwise.

The state space of an FDR task ΠV is a TS Θ =
〈S,L, T, sI ,S?〉 where S is the set of all states, sI = sI ,
s ∈ S? iff ∀v∈V(G)G(v) = s(v), L = A, and s a−→ sJaK ∈ T
if a is applicable in s.

An FTS task is a set of TSs {Θ1, . . . ,Θn}with a common
set L of labels. The synchronized product Θ1 ⊗ Θ2 of two
TSs is another TS with states S = {(s1, s2) | s1 ∈ Θ1∧s2 ∈
Θ2}, labels L = L1 = L2, transitions T = {(s1, s2) `−→
(s′1s

′
2) | s1

`−→ s′1 ∈ Θ1 ∧ s2
`−→ s′2 ∈ Θ2}, initial state

sI = (sI1 , s
I
2 ), and goal states S? = {(s1, s2) | s1 ∈ S?1 ∧

s2 ∈ S?2}.
The state space of an FTS task ΠT = {Θ1, . . . ,Θn} is

defined as Θ = Θ1⊗· · ·⊗Θk. Whenever it is not clear from
context, we will use subscripts to differentiate states in the
state space (s, s′, t ∈ Θ) and in the individual components
(si, s′i, ti ∈ Θi). Given s ∈ Θ, we write s[Θi] to refer to the
projection of s onto Θi. A solution π for an FTS task is a
sequence s0

`1−→ s1
`2−→ . . . `k−→ sk such that sk ∈ S?.

There is a close connection between FTS and FDR tasks,
since TSs in an FTS task correspond to FDR variables with
domain equal to the set of states of the TS. Then, states in
FDR (which are assignments of values to variables) corre-
spond to states in the FTS representation, which are an as-
signment of states si to each Θi. Given an FDR task ΠV it
is simple to construct the corresponding FTS task, which we
call the atomic representation of ΠV . There is a TS Θv for
every variable v, with one state sv ∈ Θv per value in Dv .
For every action a ∈ A, there is an outgoing transition from
sv if v 6∈ V(prea) or prea(v) = sv which leads to sv if
v 6∈ V(eff a) or tv if eff a(v) = tv .

As running example, consider a task where a truck can
drive between four locations with a limited amount of fuel
and with the restriction that the engine can only be turned
on with a full tank. This can be encoded as an FDR task
with three variables V = {vt, vf , vs} with domains Dt =
{A, B, C, D}, Df = {2, 1, 0}, and Ds = {off, rd, on}
that represent the position of the truck, the amount of fuel
available, and the status of the engine (off, ready, on), re-
spectively. In the atomic FTS task, shown in Fig. 1a, there
are hence three TSs Θvt ,Θvf ,Θvs , one for each variable.
The task has an action DRx-y,f1-f2 with precondition {vt =
x, vf = f1, vs = on} and effect {vt = y, vf = f2} for every
pair of connected locations (x, y), and every f1, f2 ∈ Df s.t.
f2 = f1 − 1. These actions induce transitions from x to y
in Θvt , from f1 to f2 in Θvf , and a self-looping transition
at state on in Θvs . Furthermore, there exist actions check-
fuel, CF, with precondition {vf = 2, vs = off} and effect
{vs = rd} and ON with precondition {vs = rd} and effect
{vs = on}. All actions have unit cost. The initial state of the
FDR task is sI = {vt = A, vf = 2, vs = off} and its goal
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(a) Atomic task: truck position (Θvt ), fuel (Θvf ), and status (Θvs ).
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Figure 1: Example FTS task where a truck must drive from
A to D with a fuel capacity of 2 and the restriction to first
check the fuel capacity and turn on the engine. Transitions
with wildcards (*) have multiple labels, e.g., DRA-B,* stands
for DRA-B,2-1 and DRA-B,1-0. Each subfigure corresponds to
a reformulation (see Section ).

is G = {vt = D}, which translates to (A, 2, off) being the
initial state (marked with incoming arrows) and all (D, ∗, ∗)
being goal states (marked with double circles) of the FTS
task.

The reverse transformation from an FTS to an FDR task is
not as straightforward and it may require to introduce more
FDR actions than there are labels in the FTS task. The reason
is that transitions in the individual TSs are more expressive
than the precondition-effect tuple of FDR actions because
they can encode a limited form of angelic non-determinism,
disjunctive preconditions, and conditional effects. Consider
the task shown in Fig. 1b, an FTS task of the same plan-
ning task that uses label DR for all drive actions. Translating
this task to FDR requires re-introducing multiple actions to
represent DR for different pairs of locations and amounts
of fuel. One reason is the non-determinism where there are
multiple transitions with the same label and source state, but
different targets. For example, in the state (A, 2, on), we can
apply two transitions with label DR to reach either (C, 1, on)
or (B, 1, on). The non-determinism is angelic because the re-
sult is chosen by the planner at will. Also, the transitions in
Θvf encode a disjunctive precondition (DR is applicable for
vf = 2 or vf = 1) and conditional effects (the result of DR
is vf = 1 iff vf = 2 holds in the source state).
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M&S Task Reformulation Framework
A task reformulation is a transformation of a task such that
any solution for the new task can be transformed into a so-
lution for the original task. We follow the definition of task
reduction introduced by Tozicka et al. (2016) but without
requiring the reformulated task to be smaller than the input
task. Most of the reformulations we consider aim to reduce
the size of the task, but reformulations that make the task
bigger may be useful as well, e.g., if it makes the search
space smaller.

Definition 1 (Task reformulation). A task reformulation ρ is
a partial function from tasks to tasks s.t.:

1. ρ(Π) is solvable if and only if Π is solvable, and
2. there exists a plan reconstruction function ←−ρ that maps

each solution π of ρ(Π) to a solution←−ρ (π) of Π.

A task reformulation is polynomial if both ρ and ←−ρ can
be computed in polynomial time in the size of the input task
and the reconstructed plan. It is optimal if, given an opti-
mal plan π of ρ(Π),←−ρ (π) is an optimal plan of Π. We are
interested in polynomial reformulations for optimal and sat-
isficing planning. Note that we explicitly allow the reformu-
lated plan to be exponentially larger than the input task. This
is necessary for domains (e.g. Towers of Hanoi) where the
original plan is exponentially long, but a reformulation with
a solution that implicitly encodes the plan can be found in
polynomial time.

Merge-and-Shrink Transformations
There are multiple M&S transformations that can be used to
reformulate an FTS task ΠT = {Θ1, . . . ,Θn}with labelsL.
A transformation is exact if it preserves the set of solutions
and hence is an optimal reformulation.

Label reduction reduces the set of labels by mapping
some of them to a common new one (Sievers, Wehrle, and
Helmert 2014). It is exact if for any pair of labels `, `′ ∈ L
reduced to the same label, c(`) = c(`′) and ` and `′ induce
the same transitions in all but (at most) one Θi, 1 ≤ i ≤ n.
The task of Fig. 1b is the result of repeatedly applying ex-
act label reduction on the atomic task of Fig. 1a. By itself,
it does not affect the search space, but it reduces the amount
of labels increasing the efficiency and effectiveness of other
transformations.

Shrinking consists of replacing one TS Θi ∈ ΠT by
an abstraction thereof. This results in an abstraction of
the original task, possibly introducing spurious plans that
do not have any counterpart in the original task. There-
fore, not all shrink transformations are suitable for task
reformulation. However, using refinable abstraction hierar-
chies is a long standing idea in planning (Sacerdoti 1974;
Bacchus and Yang 1994; Knoblock 1994). We compute re-
finable abstractions via shrinking strategies based on bisim-
ulation (Milner 1971).

Definition 2 (Bisimulation). Let Θ = 〈S,L, T, sI ,S?〉 be
a TS. An equivalence relation ∼ on S is a goal-respecting
bisimulation iff s ∼ t implies that (a) s ∈ S? ↔ t ∈ S?,
and (b) {[s′] | s `−→ s′ ∈ T} = {[t′] | t `−→ t′ ∈ T} for all
` ∈ L where [s] denotes the equivalence class of s.

Bisimulation shrinking aggregates all states in the same
equivalence class of the coarsest bisimulation of some Θi ∈
ΠT . This is a symmetry-reduction technique that preserves
all plans and as such is an exact transformation (Helmert et
al. 2014; Sievers et al. 2015). In our example (cf. Fig. 1b),
states B and C of Θvt are bisimilar in Θvt and are hence
combined into a new state BC by bisimulation shrinking (cf.
Fig. 1c). Note that shrinking B and C is only possible after
label reduction, since otherwise their outgoing labels differ.

When preserving optimality is not necessary, it suffices
to guarantee that any abstract plan can be refined into a
real plan. Hoffmann, Kissmann, and Torralba (2014) used
shrinking strategies with this property for proving unsolv-
ability with M&S. We re-define these strategies using a dif-
ferent nomenclature based on the notion of weak bisimu-
lation (Milner 1971; 1990). The key idea is to consider τ -
labels which are “internal” to a TS in the sense that they can
always be taken in Θi without changing other TSs. The set
of τ -labels for Θi consists of those labels ` having a tran-
sition sj

`−→ sj ∀sj ∈ Θj ∀Θj , j 6= i. Other definitions are
possible; ours is more general than that of own-labels used
by Hoffmann, Kissmann, and Torralba (2014), whereas there
are stronger notions based on dominance (Torralba 2017;
2018). We use τ==⇒ to denote a (possibly empty) path using
only τ -labels, and s `==⇒ s′ as a shorthand for s τ==⇒ `−→ τ==⇒
s′.

Following the observation by Haslum (2007) that it suf-
fices to focus on paths with labels that either are outside rel-
evant (i.e., have some effect on other variables) or reach the
goal, we devise a variant of weak bisimulation that ignores
some irrelevant paths. We say that a label ` is outside rele-
vant for a transition system Θi if there exists some Θj with
i 6= j such that sj

`−→ tj for some sj 6= tj . A path si
`==⇒ s′i

is relevant for Θi if ` is outside relevant for Θi, or there
does not exist si

τ==⇒ s′′i such that s′i ∼ s′′i . Otherwise, it
is safe to ignore such path in weak bisimulation because the
alternative τ -path can always be used to reach s′′ instead.

Definition 3 (Weak Bisimulation). Let Θ be a TS with a
set τ of τ -labels, and a set Trel of relevant paths. An equiva-
lence relation∼ on S is a goal-respecting weak bisimulation
iff s ∼ t implies (∃s′∈S?s τ==⇒ s′) ↔ (∃t′∈S?t τ==⇒ t′), and
∀`∈L{[s′] | s `==⇒ s′ ∈ Trel} = {[t′] | t `==⇒ t′ ∈ Trel}.

Weak bisimulation shrinking maps all weakly bisimi-
lar states into the same abstract state. In our example (cf.
Fig. 1b), ON is a τ -label in Θvs , therefore states rd and on
of Θvs are weakly bisimilar (both have a single relevant path

DR==⇒ [on]) resulting in Θvs as shown in Fig. 1c.
Another useful abstraction transformation consists of re-

moving TSs with a core state. We say that a state sC is a
core for Θi if (1) for every outside relevant label ` there ex-
ists sC `==⇒ sC , (2) there is a τ -path from the initial state to
sC , and (3) there is a τ -path from sC to a goal state. Such
a TS can be abstracted away because all outside relevant la-
bels can always be reached via a τ -path through sC .

Merging replaces two TSs by their synchronized product.
Fig. 1d shows the FTS task that results from merging Θvf
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and Θvs of the FTS task shown in Fig. 1c. Merging is an
exact transformation (Helmert et al. 2014), which comes at
the price that the size of the task grows quadratically with
every merge, so it increases exponentially with the number
of merges. In practice, we limit the maximum size of any
TS in the reformulated task, forbidding any merge that goes
beyond this limit. As label reduction, by itself merging does
not change the reachable search space. However, it often en-
ables additional label reduction, shrinking, and/or pruning.
In our example of Fig. 1d, CF has become a τ -label, so 2off
and 2ro could be reduced by weak bisimulation.

Finally, there are multiple pruning techniques defined in
the M&S framework. If a state si is unreachable (from the
initial state) or irrelevant (cannot reach a goal) in any Θi, it
can be pruned (Helmert et al. 2014). If a label ` is dead (i.e.,
there is no transition labeled with ` in any Θi ∈ ΠT ) or ir-
relevant (i.e., all transitions labeled with ` are self-loop tran-
sitions), then it can be pruned (Sievers, Wehrle, and Helmert
2014). If a TS Θi ∈ ΠT is the only one with a goal de-
fined, i.e., there are no non-goal states in Θj ∈ ΠT with
j 6= i, all outgoing transitions from goal states in Θi can be
removed (Hoffmann, Kissmann, and Torralba 2014). If a TS
has only one state and no dead labels, it can be pruned. All
these pruning techniques preserve at least one optimal plan
and are therefore exact transformations.

Plan Reconstruction
M&S iteratively applies the transformations described above
on a task ΠT = {Θ1, . . . ,Θk}, resulting in a sequence
of reformulation steps ρ1, . . . , ρn producing a sequence of
planning tasks ΠT0 , . . . ,Π

T
n where ΠT0 = ΠT , and ΠTi =

ρi(Π
T
i−1) for i ∈ [1, n]. We can run any planning algorithm

to find a plan πρn = sρn1
`ρn1−−→ sρn2

`ρn2−−→ s3, . . . of the final
task ΠTn . The plan reconstruction procedure is then tasked to
compute a plan π = s1

`1−→ s2
`2−→ . . . for the original task

ΠT from πρn and the sequence of reformulations.
Performing a reconstruction←−ρi for each step ρi has some

overhead because it requires to store each intermediate task.
We avoid this by combining sequences of reformulations
that correspond to merge, label reduction, and bisimulation
transformations. Pruning-based transformations can be ig-
nored by the plan reconstruction procedure because the plan
found is still valid for the original task without any modifi-
cations. Plan reconstruction can be done for the entire trans-
formation at once without storing information about the in-
termediate planning tasks. Therefore, we have a sequence
of transformations ΠT ρ1−→ ΠT1

ρ2−→ ΠT2 . . . with only two
types of reformulations to consider: merging + label reduc-
tion + bisimulation shrinking (ρMLB ), and weak bisimula-
tion shrinking (ρτB ).

We first consider the reconstruction of a reformulation
ρMLB on a task ΠTi , resulting in a task ΠTi+1. The state
space of ΠTi+1 is a bisimulation of the state space of ΠTi ,
so any sequence s1

`1−→ s2
`2−→ . . . in ΠTi has its coun-

terpart α(s) `′1−→ α(s2) `′2−→ . . . in ΠTi+1 and vice versa.
To reconstruct the plan, we need two functions α and λ,
mapping states and labels in ΠTi to states and labels in
ΠTi+1. The α function is computed by M&S heuristics and

compactly represented with the so-called cascading tables
or merge-and-shrink representation (Helmert et al. 2014;
Helmert, Röger, and Sievers 2015). The label mapping is
simply the composition of all label reduction transforma-
tions used by ρMLB .

The plan can be reconstructed step by step, starting from
sI . Given the current factored state s and a step in the ab-
stract plan α(s) `′−→ t′, find a transition s `−→ t such that
α(t) = t′ and λ(`) = `′. Note that the straightforward ap-
proach of enumerating all transitions applicable from s is not
guaranteed to terminate in polynomial time because, unlike
in FDR tasks where the number of successors is bounded
by the number of actions, in FTS there may be exponen-
tially many successors in the size of the task. However, one
can use the cascading tables representation to retrieve a fac-
tored state t = (t1, . . . , tn) such that s `−→ t, `′ = λ(`)
and α(t) = t′. This works as follows: First, for each tran-
sition system Θi, obtain the set S′i of target states ti such
that si

`−→ ti for any label ` such that `′ = λ(`). Then, tra-
verse the cascading tables and, for each intermediate table
that maps states of two transition systems Θi,Θj to an ab-
stract TS Θγ = γ(Θi ⊗ Θj), compute the set of abstract
states Sγ = {sγ | ∃si∈S′

i,sj∈S′
j
sγ = γ((si, sj))}, mapping

each sγ ∈ Sγ to one such (si, sj) pair. This allows us to
keep track of one factored state for each abstract state. After
all cascading tables have been traversed, it suffices to return
the factored state t associated with the abstract state t′.

Proposition 1. Label reduction, merging (up to a size limit),
pruning and bisimulation shrinking are optimal and polyno-
mial reformulations.

Proof. It is well-known that all these techniques can be
computed in polynomial time (Helmert et al. 2014; Sievers,
Wehrle, and Helmert 2014). Each step of the plan can be
reconstructed by traversing the cascading-tables representa-
tion, which is polynomial in the size of the input task.

We now consider the reconstruction of a reformula-
tion ρτB on a task ΠTi = {Θ1, . . . ,Θk} where ρτB ap-
plies weak bisimulation shrinking to some TS in ΠTi . We
assume WLOG that Θ1 is the shrunk TS, so ΠTi+1 =

{ατB (Θ1),Θ2, . . . ,Θk}. As ατB is induced by a weak
bisimulation on the states of Θ1, then for any state s in ΠTi
and any transition ρτB (s) `−→ tρ in the reformulated task,
there exists a path s `==⇒ t in the original task such that
ρτB (t) = tρ. Therefore, to reconstruct the plan for ΠTi from
a plan for ΠTi+1 one must re-introduce the τ -label transitions
until reaching a state where ` is applicable and this results
in some t such that ρτB (t) τ==⇒ tρ. The search can be done
locally in Θ1 because τ -labels have self-loop transitions in
other TSs. To do so, we first look for all states u1 such that
u1

`−→ ( τ−→)∗t1 in Θ1 and (ατB (t1), s[Θ2], . . . , s[Θn]) = tρ.
Then, we run uniform-cost search from s[Θ1] using only
transitions with τ -labels until we reach such an u1. Note that
this runs in polynomial time in the size of the input task.

This procedure has similarities with red-black plan re-
pair (Domshlak, Hoffmann, and Katz 2015), the plan re-
construction of the merge values reformulation (Tozicka et
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al. 2016), or decoupled search (Gnad and Hoffmann 2018).
These algorithms repair an abstract/relaxed plan by intro-
ducing additional actions to enable the preconditions ig-
nored by the relaxed plan. Our case is slightly more com-
plex because the same label may have multiple targets so
one must ensure the remaining abstract plan is applicable in
the resulting state.

If a TS Θi with a core state sC was abstracted away,
its corresponding path must be reconstructed as well. For
each transition in the abstract plan with label `, we find the
shortest si

`==⇒ s′i from the current state si (initialized to
the initial state of Θi in the first iteration, and to the final
state in the path of the previous iterations afterwards), and
s′i

τ==⇒ sC . Note that to keep the plan shorter, we do not
enforce the τ -path to go via the core state, but rather the
condition above suffices to ensure that the rest of the plan
can be reconstructed.
Proposition 2. Weak bisimulation shrinking is a polynomial
reformulation.

Proof. The coarsest weak bisimulation of a TS can be com-
puted by computing the bisimulation of the transitive clo-
sure of the TS over τ . Each step of the plan reconstruction
corresponds to an uniform-cost search on each TS. Both op-
erations take polynomial time in the size of the TS.

Consider the following plan of the task shown in Fig. 1c:
(A, 2, off) CF−−→ (A, 2, ro) DR−−→ (BC, 1, ro) DR−−→ (D, 0, ro). To
reconstruct the plan for the task prior to weak bisimulation
shrinking (cf. Fig. 1b), we execute it and, when DR cannot
be applied in rd, we insert a τ -transition with ON resulting
in the plan: (A, 2, off) CF−−→ (A, 2, rd) ON−−→ (A, 2, on) DR−−→
(BC, 1, on) DR−−→ (D, 0, on). Then, we reconstruct the plan
for the atomic task of Fig. 1a step by step, resulting in a
plan: (A, 2, off) CF−−→ (A, 2, rd) ON−−→ (A, 2, on) DRA-B,2-1−−−−−→
(B, 1, on) DRB-D,1-0−−−−−→ (D, 0, on).

Relation to FDR Reformulation Methods
The M&S reformulations are closely related to pre-
vious FDR reformulation methods like the generalize
actions (Tozicka et al. 2016), fluent merging (Seipp
and Helmert 2011), and abstraction-based reformula-
tions (Helmert 2006b; Haslum 2007; Tozicka et al. 2016). To
compare reformulation methods over different formalisms,
we consider that a method dominates another if it can per-
form the same reformulations.
Definition 4 (Dominance of Reformulation Methods). An
FTS task reformulation method X dominates an FDR refor-
mulation method Y if, given an FDR task ΠV and a reformu-
lation ρY ∈ Y applicable over ΠV , there exists a reformu-
lation ρX ∈ X such that it is applicable in atomic(ΠV)
and ρX(atomic(ΠV)) = atomic(ρY (ΠV)). We say that
the domination is strict if there exists ρX ∈ X such that
it is applicable in atomic(ΠV) but there does not exist
any ρY ∈ Y applicable in ΠV and ρX(atomic(ΠV)) =
atomic(ρY (ΠV)).

The generalize actions reformulation reduces the num-
ber of FDR actions by substituting two actions by a single

one if they are equal except for a precondition on a binary
variable. Formally, whenever there is a variable w with do-
main Dw = {x, y}, and two actions a1, a2 s.t. V(prea1) =
V(prea2), ∀v ∈ (V(prea1) \ {w}) prea1(v) = prea2(v),
prea1(w) = x, prea2(w) = y, and eff a1 = eff a2. Then,
a1 and a2 can be replaced by a′ where eff a′ = eff a1 and
prea′(v) = prea1(v) ∀v ∈ (V(prea1) \ {w}).

Theorem 1. Exact label reduction strictly dominates the
generalize actions reformulation.

Proof Sketch. If generalize actions replaces a1 and a2 in ΠV

by a′, then there are labels `1 and `2 in atomic(ΠV) that cor-
respond to a1 and a2 and a TS Θw that corresponds to w in
ΠV . As a1 and a2 have the same effects and preconditions on
all variables except v, then `1 and `2 are equal except for Θw

so they can be reduced. Label reduction is more general be-
cause it may result in transitions with different targets from
the same state and label, which is not possible in FDR.

Fluent merging is an FDR reformulation inspired by the
merge transformation in M&S (Seipp and Helmert 2011). It
replaces two variables v1, v2 ∈ V by their product, resulting
in a variable v1,2 with domain Dv1,v2 = Dv1 ×Dv2 . How-
ever, adapting the FDR actions is not straightforward since
they would require disjunctive preconditions. For example,
if action a1 has a precondition on v1 but not on v2, then the
action is applicable for several values of Dv1,v2 but not for
all of them. Since FDR does not allow for disjunctive pre-
conditions, multiple copies of the actions are needed to en-
code the preconditions and effects on the new variable. Simi-
larly, auxiliary actions must be added to encode a disjunctive
goal whenever a goal and a non-goal variable are merged. In
this case, the merge transformation does not dominate fluent
merging because it does not add such auxiliary labels and
transitions. This is arguably an advantage since adding them
is not expected to be beneficial or, otherwise, an equivalent
reformulation could be defined in M&S.

The use of abstraction for task reformulation in planning
has a long history (Knoblock 1994). The key idea is to solve
an abstraction of the problem and then refine the abstract
solution by filling the gaps. Not all abstractions are suit-
able for this, since they need to ensure that any solution for
the abstract task can be refined into a plan for the original
task. Abstractions with this property are said to be refinable.
Abstraction reformulations were first applied in FDR by the
Fast Downward planner (Helmert 2006a). Their reformula-
tion abstracts away any root variable in the causal graph (i.e.,
does not have dependencies on other variables) whose free
domain transition graph is strongly connected (i.e., one can
always set the variable to any desired value by applying a se-
quence of actions). This was generalized by Haslum (2007)
into the safe variable abstraction reformulation under the
observation that (1) it suffices to consider values that are rel-
evant for other variables (because they are precondition or
effect of an action that has another variable in its effect); and
(2) the goal only needs to be achieved at the end of the plan
so the goal value must be free reachable from other relevant
values, but it is not necessary that other values are reachable
from the goal value.
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Finally, one can also ignore the difference among some
values of a variable without ignoring it completely: the
merge values reformulation reduces the domain of an FDR
variable by merging several values whenever they can be
switched via actions without any side effects (Tozicka et al.
2016). Formally, let v be a variable with x, y ∈ Dv , and a1

and a2 be actions s.t. V(prea1) = V(eff a1) = V(prea2) =
V(eff a2) = {v}, and prea1(v) = eff a2(v) = x, and
prea2(v) = eff a1(v) = y. Then, x may be removed from
Dv , replacing every occurrence of x in A, I , and G by y.

As all these methods, weak bisimulation shrinking obtains
a refinable abstraction, but on the FTS representation, taking
advantage of the flexibility of M&S to compute abstractions.

Theorem 2. Removing transition systems with core states
after applying weak bismulation shrinking strictly domi-
nates the safe variable abstraction reformulation.

Proof Sketch. If a variable is abstracted away, abstract states
corresponding to the values that appear in the preconditions
of outside relevant actions are all weakly bisimilar. After
shrinking, the resulting abstract state is a core state.

Theorem 3. Weak bisimulation shrinking strictly dominates
the merge values reformulation.

Proof Sketch. If values x, y of variable v are merged, there
exist `1, `2 in atomic(ΠV) corresponding to a1, a2, and a
TS Θv representing v. As v is the only variable in the pre-
conditions and effects of a1 and a2, `1 and `2 are τ -labels
in Θv . Since x τ==⇒ y and y τ==⇒ x, x and y are weakly
bisimilar.

Search on the FTS Representation
To use our reformulation framework, planning algorithms
must be used to find a solution to the reformulated FTS task.
Heuristic search is a leading approach for solving classical
planning problems (Bonet and Geffner 2001). A compilation
into an FDR task having an action for each combination of
transitions with the same label in different TSs is possible,
but may incur a big overhead, potentially losing any gains
obtained by the reformulation methods. Here, we consider
how to apply heuristic search algorithms to FTS tasks by
defining the successor generation and heuristic evaluation.

Successor generation is the operation that, given a state s,
generates all transitions s l−→ t in the state space of the task.
This typically is done in two steps: (1) generate the set of
actions that are applicable in s and (2) for each such action
obtain the corresponding successor state.

Since the number of actions in FDR tasks may be very
large, iterating over all of them to check whether they are
applicable in s is inefficient. The Fast Downward Planning
System uses a tree data-structure to efficiently retrieve the
applicable actions in a given state (Helmert 2006b). How-
ever, this data-structure relies on actions being applicable
either only for one value of each variable if v ∈ V(prea)
or in all values of such variable otherwise. This is no longer
true for labels in the FTS representation. A label is appli-
cable in a factored state s if there exists an outgoing tran-
sition s[Θi]

l−→ ti for each Θi ∈ ΠT . Since there may be

any number of transitions in each Θi from any number of
source states, labels may be applicable for arbitrary sets of
states. We pre-compute for every abstract state si ∈ Θi the
set of labels with an outgoing transition from si, denoted
Lsi . Then, given a state s, the set of applicable labels can be
computed as

⋂
Θi
Ls[Θi].

Step (2) is simple in FDR since the new state is a copy
of s, overriding the value of variables in the effect. In the
FTS representation, however, there may be multiple succes-
sors from s with label `. We enumerate all possible succes-
sors by considering all outgoing transitions from s[Θi] in
every Θi. To do this efficiently, for each label ` we divide
the set of TSs in ΠT in three sets: the irrelevant TSs where `
only induces self-loop transitions, deterministic TSs where
for every si ∈ Θi there is a single outgoing transition with
`, and non-deterministic TSs where there may be multiple
transitions from the same source state. Only the latter require
to enumerate all possible transitions, whereas irrelevant TSs
are ignored and the effect on deterministic TSs can be set as
in FDR tasks.

We now discuss how to derive heuristic functions for the
FTS representation, which are essential to guide the search
and find solutions to large tasks. As most heuristic functions
have originally been defined for STRIPS or FDR, they need
to be adapted to use them in FTS tasks. This is similar to
adding support for a limited form of disjunctive precondi-
tions and conditional effects. In optimal planning, we use
merge-and-shrink heuristics since they are already based on
FTS.

To apply our reformulation framework on satisficing plan-
ning, we adapt the FF heuristic (Hoffmann and Nebel 2001).
FF is based on the delete-relaxation, ignoring the delete ef-
fects of STRIPS actions. In FDR, “ignoring deletes” is inter-
preted as ignoring the negative effect of the actions, so that
variables accumulate values instead of replacing them. This
is easily extrapolated to the FTS representation by consider-
ing that each TS may simultaneously be in multiple states.

To compute the heuristic, we compile our task into an
FDR task with one unary action asi,`,ti for each transition
si

`−→ ti in some Θi. This action has ti as effect, and si
as precondition plus additional preconditions for each other
Θj where l is not applicable in all states. If there is a single
state sj ∈ Θj where ` is applicable, we add sj to the pre-
condition of asi,`,ti . If there are more than one, we add an
auxiliary fact to our task f`,j that represents the disjunction
of those states, as well as auxiliary unary actions from each
of those states to f`,j .

Afterwards, we retrieve the relaxed plan as a set of transi-
tions si

`−→ ti, and add the cost of all their labels to obtain the
heuristic value. One difference to FF for FDR is that there,
FF counts each action only once because no action needs
to be applied more than once in delete-free tasks. We do
not do this to avoid underestimating the goal distance when
the same label may have different effects (e.g. label DR in
Fig.1b).

The delete-relaxation is also useful to select preferred ac-
tions. In FDR, an action is preferred in state s if it belongs
to the relaxed plan of FF for s. In FTS, we consider s `−→ t to
be preferred if the relaxed plan from s contains a transition
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labeled with ` and with target ti s.t. ∃Θit[Θi] = ti.

Experiments
We implemented the M&S reformulation framework in Fast
Downward (FD) (Helmert 2006b), using its existing M&S
framework (Sievers 2018) and extending it with weak bisim-
ulation as well as pruning transformations that remove dead
labels and irrelevant TSs and labels. We also modified the
layout of the algorithm: firstly, since our pruning transfor-
mations might trigger further pruning opportunities, we al-
ways repeatedly apply them until a fixpoint is reached. Sec-
ondly, we run label reduction and shrinking on the atomic
FTS task until no more simplifications are possible. Finally,
we cannot exactly control the amount of shrinking done be-
cause this would result in non-refinable abstractions that do
not admit plan reconstruction. Instead, we restrict merging
to satisfy the size limit and only shrink after merging and
pruning.

To consider the effects of some of the M&S transforma-
tions on the task reformulation individually, we consider the
following configurations. As the simplest baseline, we only
transform the FDR task (FDR) into the atomic FTS task (a),
without any further transformations. This does not affect the
state space at all, but serves for quantifying the overhead of
our implementation over FD, mainly due to using different
data structures to represent the task and perform successor
generation. Another variant of atomic adds exact label re-
duction and shrinking (a-ls), either based on bisimulation
for optimal planning or weak bisimulation for satisficing
planning. Other configurations combine label reduction and
shrinking with a merge strategy. For the latter, we consider
DFP (d-ls) and sbMIASM (m-ls, called dyn-MIASM origi-
nally) (Sievers, Wehrle, and Helmert 2014), with a size limit
of 1000 on the resulting product. We did not find qualita-
tive differences with size limits of 100 and 10000. We im-
pose a time limit of 900s on the reformulation process. For
the overall planning, we use a limit of 3.5 GiB and 1800s.
We use all STRIPS benchmarks from the optimal/satisficing
tracks of all IPCs, two sets consisting of 1827/1816 tasks
across 48 unique domains.1

Search Space Reduction
To assess the impact of our task reformulations on the reach-
able state space, we run uniform-cost search and evaluate the
number of expansions until the last f -layer. Fig. 2 compares
the FDR representation against a-ls and d-ls with bisimu-
lation (top) and weak bisimulation (bottom) shrinking. We
observe that even with only label reduction and bisimulation
shrinking (a-ls) there are state space reductions of up to one
order of magnitude in some cases. Most of these gains are
due to shrinking, given that label reduction does not change
the state space and pruning cannot be performed often in the
atomic representation due to the preprocessing of FD. When
using merge transformations (d-ls), state space reductions
can often be of up to several orders of magnitude. It is worth

1Implementation: https://doi.org/10.5281/
zenodo.3232878, dataset with benchmarks: https:
//doi.org/10.5281/zenodo.3232844.
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Figure 2: Expansions until last f -layer of blind search on the
FDR task and different reformulated FTS tasks, using bisim-
ulation (top) and weak bisimulation (bottom) for shrinking.

noting that merging does not affect the state space, so this
reduction is due to the synergy with pruning and shrinking.

If optimality does not need to be preserved, larger reduc-
tions can be achieved with weak bisimulation shrinking. In
this case, 305 tasks (including entire domains like logistics,
miconic, movie, rovers, and zenotravel) can be solved dur-
ing the reformulation resulting in 0 expansions (points on
the x-axis). The reason is that weak bisimulation shrinks
away entire TSs (e.g., if they form a single connected com-
ponent with actions without side preconditions or effects,
which translate to τ -labels). An example is logistics: as
trucks/airplanes can always freely change their location with
the drive/fly action, weak bisimulation simplifies the TSs de-
scribing their position, after which the TSs for packages can
also be simplified. Previous abstraction reformulation ap-
proaches solved many of these domains too, with the excep-
tion of Rovers, where they obtained reductions but without
completely simplifying the domain. With merge reformula-
tions, 460 tasks are solved with DFP (completely solving
transport-opt), and 514 with MIASM (solving all but two
instances in parcprinter-opt). This is remarkable given the
low limit of 1000 abstract states.

Results with Informed Search
We evaluate the impact of our reformulations in terms of
coverage (see Table 1), expansions, and total time (see
Fig. 3). On the optimal benchmarks, we run A∗ with hmax

and M&S with DFP using a 50000 size limit and (ap-
proximate) bisimulation shrinking. On the satisficing bench-
marks, we run lazy greedy search with hFF, with and with-
out preferred operators. The comparison of FDR and atomic
(a) shows that our implementation has some overhead. Both
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Figure 3: Expansions until last f -layer and total time of a vs. a-ls (left) and a-ls vs. d-ls (right) for A∗with M&S (left block)
and lazy greedy search with hFFand preferred operators (right block).

configurations explore the same state space with very sim-
ilar heuristics. hmax and hFF are computed in the same way
with no big overhead and the runtime of plan reconstruc-
tion is usually negligible. In terms of heuristic value, hmax

is identical and hFF only differs due to tie-breaking and be-
cause some actions may be counted twice. One of the main
sources of overhead is the memory used to represent FTS
tasks. Our data structures use O(|L|) memory on each TS,
whereas in FDR no memory is wasted for variables not men-
tioned in the preconditions or effects.

Label reduction and shrinking on the atomic FTS task (a-
ls) is useful in most cases, increasing total coverage in all
configurations. This reformulation reduces the state space
as well as the task description size (i.e. reducing the TSs in
the FTS representation). Therefore, gains in expanded nodes
usually translate into lower search times, and it can pay off
despite the overhead of the precomputation phase on total
time.

Merge reductions (d-ls), however, are oftentimes harm-
ful in combination with delete-relaxation heuristics (hmax

and hFF), due to the overhead caused by increasing the task
size. Nevertheless, they can be very useful in some domains,
whenever there is enough synergy with pruning (e.g. wood-
working, tpp) or shrinking (e.g. childsnack). Indeed, for all
heuristics we tried, merge reformulations are useful in at
least a few domains. This is also reflected in the orcl col-
umn that shows how many instances are solved by any of
our configurations. This is often much larger than our atomic
configuration, but also than the FDR baseline, showing that
if the right reformulations are chosen for each domain, they
can compensate for the overhead of using an FTS represen-
tation.

The results of d-ls with M&S heuristics are different be-
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d-ls 13 11 10 – 11 815
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FDR – 18 15 27 22 1326

h
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3a 6 – 13 28 22 1272
a-ls 18 15 – 31 24 1368
d-ls 10 10 4 – 11 1208
m-ls 13 15 7 21 – 1224

FDR – 17 15 24 23 1502

h
FF

p.
:1

58
9

a 8 – 11 25 24 1461
a-ls 13 8 – 26 26 1471
d-ls 9 6 2 – 15 1357
m-ls 9 7 3 16 – 1322

Table 1: Domain comparison of coverage for A∗(left) with
hmax(top) and M&S (bottom), and lazy greedy search (right)
with hFF, without (top) and with (bottom) preferred opera-
tors. A value in row x and column y denotes the number of
domains where x is better than y. It is bold if this is higher
than the value in y/x. Column “tot” shows total coverage and
“orcl” shows the oracle, i.e., per-task maximized, coverage
over our algorithms (thus excluding FDR).

cause there are more cases where the heuristic is less in-
formed after the d-ls reformulation, increasing the number
of expansions. There is also a large number of instances
where the heuristic value for the initial state is perfect for
a-ls whereas a large amount of search is needed with d-ls.
The reason is that the options available for the merge strat-
egy during the reformulation are reduced by the limit on ab-
stract states, leading to different merge decisions, and pos-
sibly degrading the quality of the heuristic. However, with
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M&S heuristics there is no overhead in runtime so d-ls pays
off more often.

The rightmost two columns of Fig. 3 show results with
hFFand preferred operators for satisficing planning. The re-
ductions obtained by weak bisimulation shrinking are much
stronger than by optimality preserving strategies, improving
the performance of a-ls and d-ls in terms of expanded nodes.
In terms of runtime, a-ls is useful in many cases despite the
overhead caused by spending up to 900s in preprocessing.
Merge reformulations, however, increase the computational
cost of the heuristic, so they do not pay off over a-ls except
in a few cases where the reduction is huge.

Conclusion
In this work, we use the M&S framework for task reformula-
tion and analyze its advantages over reformulations in FDR.
Our results show a large potential of state space reductions,
that sometimes can solve entire domains without any search.

The framework has even more potential by integrat-
ing new reformulation methods like subsumed transition
pruning (Torralba and Kissmann 2015), or graph factoriza-
tion (Wehrle, Sievers, and Helmert 2016). Our results also
show that not all reformulations are always helpful. Thus,
to materialize all this potential, methods to automatically
select the best reformulation method for each domain are
also of great interest (Gerevini, Saetti, and Vallati 2009;
Fuentetaja et al. 2018).
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Abstract

We extend goal recognition design by considering a two-
agent setting in which one agent, the actor, seeks to achieve
a goal but has only partial information about its environment.
The second agent, the recognizer, has perfect information and
aims to recognize the actor’s goal from its behavior as quickly
as possible. As a one-time offline intervention the recognizer
can selectively reveal information to the actor. The problem of
selecting which information to reveal, which we call informa-
tion shaping, is challenging because the space of information
shaping options may be extremely large, and because more
information revelation need not make an agent’s goal easier
to recognize. We formally define this problem, and suggest a
pruning approach for efficiently searching the space of infor-
mation shaping options. We demonstrate the ability to facili-
tate recognition via information shaping and the efficiency of
the suggested method on a set of standard benchmarks.

Introduction
Goal recognition is the task of detecting the goal of agents by
observing their behavior (Cohen, Perrault, and Allen 1981;
Kautz and Allen 1986; Ramirez and Geffner 2010; Carberry
2001; Sukthankar et al. 2014). We consider a two-agent goal
recognition setting, where the first agent, the actor, has par-
tial information about a deterministic environment and seeks
to achieve a goal. The second agent, the recognizer, has per-
fect information, and tries to deduce the actor’s goal as early
as possible, by analyzing the actor’s behavior.

As a one time offline intervention, and with the objective
of facilitating the recognition task, the recognizer can ap-
ply a limited number of information shaping modifications,
implemented as changes to the actor’s sensor model. Such
modifications can help to differentiate the actor’s behavior
for different goals, potentially making it easier to interpret.

The ability to quickly understand what an agent is trying
to achieve, without expecting it to explicitly communicate
its objectives, is important in many applications. For exam-
ple, in an assistive cognition setting (Kautz et al. 2003), it
may be critical to know as early as possible when a visually
impaired user is approaching a hot oven, giving the system
time to react to the dangerous situation ( e.g., by calling for
help, reducing the heat, etc.). In security applications it may
be important to early detect users aiming at a specific des-
tination (Boddy et al. 2005), giving the system enough time

to send human agents to further investigate potential threats.
Early detection is also important in human-robot collabora-
tive settings (Levine and Williams 2014), where a robot aims
to recognize what component a human user is trying to as-
semble, so it can gather the tools needed for the task in a
timely fashion. Common to all these settings, is that agents
have incomplete information about their environment. This
affects their behavior and is key to the ability to interpret it.
In addition, these settings can be controlled and modified in
various ways. Specifically, it may be possible to modify an
agent’s behavior by manipulating its knowledge and its need
to act in order to acquire new information. Such manipula-
tions may induce behaviors that can be quickly associated to
a specific goal. To demonstrate, in an assisted cognition set-
ting, an auditory signal can inform users about a hot oven.
Early notification potentially causes users aiming at a differ-
ent goal (e.g., the cupboard) to move away from the oven,
supporting early recognition of dangerous situations.

This work extends the goal recognition design (GRD)
framework, which deals with redesigning agent settings in
order to facilitate early goal detection (Keren, Gal, and
Karpas 2014; Wayllace et al. 2016). Until now, GRD work
has assumed that agents have perfect knowledge of their en-
vironment. In this paper, we extend the framework to sup-
port agents with incomplete knowledge. Specifically, we fo-
cus on GRD in deterministic environments, and use contin-
gent planning (Bonet and Geffner 2011; Brafman and Shani
2012a; Muise, Belle, and McIlraith 2014; Albore, Palacios,
and Geffner 2009) to represent the actor. The design objec-
tive is to minimize worst case distinctiveness (wcd) (Keren,
Gal, and Karpas 2014), which represents the longest se-
quence of actions (or path cost) that is possible before the
actor’s goal is recognized. Note that in some instances the
goal may remain unrecognized, and even go unattained, in
which case the wcd is simply the number of actions (or ac-
cumulated action cost) until the end of execution.

To minimize wcd we use information shaping and require
that the information conveyed to the actor is truthful and
cannot mislead. Specifically, we use sensor extensions to
improve information about the value of some environment
variables. This is a challenging problem because the number
of possible design options may be extremely large. Also, as
we demonstrate below, more information need not make an
agent’s goal easier to recognize.
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(a) The goal recognition setting: an
actor to either goal may move up.

(b) Plans executed by an actor aiming at
G1 (solid arrows) andG2 (dashed arrows).

(c) Plans for each goal when the
recognizer reveals (3,1) is safe

(d) Plans for each goal when the recog-
nizer reveals both (3,1) and (1,3) are safe.

Figure 1: An example of a GRD-APK problem

Example 1 As a simple example, consider Figure 1(a), de-
picting a variation of the Wumpus domain (Russell and
Norvig 2016), where a partially informed actor has one
of two goals (indicated by G1 and G2 in the image), and
needs to achieve it without falling into pits or encountering
a deadly wumpus. The actor knows its current position, but
initially does not know the locations of the pits and wum-
puses. When in a cell adjacent to a pit, it senses a ‘breeze’
and it can smell the stench of a wumpus from an adjacent
cell. The recognizer has perfect information: it knows the
locations of the actor, the pits (e.g., the spiral at cell (2, 3))
and the wumpuses (e.g., cell (3, 2)).

The actor starts at ‘Init’. With no breeze or stench, it de-
cuces the adjacent cells are safe. In this example, we will as-
sume the actor is optimistic when planning but conservative
when acting (Bonet and Geffner 2011). For planning, the ac-
tor makes the most convenient assumptions about (chooses
the value of) unknown variables, plans accordingly, and re-
vises the assumptions and re-plans if these assumptions are
refuted during execution. If there are multiple cost-minimal
plans (under optimism), we assume the actor selects one that
requires making as few assumptions as possible (and arbi-
trarily otherwise). Consequently, an agent aiming atG1 will
start by moving up. In contrast, an uninformed agent aiming
at G2 is indifferent to going up or right, and may go either
way. Because of this, moving up from the initial state leaves
the goal unrecognized. Let us suppose (Figure 1b) that plans
to both goals start by moving up two steps. After sensing a
breeze at cell (1,3), not knowing which adjacent cells have
a pit, the actor backtracks and moves right. After sensing a
’breeze’ and ’stench’, the actor deduces there is a wumpus
at cell (3,2), and realizes that it will sense a stench at cell
(3,1), without having the option of verifying that cell (4,1)
is safe. With no more cells to explore, it halts at (2,2) leav-
ing the goal unrecognized even after it terminates execution,
setting wcd to 4.

To promote early recognition, the recognizer can share in-
formation with the actor before it starts execution, for exam-
ple by revealing safe cells. However, suppose there is a bud-
get, limiting the number of facts that can be revealed. If the
recognizer chooses to reveal cell (3, 1) is safe (Figure 1(c)),
an actor aiming atG2 (originally indifferent to moving up or
right) prefers moving right from the initial state. In contrast,

an actor aiming at G1 still prefers moving up. The goal of
the actor becomes clear as soon as the first step is performed
and wcd is minimized (wcd=0). Note that if, in addition, the
recognizer reveals that cell (1, 3) is safe (Figure 1(d)), the
initial situation is recovered, since an actor to either goal
may now choose to move up given its beliefs about minimal
plans. This illustrates the need to carefully select the infor-
mation to reveal in order to facilitate the recognition task.

The contributions of this work are fourfold. First, we ex-
tend the GRD framework to support agents with partial in-
formation. We refer to our extended setting as GRD for
Agents with Partial Knowledge (GRD-APK), and suggest
information shaping modifications that can be applied to
support goal recognition. Second, since our extended design
setting induces a large search space of possible information
shaping modifications and since previous approaches to de-
sign do not apply to our setting, we present a novel pruning
method, and specify the conditions under which it is safe,
so that at least one optimal solution is not pruned. Third,
we implement our suggested approach, using STRIPS (Fikes
and Nilsson 1972) to represent our generic and adaptable re-
design process. Finally, we evaluate the algorithm on a set of
standard benchmarks, and demonstrate both wcd reduction
achievable through information shaping and the efficiency
of our approach.

Background: Planning Under Partial
Observability

To support agents with partial knowledge, we follow Bonet
and Geffner (2011) and consider contingent planning under
partial observability, formulated as follows.

Definition 1 A planning under partial observability with
deterministic actions (PPO-det) problem is a tuple P =
〈F ,A, I, G,O〉 whereF is a set of fluent symbols,A is a set
of actions, I is a set of clauses over fluent-literals defining
the initial situation, G is a set of fluent-literals defining the
goal condition, and O represents the agent sensor model.

An action a ∈ A is associated with a set of preconditions
prec(a), which is the set of fluents that need to hold for a to
be applicable, and conditional effects eff (a), which is a set
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of pairs (Fcond ,Feff ) s.t.Feff ⊆ F become true ifFcond ⊆
F are true when a is executed.

The sensor model O is a set of observations o ∈ O rep-
resented as pairs (C,L) where C is a set of fluents and L is
a positive fluent, indicating that the value of L is observable
when C is true. Each observation o = (C,L) can be con-
ceived as a sensor on the value of L that is activated when C
is true.

A state s is a truth valuation over the fluents F (‘true’ or
‘false’). For an agent, the value of a fluent may be known
or unknown. A fluent is hidden if its true value is unknown.
A belief state b is a non-empty collection of states the agent
deems possible at some point. A formula F holds in b if it
holds for every state s ∈ b. An action a is applicable in b
if the preconditions of a hold in b, and the successor belief
state b

′
is the set of states that results from applying the ac-

tion a to each state s in b. When an observation o = (C,L)
is activated, the successor belief is the maximal set of states
in b that agree on L. The initial belief is the set of states
that satisfy I , and the goal belief are those that satisfy G.
A formula is invariant if it is true in each possible initial
state, and remains true in any state that can be reached from
the initial state. A history is a sequence of actions and be-
liefs h = b0, a0, b1, a1, . . . , bn, an, bn+1. It is complete if
the performing agent reaches a goal belief state.

A solution to a PPO-det problem P is a policy π, which
is a partial function from beliefs to actions. A policy is de-
terministic if any belief b is mapped to at most one action.
Otherwise it is non-deterministic. A history h satisfies π, if
∀i 0 ≤ i ≤ n, ai ∈ π(bi). There are three types of poli-
cies: weak, when there is at least one complete history that
satisfies the policy, strong, where a goal belief is guaranteed
to be achieved within a fixed number of steps, and strong
cyclic, where a goal belief is guaranteed to be achieved, but
with no upper bound on the cost (length) of the solution. Our
framework, suggested next, supports all three policy types.

Goal Recognition Design for Agents with
Partial Knowledge (GRD-APK)

The goal recognition design for agents with partial knowl-
edge problem (GRD-APK) consists of an initial goal recog-
nition setting, a measure by which a setting is evaluated,
and a design model, which specifies the information shap-
ing modifications that can be applied. We first define each
component separately.

Goal Recognition
A goal recognition setting can be defined in various
ways (Sukthankar et al. 2014), but typically includes a de-
scription of the underlying environment, the way agents be-
have in it to achieve their goal, and the observations col-
lected by the goal recognizing agent. Accordingly, our goal
recognition model supports two agents; a partially informed
contingent planning actor (Definition 1) with a goal, that ex-
ecutes history h until reaching a goal belief or halting when
no action is applicable. The second agent is a perfectly in-
formed recognizer, that analyzes the actor’s state transitions
in order to recognize the actor’s goal.

Definition 2 A goal recognition for agents with par-
tial knowledge problem (GR-APK) is a tuple R =
〈E,G,Oac, {Π(G)}G∈G〉 where:
• E = 〈F ,A, I〉 is the environment, which consists of the

fluents F , actions A and initial state I as defined in Def-
inition 1 (a cost C(a) for each action a ∈ A may also be
specified),

• G is a set of possible goals G, s.t. |G| ≥ 2 and G ⊆ F ,
• Oac is the actor’s sensor model (Definition 1), and
• {Π(G)}G∈G are the set of policiesΠ(G) an agent aiming

at goal G ∈ G may follow.

The cost of history h, denoted Ca(h) = ΣiC(ai), is the
accumulated cost of the performed actions (equal to path
length when action cost is uniform). In executing h, the ac-
tor follows a possibly non-deterministic policy π from the
set Π(G) of possible policies to its goal.

The set Π(G) of policies to each goal is typically implic-
itly defined via the solver used by the actor to decide how
to act in each belief state. In Example 1 we described an
example of such a solver, which we will formally define in
the next section. The GRD-APK framework is well defined
for any solver that provides a mapping B → 2A, specify-
ing the set of possible actions an agent may execute at each
reachable belief state b ∈ B (e.g., (Bonet and Geffner 2011;
Muise, Belle, and McIlraith 2014).

In our setting, the actor and recognizer both know the en-
vironment E and the set G of possible goals. While the par-
tially informed actor needs to collect information about the
environment via its sensor model Oac in order to achieve its
premeditated goal, the recognizer knows the true state of the
world and the actor’s solver and sensor, but does not know
the actor’s goal. The recognizer observes the actor’s tran-
sitions between belief states and analyzes them in order to
recognize the actor’s goal.1

Evaluating a GR-APK model
The worst case distinctiveness (wcd) measure represents the
maximum number of actions an actor can perform (in gen-
eral, maximum total cost incurred by the actor) before its
goal is revealed. To define wcd we first define the relation-
ship between the observations collected by the recognizer
when an actor follows history h, which in our case corre-
spond to the actor’s transitions between belief states, and a
goal. As mentioned above, we say that a history satisfies a
policy, if it is a possible execution of the policy. In addition,
a history satisfies a goal, if satisfies a possible policy to the
goal.

Definition 3 Given a GR-APK model R, history h satisfies
policy π in R, if ∀i 0 ≤ i ≤ n, ai ∈ π(bi). In addition, h
satisfies goal G ∈ G in R if ∃π ∈ Π(G) s.t. h satisfies π.

1Since we are analyzing the goal recognition setting, and need
to account for all possible observations of agent behavior, we do
not specify a particular history to be analyzed, which is a typical
component in goal recognition models (e.g., (Ramirez and Geffner
2010; Pereira, Oren, and Meneguzzi 2017). Instead, in facilitating
goal recognition via design, our model characterizes the different
actor behaviors in the system, and the way they are perceived by
the recognizer.
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Let Grec(h) represent the set of goals that history h sat-
isfies, i.e., the set of goals the recognizer deems as possible
actor goals. We define a history as non-distinctive if it satis-
fies more than one goal.

Definition 4 Given a GR-APK model R, a history h is non
distinctive in R, if exists G,G′ ∈ G s.t. G 6= G′, and h
satisfies G and G′. Otherwise, it is distinctive.

We denote the set of non-distinctive histories of a GR-
APK model R by Hnd(R).

Definition 5 The worst case distinctiveness of a model R,
denoted by wcd(R) is:

wcd(R) =

{
max

h∈Hnd(R)
Ca(h) Hnd(R) 6= ∅

0 otherwise

That is, wcd is the maximum cost history for which the
goal is not determined, or zero if there is no such history.
Recall that in some instances the goal may remain unrec-
ognized, and even go unattained, in which case the wcd is
simply the number of actions (or accumulated action cost)
until the end of execution. Also recall that a policy may be
strong cyclic, potentially containing infinite loops. A pol-
icy with such a cycle is considered to have a history with
infinite cost. In particular, since such a history may be non-
distinctive, this means wcd in this setting may be infinite.

Information Shaping
Our interest here is in modulating the behavior of the ac-
tor through information shaping. By changing the actor’s
knowledge, we can potentially change its behavior and the
way by which it acquires the information needed to achieve
it’s goal. We restrict the information shaping interventions
to be truthful so that they cannot convey false informa-
tion. In the context of contingent, partially-informed plan-
ning agents, this requirement is naturally implemented by re-
quiring that we may only improve the actor’s sensor model,
i.e., improving its ability to access the value of some envi-
ronment feature. We define sensor extension modifications,
which add a single observation to a sensor model, using O
to denote the set of all sensor models.

Definition 6 A modification δ : O → O is a sensor ex-
tension if δ(O) = O ∪ {o}, for all O ∈ O, and for some
o = (C,L).

Sensor extensions correspond to adding new sensors to
the environment, or, as a special case, communicating to the
actor the value of a feature (setting C = ∅).

To demonstrate, in Example 1 the recognizer can allow
the actor to sense a stench in cell (1, 2), two (rather than
one) cells away from the wumpus in cell (3,2). This exten-
sion is implemented by adding the observation o = (C =
AgentAtCell(1, 2), L = BreezeInCell(2, 2)) to the ac-
tor’s sensor model. This could be realized through a vi-
sual indication or sign, similar to the auditory signal indi-
cating the oven is hot in the assisted cognition example.
The recognizer could also directly communicate with the

actor and inform it about the location of a wumpus, or re-
veal a location without a wumpus. (e.g., (C = True, L =
WumpusAtCell(4, 4)).

We are now ready to define a GRD-APK problem.
Definition 7 A goal recognition design for agents with
partial knowledge problem (GRD-APK) is defined as a
tuple T = 〈R0,∆, β〉 where:
• R0 is the initial goal recognition model,
• ∆ are the possible sensor extensions, and
• β is a budget on the number of allowed extensions.

We want to find a set ∆ ⊆∆ of up to β sensor extensions
to apply to R0 offline to minimize the wcd. This objective is
formally defined below, where wcdmin(T ) is the minimum
wcd achievable in a GRD-APK model T , andR∆ is the goal
recognition model that results from applying set ∆ to R.

wcdmin(T ) = min
∆⊆∆

wcd(R∆
0 )

s.t.|∆| ≤ β
(1)

Any solution to Equation 1 is optimal, i.e., it achieves the
minimal wcd possible. It is strongly optimal if it has mini-
mum size among all optimal solutions, i.e., it includes the
minimal number of extensions needed to minimize wcd.

The k-planner and Kprudent(P ) Translation
A variety of solvers have been developed to solve a PPO-
det problem (e.g., (Bonet and Geffner 2011; Muise, Belle,
and McIlraith 2014; Brafman and Shani 2012b)), all of
which can be used to represent the actor (and its set of pos-
sible policies) described in Definition 2. Specifically, Bonet
and Geffner (2011) suggest the k-planner that follows the
planning under optimism approach; the actor plans while
making the most convenient assumptions about the values of
(i.e., assigns a value to) hidden variables, executes the plan
that is obtained from the resulting classical planning prob-
lem, and revises the assumptions and re-plans, if during the
execution, an observation refutes the assumptions made.

To transform the PPO-det problem into a classical plan-
ning problem, the k-planner uses the K(P ) translation. At
the core of the translation is the substitution of each literal L
in the original problem with a pair of fluents KL and K¬L,
representing whether L is known to be true or false, respec-
tively (Albore, Palacios, and Geffner 2009). Each original
action a ∈ A is transformed into an equivalent action that
replaces the use of every literal L (¬L), with its correspond-
ing fluentKL (K¬L). Each observation (C,L) is translated
into two deterministic sensing actions, one for each possi-
ble value of L. These sensing actions allow the solver to
compute a plan while choosing preferred values of (mak-
ing assumptions about) the unknown variables. For example,
the actor can assume that a cell on its planned path has no
pit (e.g., K¬PitAt(4, 1) = True). Each invariant clause
is translated into a set of actions, which we call ramifica-
tion actions. These actions can be used to set the truth value
of some variable, as new sensing information is collected
from the environment. For example, a ramification action
can be activated to deduce that a cell is safe when no breeze
or stench is sensed in an adjacent cell.
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The action set in the transformed problem is therefore
A′ = A′

exe∪A
′
sen∪A

′
ram, whereA′

exe represents the trans-
formed original set of actions, A′

sen are the sensing actions
and A′

ram are the ramification actions. This representation
captures the underlying planning problem at the knowledge
level, accounting for the exploratory behavior of a partially
informed agent.

Bonet and Geffner (2011) show that this linear transla-
tion of a PPO-det problem into a classical planning prob-
lem is sound and complete for simple PPO-det models with
a connected state space. A PPO-det model is simple if the
non-unary clauses in I are all invariant, and no hidden flu-
ent appears in the body of a conditional effect. In connected
state spaces every state is reachable from any other. In sim-
ple problems there is no information loss and the model is
monotonic, i.e., for every fluent f ∈ F , if f is known in
a belief state b and b

′
is a belief reachable from b, then f

is known in b
′
. As a consequence, for every policy π and

history h of length n it follows that the number of states in
beliefs bi is a monotonically decreasing function, i.e., |bi| ≥
|bi+1| for every 0 ≤ i < n.

A key issue to note about the K(P ) compilation is that
all its actions, including sensing and ramification actions,
have equal cost. This means that a cost-minimizing solution
to the resulting classical planning problem may be one that
favors increasing the cost to goal over the use of multiple
ramification actions. As described in Example 1, we want a
solver that can make optimistic assumptions, but chooses a
minimal cost plan that requires making as few assumptions
as possible. In addition, ramifications are not to be consid-
ered when calculating the cost to goal. We therefore suggest
theKprudent(P ) translation, which extends the uniform cost
K(P ) translation by associating a cost function to each ac-
tion in A′. Specifically, every transformed action a ∈ A′

exe
is assigned a cost of 1, every sensing action (assumption)
a ∈ A′

sen is assigned a small cost of ε, and every ramifica-
tion action a ∈ A′

ram has 0 cost. When ε is small enough
such that the accumulated cost of assumptions of any gener-
ated plan is guaranteed to be smaller than minimal diversion
from an optimal plan, the cost-minimal plan achieved using
this formulation complies with our requirements.

Methods for Information Shaping
In our search for an optimal design solution, we consider a
sensor extension as useful with regards to a goal recognition
model if it reduces wcd. Given a goal recognition model R
and a sensor extension δ, we let Rδ denote the model that
results from applying δ to the actor’s sensor model O, and
define useful sensor extensions as follows.

Definition 8 A modification δ is useful with regards to goal
recognition model R if wcd(Rδ) < wcd(R).

The challenge in information shaping comes from two
sources. First, the number of possible information shap-
ing options may be large, and evaluating the effect of
each change may be costly, making it important to develop
efficient search techniques. Second, the problem is non-
monotonic, in that sensor extensions are not always useful,

and providing more information may actually make recog-
nition more difficult by increasing wcd (Example 1).

To address these challenges, we follow Keren, Gal, and
Karpas (2018) and formulate the design process as a search
in the space of modification sets ∆ ⊆ ∆. With a slight
abuse of notation, we let R∆ denote the model that results
from applying the set ∆ of sensor extensions to the actor’s
sensor model. The root node is the initial goal recognition
model R0 (and empty modification set), and the operators
(edges) are the sensor extensions δ ∈ ∆ that transition be-
tween models. Each node (modifications set ∆) is evaluated
by wcd(R∆

0 ), the wcd value of its corresponding model.
To calculate the wcd value of a model we need to find the

maximal non-distinctive history. Recall that we assume the
actor’s solver is known to the recognizer, who can observe
the actor’s transition between states. We can therefore find
the wcd value of a GR-APK model by first using the actor’s
solver to compute the policies to each of the goals. Then,
starting at the initial state, we iteratively explore the non-
distinctive policy prefixes, until its most distant boundary is
found, and return its length (cost).

Design with CG-Pruning
The baseline approach for searching in modification space
is breadth first search (BFS), using wcd to evaluate each
node. Under the budget constraints, BFS explores modifi-
cation sets of increasing size, using a closed-list to avoid
the computation of pre-computed sets. The search halts if a
model with wcd = 0 is found or if there are no more nodes to
explore, and returns the shortest path (smallest modification
set) to a node that achieves minimal wcd. This iterative ap-
proach is guaranteed to find a strongly optimal solution, i.e.,
a minimal set of modifications that minimizes wcd. How-
ever, it does not scale to larger problems.

To increase efficiency, pruning can be applied to reduce
the size of the search space. Specifically, pruning is safe if
at least one optimal solution remains unpruned (Wehrle and
Helmert 2014). Keren, Gal, and Karpas (2018) offer a prun-
ing technique for GRD settings where the actor is fully in-
formed and guarantee it is safe if modifications cannot in-
crease wcd. Since this condition does not hold in our setting,
where sensor extensions can both increase and reduce wcd,
we suggest a new pruning approach that eliminates useless
modifications, and specify conditions under which it is safe.

The high level idea of our pruning technique is to trans-
form the partially observable planning problem for each goal
into its corresponding fully observable planning problem,
and use off-the-shelf tools developed for fully observable
planning in order to automatically detect information shap-
ing modifications that are guaranteed not to have an effect
on the actor’s behavior.

Specifically, given a goal recognition model R, for ev-
ery goal in G, we use the K(P ) transformation (or its vari-
ant Kprudent(P ) introduced above) to transform the par-
tially observable planning problem into a fully observable
problem. We then construct the causal graph (Williams and
Nayak 1997; Helmert 2006) of each transformed problem.
According to Helmert (2006), the causal graph of a plan-
ning problem is a directed graph (V,E) where the nodes
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Figure 2: The Wumpus domain with keys

V represent the state variables and the edges E represent
dependencies between variables, such that the graph con-
tains a directed edge (v, v′) for v, v′ ∈ V if changes in the
value of v′ can depend on the value of v. Specifically, to cap-
ture only the variables that are relevant to achieving the goal,
the causal graph only contains ancestors of all variables that
appear in the goal description. In our context, the variable
set of the causal graph can either be the set of fluents of
the transformed PPO-det problem, or the multi-valued vari-
ables extracted using invariant synthesis, which automati-
cally finds sets of fluents among which exactly one is true at
each state, and which can be assumed to represent the differ-
ent values of a multi-valued variable. In any case, the casual
graph CG(G) of each goal G ∈ G captures all variables
relevant for achieving the goal and the hierarchical depen-
dencies between them. Recall that each sensor extension is
characterized by an observation o = (C,L) that is added
to the actor’s sensor model. Our pruning technique, dubbed
CG-Pruning, prunes all sensor extensions for which the flu-
ents corresponding to knowledge about L in the transformed
problem (i.e. KL and K¬L) do not occur in any of the ca-
sual graphs.

Example 2 Consider Figure 2(left), depicting a modified
version of Example 1, where the actor needs to collect a key
to be able to access its goal (e.g., PickedKey1 is needed
to reach G1). There are multiple keys distributed in the grid
(e.g., Key1At(4, 4)), each needed for accessing a particular
location. The actor initially knows a set of possible key loca-
tions for each key. When in a cell with a key, it senses it and
can pick it up and use it to achieve its goal. In this scenario,
the recognizer, with perfect information, can notify the actor
about safe locations, as before, but also about the absence or
presence of a particular key in some location. Applying the
K(P ) transformation here creates fluents KKey iAt(x, y)
for each key and location, representing whether the actor
knows key i is at location (x, y), which is a precondition to
picking up the key. Figure 2(right), show a part of the causal
graph forG1 that only includes variables concerning the lo-
cation of its relevant key. By generating the causal graph to
all goals, we automatically detect and prune sensor exten-
sions regarding variables that do not appear in any of the
causal graphs (e.g., the sensor extension that reveals the lo-
cation of Key3).

In the following, we show that CG-Pruning is safe for

GRD-APK settings where the actor uses the k-planner with
an optimal planner to computes its plans. Since the actor
uses the k-planner, it iteratively computes a policy at the ini-
tial state and every time an assumption made at a previous
iteration is refuted. At each iteration, the current partially ob-
servable problem is transformed into its corresponding fully
observable problem, and a new plan is computed and exe-
cuted. This continues until the actor reaches a goal belief
or a belief state with no applicable actions. For each model
R and execution iteration i, we let CGRi (G) represent the
causal graph at iteration i and start our proof by showing
that the causal graph at each iteration subsumes any causal
graph of subsequent iterations.

Lemma 1 For any model R and goal G ∈ G, CGRj (G) is a
subgraph of CGRi (G) for any i, j s.t. 0 ≤ i < j.

Proof Sketch: The causal graph of iteration i captures all
variables that appear in actions that may be applied in or-
der to achieve a goal belief from the initial belief state at
iteration i. This graph includes all the actions (and their cor-
responding variables) that may be applied from the belief
reached at iteration j.

Lemma 1 guarantees that a variable that does not occur in
CGR0 (G) for any goalG ∈ G will not occur in causal graphs
of future iterations.

Next, we observe that when an optimal solver is used, a
sensor extension that does not correspond to a variable in the
initial causal graph of any goal is not useful.

Lemma 2 For any model R and sensor extension δ that
adds observation o = (C,L) to Oac, if for all G ∈ G, KL
and K¬L are not in CGR0 (G), then δ is not useful w.r.t R.

Proof Sketch: Bonet and Geffner (2011) show that the
K(P ) transformation is sound and complete for simple prob-
lems with a connected space, which are the only problems
we consider here. Helmert (2006) shows that any optimal
plan can be acquired by ignoring variables that are not in
the causal graph. Therefore, by pruning sensor extensions
that are related to variables not on the causal graph, we are
removing from the actor’s planning graph sensing actions
that would anyway not appear in any optimal plan (i.e., as-
sumptions the actor would not make). Therefore, the behav-
ior of an actor to any goal is not affected by such sensor
extensions. Moreover,as the actor progresses and re-plans,
no sensing action can be added to the actor’s model. Con-
sequently, the behavior w.r.t to any goal will not change,
wcd will not change, and therefore δ is not useful w.r.t R.

Finally, we are ready to show that CG-Pruning is safe.
Theorem 1 For any GRD-APK model T = 〈R0,∆, β〉,
CG-Pruning is safe for an actor that uses the k-planner with
an optimal planner.

Proof Sketch: Lemma 2 guarantees, that under the assump-
tions we make, any sensor extension that adds observation
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o = (C,L) to Oac and for which neither KL or K¬L ap-
pear inCGR0 (G), are not useful to any model reachable from
R0 via design and will not be part of a strongly optimal so-
lution. Therefore CG-Pruning is safe.

Empirical Evaluation
Our objective is to evaluate both the effect sensor extensions
have on wcd as well as the efficiency of CG-Pruning.We start
by describing our dataset and empirical setup, and then dis-
cuss our initial results.
Dataset. We used five domains adapted from Bonet and
Geffner (2011) and Albore, Palacios, and Geffner (2009).
• WUMPUS: corresponding to the setting in Example 1.
• WUMPUS-KEY: corresponding to Example 2.
• C-BALLS (Colored-balls): the actor navigates a grid to

deliver balls of different and initially unknown colors to
their per-color destinations.

• TRAIL: an agent must follow a trail to reach a destination,
while sensing only the reachable cells surrounding it.

• Logistics: Packages are transported to their destinations,
relying on sensing to reveal the packages in a location.

The adaptation from contingent planning to GRD-APK in-
volves specifying for each instance the set of possible goals
and sensor extensions (see Table 1 for details).

To support the design process, we use STRIPS (Fikes and
Nilsson 1972) to specify the available modifications (and
their effect). Sensor extensions are implemented as design
actions that add to the initial state fluents that represent the
true value of a variable.
Setup. We use the k-replanner (Bonet and Geffner 2011) as
the actor’s solver, with two variations. For the first, theK(P )
compilation was used together with the satisfying FF classi-
cal planner (FF) (Hoffmann and Nebel 2001). The second
used the Kprudent(P ) compilation together with the optimal
Fast-Downward (Helmert 2006) classical planner (FD), us-
ing the lm-cut heuristic (Helmert and Domshlak 2009).

In our computation of wcd, we also consider the prefixes
of failed executions, since they represent valid agent behav-
ior. The design process is implemented as a breadth-first
search (BFS) in the space of modification sets, tested with
and without CG-Pruning.

We use 30 instances for each domain, and a design budget
of 1−2. Each execution had a time limit of 20 minutes and is
capped at 1000 search steps (each corresponding to a design
set), whichever was first.

To parse the design file, we adopt the parser of pyperplan
(Alkhazraji et al. 2016), which provide for each modifica-
tion set (representing a GRD-APK model and a node in our
search) the set of successors (applicable modifications) and
the model that results from applying each modification.
Results. Tables 2 and 3 summarize the results for both ap-
proaches (No Pruning vs. CG-Pruning) for the FD and FF
solvers, respectively. For each domain and design budget
(b = 1 and b = 2), the tables shows ‘sol’ as the fraction
of instances completed within the time and resource bounds.
For instances completed by both approaches ‘∆-wcd’ is the

Possible Goals Sensor Extensions

WUMPUS gold locations safe cells

WUMPUS-KEY gold locations safe cells or locations with / without keys

C-BALLS ball distribution locations without a ball

TRAIL final stone locations locations with / without stones

LOGISTICS package destination package locations

Table 1: Possible goals and design options for each domain.

No Pruning CG-Pruning
budget sol ∆wcd time nodes sol ∆wcd time nodes

WUMPUS b=1 0.1 0.0 (1.8) 92.84 14.0 0.1 0.0 (1.8) 76.96 11.0
b=2 0.1 0.0 (1.8) 663.71 106.0 0.1 0.0 (1.8) 421.27 67.0

WUMPUS-KEY b=1 1.0 0.2(0.57) 16.05 4.1 1.0 0.2(0.57) 12.59 3.3
b=2 0.71 0.2(0.57) 238.74 39.5 0.72 0.2(0.57) 200.34 28.8

LOGISTICS b=1 0.14 8.0 (11.83) 1330.33 3.0 0.14 8.0(11.83) 1042.52 2.0
b=2 NA NA NA NA NA NA NA NA

Table 2: Results per domain for (optimal) the FD solver

average wcd reduction achieved via design, i.e., the wcd dif-
ference between the original setting and one where sensor
extensions are applied (note that since CG-Pruning is safe
‘∆-wcd’ is the same for both approaches). In parenthesis
we show ‘∆-wcd’ over all instances, including those that
timed out. The average calculation time (in seconds) for each
approach is indicated by ‘time’, and ‘nodes’ is the average
number of nodes evaluated on all instances. ’NA’ represents
settings for which no instance completed. In Table 2 we ex-
cluded C-BALLS and TRAIL, since no problem completed
for both domains.

Our results show that design via information shaping re-
duces wcd for all domains, with a reduction of 9.12 (about
half) for C-BALLS. By excluding futile sensor extensions,
for all domains CG-Pruning reduces the number of nodes
explored and computation time for completed problems.
For WUMPUS, WUMPUS-KEY and LOGISTICS using FF,
CG-Pruning also increases the ratio of solved problems.

The results show the potential of our pruning approach.
However, many instances were not completed for FD, failing
in some cases to complete the solution of the initial setting.
To achieve more results for the optimal case, and hopefully a
stronger indication of the benefit of our approach in such set-
tings, we intend to add additional domains to our dataset and
explore different heuristics used to guide the optimal search.
We also intend to enhance pruning further. Specifically, us-
ing the plan the actor intends to execute with regards to each
goal, we can prune sensor extensions that correspond to as-

No Pruning CG-Pruning
budget sol ∆wcd time nodes sol ∆wcd time nodes

WUMPUS b=1 1.0 0.0 (3.0) 88.02 16.0 1.0 0.0 (6.0) 59.98 11.0
b=2 0.25 0.0 (3.0) 697.31 137.0 1.0 0.0 (6.0) 351.37 67.0

WUMPUS-KEY b=1 1.0 4.33 (4.33) 16.71 13.55 1.0 4.33 (4.33) 13.35 10.56
b=2 0.8 3.95 (3.95) 85.73 54.56 1.0 3.95 (3.95) 75.55 42.55

C-BALLS b=1 0.8 9.12 (9.2) 36.61 37.03 0.8 9.12 (9.2) 38.75 37.03
b=2 0.8 11.5 (10.83) 30.19 22.01 0.8 11.5 (10.83) 30.19 22.01

TRAIL b=1 1.0 0.0 (0.0) 14.71 28.0 1.0 0.0 (0.0) 12.97 26.5
b=2 1.0 0.0 (0.0) 195.39 407.0 1.0 0.0 (0.0) 173.21 365.5

LOGISTICS b=1 0.42 3.01 (4.14) 22.90 61.5 1.0 3.01 (4.14) 19.41 42.67
b=2 0.28 9.05 (9.27) 133.68 234.4 0.86 9.05 (9.17) 112.89 175.1

Table 3: Results per domain for the (satisfying) FF solver
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sumptions already made by the actor, and show that they will
not reduce the wcd.

Related Work
Goal Recognition Design (GRD), a special case of envi-
ronment design (Zhang, Chen, and Parkes 2009), was first
introduced by Keren et al. (2014) to account for optimal
fully observable agents in deterministic domains. This work
was later extended to a variety of GRD settings, including
accounts for sub-optimal actors (Keren, Gal, and Karpas
2015), stochastic environments (Wayllace et al. 2016), ad-
versarial actors that try to conceal their goal (Ang et al.
2017), and a partially informed recognizer (Keren, Gal, and
Karpas 2016a; 2016b; 2018). In the latter case, sensor refine-
ment is applied to enhance the recognizer’s sensor model.

Common to all previous GRD work is the assumption that
actors have perfect observability of their environment. Our
work is the first to generalize GRD to account for a par-
tially informed actor and to suggest new information shap-
ing modifications, implemented as sensor extensions applied
to the actor’s sensor model, as a way to reduce wcd.

Efficient communication via selective information reve-
lation is fundamental to various multi agent settings, e.g.,
(Xuan, Lesser, and Zilberstein 2001; Wu, Zilberstein, and
Chen 2011; Unhelkar and Shah 2016; Dughmi and Xu
2016). This work is the first to use information shaping as
a one time and offline intervention that is performed in order
to facilitate goal recognition.

Conclusion
We introduced GRD for a partially informed actor and a per-
fectly informed recognizer, who can share information about
the domain with the actor. We formalized the information
shaping problem as one of minimizing worst-case distinc-
tiveness, and presented new sensor extension modifications,
used to enhance recognition. We studied the use of breadth
first search to search the space of applicable sensor exten-
sions, developing a safe pruning approach to improve effi-
ciency. To the best of our knowledge, this is the first paper
to suggest using techniques developed for classical planning
toward the design of algorithms for goal recognition of par-
tially informed planning agents. Our results on a set of stan-
dard benchmarks show that wcd can be reduced via informa-
tion shaping and demonstrate the efficiency of our approach.

There are many ways to extend this work. First, we use
qualitative contingent planning models to represent the par-
tially informed agent and its belief states. It would be in-
teresting to extend this work to use Partially Observable
Markov Descision Process (POMDP) models (Kaelbling,
Littman, and Cassandra 1998) to represent the actor. An-
other interesting direction is to consider settings where the
actor is aware of the recognizer’s presence. Specifically, our
approach can be adopted to “transparent planning” (Mac-
Nally et al. 2018), where actors choose behaviors that facil-
itate recognition. These models rely on partially informed
agents to be able to choose a behavior that maximizes the
information conveyed about their intentions. In such set-
tings, GRD can be viewed as a complementary approach,
that can be applied to alleviate the need to completely rely

on the actor, and reduce the number of non-distinctive be-
haviors. Another variation worth exploring is an interactive
setting, where the recognizer can decide which information
to reveal based on the actor’s actual progress. This would
be especially relevant to many realistic settings where the
recognizer cannot be assumed to have perfect information
about the solver used by the actor. Finally, while we focus
on pruning as a way to increase efficiency, other options are
possible. In particular, heuristics can be used to estimate the
value of a modification, and lead the search in promising di-
rections.
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Abstract

Sequential decision problems for real-world applications of-
ten need to be solved in real-time, requiring algorithms to
perform well with a restricted computational budget. Width-
based lookaheads have shown state-of-the-art performance in
classical planning problems as well as over the Atari games
with tight budgets. In this work we investigate width-based
lookaheads over Stochastic Shortest paths (SSP). We anal-
yse why width-based algorithms perform poorly over SSP
problems, and overcome these pitfalls proposing a method to
estimate costs-to-go. We formalize width-based lookaheads
as an instance of the rollout algorithm, give a definition of
width for SSP problems and explain its sample complexity.
Our experimental results over a variety of SSP benchmarks
show the algorithm to outperform other state-of-the-art rollout
algorithms such as UCT and RTDP.

Keywords: width-based planning, finite-horizon MDPs, roll-
out algorithm, base policies

Introduction
Model-based lookahead algorithms provide the ability to
autonomously solve a large variety of sequential decision
making problems. Lookaheads search for solutions by con-
sidering sequences of actions that can be made from the
current state up to a certain time into the future. For real-
world applications decisions often need to be computed in
real-time, requiring algorithms to perform with a restricted
computational budget. Limiting search in this way can result
in considering states and trajectories which do not provide
useful information. To address this, lookaheads can be aug-
mented with heuristics that estimate costs-to-go to prioritise
states and trajectories, and have been shown to perform well
where computation budgets are restricted (Eyerich, Keller,
and Helmert 2010).

This paper is concerned with Stochastic Shortest Path
(SSP) problems which are often used to compare and evalu-
ate search algorithms. We consider the width-based family
of planning algorithms, first introduced by Lipovetzky and
Geffner (2012), which aim to prioritise the exploration of
novel areas of the state space. Two width-based planners,
Lipovetzky and Geffner’s breadth-first search, IW(1), and
the depth-first search, Rollout-IW(1) (Bandres, Bonet, and
Geffner 2018), are investigated on SSP problems. We first
provide the necessary background for SSP problems and

width-based algorithms, while also formalising width-based
algorithms as instances of the rollout algorithm (Bertsekas
2017). We then show the motive to augment width-based
lookaheads with cost estimates on SSP problems, define the
width of SSP problems and propose a novel width-based al-
gorithm that estimates costs-to-go by simulating a general
base policy. Our experimental study shows that the algorithm
compares favourably to the original Rollout-IW(1) algorithm
and to other state-of-the-art instances of the rollout algorithm.

Optimal Control and Dynamic Programming
We concern ourselves with the problem of decision under
stochastic uncertainty over a finite number of stages, which
we characterise following closely the presentation of Bert-
sekas (2017). We are given a discrete-time dynamic system

xk+1 = fk(xk, uk,wk), k = 0, 1, . . . , N − 1 (1)

where the state xk is an element of a space Sk ⊂ Rd, the
control uk is an element of space Ck ⊂ N, and the random
disturbance wk is an element of a space Dk ⊂ Rm 1. The
control uk is constrained to take values in a given non-empty
subset U(xk) ⊂ Ck, which depends on the current state xk,
so that uk ∈ Uk(xk) for all xk ∈ Sk and k. The random
disturbance wk is characterised by a probability distribution
Pk(·|xk, uk) that may depend explicitly on xk and uk but not
on the values of previous disturbances wk−1, . . . ,w0. We
consider the class of policies, or control laws, corresponding
to the sequence of functions

π = {µ0, . . . , µN+1} (2)

where µk maps states xk into controls uk = µk(xk) and is
such that µk(xk) ∈ U(xk) for all xk ∈ Sk. Such policies
will be called admissible. Given an initial state x0 and admis-
sible policy π, the states xk and disturbances wk are random
variables with distributions defined through the system equa-
tion

xk+1 = fk(xk, µk(xk),wk), k = 0, 1, . . . , N − 1 (3)

1We define states and disturbance as elements of subsets of the
reals to avoid too specific assumptions on the structure of Sk, Uk

and Dk.
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Thus, for given functions gf (terminal cost) and g the ex-
pected cost of π starting at x0 is

Jπ(x0) = E

{
gf (xN ) +

N−1∑

k=0

g(xk, µk(xk),wk)

}
(4)

where the expectation is taken over the random variables wk

and xk. An optimal policy π∗ is one that minimises this cost

Jπ∗(x0) = min
π∈Π

Jπ(x0) (5)

where Π is the set of all admissible policies. The optimal
cost J∗(x0) depends on x0 and is equal to Jπ∗(x0). We will
refer to J∗ as the optimal cost or optimal value function that
assigns to each initial state x0 the cost J∗(x0).

Stochastic Shortest Path
We use Bertsekas’ (2017) definition, that formulates Stochas-
tic Shortest Path (SSP) problems as the class of optimal
control problems where we try to minimize

Jπ(x0) = lim
N→∞

Ewk

{N−1∑

k=0

αkg(xk, µk(xk),wk)

}

with α set to 1 and we assume there is a cost-free termination
state t which ensures that Jπ(x0) is finite. Once the system
reaches that state, it remains there at no further cost, that
is, f(t, u,w) = t with probability 1 and g(t, u,w) = 0
for all u ∈ U(t). We note that the optimal control problem
defined at the beginning of this section is a special case where
states are pairs (xk, k) and all pairs (xN , N) are lumped into
termination state t.

In order to guarantee termination with probability 1, we
will assume that there exists an integer m such that there is a
positive probability that t will be reached in m stages or less,
regardless of what π is being used and the initial state x0.
That is, for all admissible policies and i = 1, ..., m it holds

ρπ = max
i
P{xm 6= t | x0 = xi, π} < 1 (6)

A policy π will be proper if the condition above is satisfied
for some m, and improper otherwise.

The Rollout Algorithm
A particularly effective on-line approach to obtain subopti-
mal controls is rollout, where the optimal cost-to-go from
current state xk is approximated by the cost of some subop-
timal policy and a d-step lookahead strategy. The seminal
RTDP (Barto, Bradtke, and Singh 1995) algorithm, is an in-
stance of the rollout strategy where the lookahead is uniform,
d = 1, and controls µ̄(xk) selected at stage k and for state
xk are those that attain the minimum

min
uk∈U(xk)

E

{
gk(xk, uk,wk) + J̃k+1(fk(xk, uk,wk))

}

(7)

where J̃k+1 is an approximation on the optimal cost-to-go
J∗k+1. If the approximation is from below, we will refer to it as
a base heuristic, and can either be problem specific (Eyerich,

Keller, and Helmert 2010), domain independent (Bonet and
Geffner 2003; Yoon, Fern, and Givan 2007) or learnt from
interacting with a simulator (Mnih et al. 2015). Alternatively,
J̃k+1 can be defined as approximating the cost-to-go of a
given suboptimal policy π, referred to as a base policy, where
estimates are obtained via simulation (Rubinstein and Kroese
2017). We will denote the resulting estimate of cost-to-go
as Hk(xk)2. The result of combining the lookahead strategy
and the base policy or heuristic is the rollout policy, π̄ {µ̄0,
µ̄1, . . ., µ̄N−1} with associated cost J̄(xk). Such policies
have the property that for all xk and k

J̄k(xk) ≤ Hk(xk) (8)

when Hk is approximating from above the cost-to-go of a
policy, as shown by Bertsekas (2017) from the DP algorithm
that defines the costs of both the base and the rollout policy.
To compute at time k the rollout control µ̄(xk), we compute
and minimize over the values of the Q-factors of state and
control pairs (xl, ul),

Ql(xl, ul) = E
{
gl(xl, ul,wl) +Ql+1(fl(xl, ul,wl))

}

(9)

for admissible controls ul ∈ U(xl), l = k+ i, with i = 0, ...,
d− 1, and

Ql(xl) = E
{
Hl(xl)

}
(10)

for l = k+d. In this paper we make a number of assumptions
to ensure the viability of lookaheads with d > 1. We will as-
sume that we can simulate the system in Eq. 3 under the base
policy, so we can generate sample system trajectories and
corresponding costs consistent with probabilistic data of the
problem. We further assume that we can reset the simulator
of the system to an arbitrary state. Performing the simulation
and calculating the rollout control still needs to be possible
within the real-time constraints of the application, which is
challenging as the number of Q-factors to estimate and min-
imizations to perform in Equations 9-10 is exponential on
the average number of controls available per stage and d, the
maximum depth of the lookahead. We avoid the blowup of
the size of the lookahead by cutting the recursion in Equa-
tion 9 and replacing the right hand side by that of Equation 10.
As detailed in the next section, we will do this when reaching
states xl that are deemed not to be novel according to the
notion of structural width by Lipovetzky and Geffner (2012).
This results in a selective strategy alternative to the upper con-
fidence bounds (Auer, Cesa-Bianchi, and Fischer 2002) used
in popular instances of Monte-Carlo Tree Search (MCTS)
algorithms like Kocsis and Szepesvari’s (2006) UCT, that
also are instances of the rollout algorithm (Bertsekas 2017).

Width-Based Lookaheads
We instantiate the rollout algorithm with an l-step,
depth-selective lookahead policy using Width-based
Search (Lipovetzky and Geffner 2012). These al-
gorithms both focus the lookahead and have good

2We use the subindex k to emphasize that the result of simulating
a policy depends on the time step.
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any-time behaviour. When it comes to prioritisation
of expanding states, width-based methods select first
states with novel valuations of features defined over
the states (Lipovetzky, Ramirez, and Geffner 2015;
Geffner and Geffner 2015). The most basic width-based
search algorithm is IW (1), a plain breadth-first search,
guaranteed to run in linear time and space as it only expands
novel states. A state xl is novel if and only if it encounters
a state variable 3 xi ⊂ R, whose value v ∈ D(xi), where
D(xi) is the domain of variable xi, has not been seen before
in the current search. Note that novel states are independent
of the objective function used, as the estimated cost-to-go
J is not used to define the novelty of the states. IW(1) has
recently been integrated as an instance of a rollout algorithm,
and has been shown to perform well with respect to learning
approaches with almost real-time computation budgets over
the Atari games (Bandres, Bonet, and Geffner 2018).

Depth-First Width-Based Rollout
The breadth-first search strategy underlying IW(1) ensures a
state variable xi is seen for the first time through the shortest
sequence of control steps, i.e. the shortest path assuming
uniform costs g(x, u,w).4 On the other hand, depth-first
rollout algorithms cannot guarantee this property in general.
Rollout IW (RIW) changes the underlying search of IW into
a depth-first rollout. In order to ensure that RIW(1) considers
a state to be novel iff it reaches at least one value of a state
variable xil through a shortest path, we need to adapt the
definition of novelty. Intuitively, we need to define a set of
state features to emulate the property of the breadth-first
search strategy. Let d(xi, v) be the best upper bound known
so far on the shortest path to reach each value v ∈ D(xi) of
a state variable from the root state xk. Initially d(xi, v) =
N for all state variables, where N is the horizon which is
the maximum search depth allowed for the lookahead, thus
denoting no knowledge initially. When a state xl is generated,
d(xi, v) is set to l for all state variables where l < d(xi, v).

Since RIW(1) always starts each new rollout from the
current state xk, in order to prove a state xl to be novel we
have to distinguish between xl being already in the lookahead
tree and xl being new. If xl is new in the tree, to conclude
it is novel, it is sufficient to show that there exists a state
variable xi whose known shortest path value d(xi, v) > l. If
xl is already in the tree, we have to prove the state contains
at least one state variable value xi whose shortest path is l =
d(xi, v), i.e. state xl is still novel and on the shortest path to
xi. Otherwise the rollout is terminated.

In order to ensure the termination of RIW(1), non-novel
states are marked with a solved label. The label is back-
propagated from a state xl+1 to xl if all the admissible control
inputs u ∈ U(xl) yield states xl+1 = fl(xl, u,wl) already
labeled as solved. RIW(1) terminates once the root state is
labeled as solved (Bandres, Bonet, and Geffner 2018). Non-
novel states xl are treated as terminals and their cost-to-go is

3In order to use the notion of novelty, we assume state spaces S
to be stationary.

4This can easily be generalized to non-uniform costs by using
Dijkstra’s algorithm instead.

Figure 1: 3x3 GridWorld problem in which the blue square
is the agent’s initial position and the red squares show two
goal locations. The yellow lines represent two action trajec-
tories the agent can perform from the initial state.

set to 0. This can induce a bias towards non-novel states rather
than true terminal states. In the next section we investigate
how to overcome the ill-behaviour of RIW(1) when a state
xl is non-novel. We discuss the importance of estimating
upper-bounds on the cost-to-go Hl(xl) instead of assigning
termination costs. This turns out to be essential for RIW(1)
over SSPs.

Width-Based Lookaheads on SSPs
Despite the successes of width-based algorithms on a vari-
ety of domains including the Atari-2600 games (Lipovetzky,
Ramirez, and Geffner 2015; Bandres, Bonet, and Geffner
2018), the algorithms, as will be shown, have poor perfor-
mance on SSP problems. We illustrate this with two scenarios.
First, width-based lookaheads prefer trajectories leading to
non-novel states over longer ones that reach a goal. Second,
and specific to depth-first width-based lookaheads, we show
that useful information is ignored. We can demonstrate these
scenarios using a simple SSP problem with uniform and uni-
tary action costs, shown in Figure 1. The task is to navigate
to a goal location using the least number of left, right, up
or down actions. Any action that would result in the agent
moving outside of the grid produces no change in its posi-
tion. The features used by the width-based planners are the
coordinates for the current agent position. Both IW(1) and
RIW(1) algorithms, given a sufficient budget, would result
in the lookahead represented by yellow lines in Figure 1. As
expected, both lookaheads contain the shortest paths to make
each feature of the problem true. For both IW(1) and RIW(1),
we back up the costs found in the lookahead starting from
terminal and non-novel states. In this instance a move down
or left from the agent’s initial state has no effect, thus imme-
diately producing a non-novel state.When backing up values,
down and left have an expected cost of 1, which is less than
the optimal cost of 2 for up, the action that leads to the top
left goal state. This prevents both IW(1) and RIW(1) from
ever achieving the goal, as they keep selecting those useless
actions. Furthermore, if the goal is the top right location in
Figure 1, RIW(1)’s random action selection can generate a
trajectory that reaches the goal. Yet, trajectories leading to the
goal are pruned away, as non-novel states in later considered
trajectories are treated as terminals, again resulting in the
lookahead represented by the yellow lines in Figure 1.
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Novelty, Labeling and Width of SSPs
Bandres et al. (2018) introduced the algorithm RIW in the
context of deterministic transition functions. In this section
we discuss its properties in the context of SSPs.

The set of features used to evaluate the novelty of a state is
F = {(v, i, d) | v ∈ D(xi)} where D(xi) is the domain of
variable xi, and d is a possible shortest path distance. Note
that the horizon N is the upper-bound of d. The maximum
number of novel states is O(|F |), as the maximum number
of shortest paths for a feature (v, i, ·) ∈ F is N . That is, in
the worst case we can improve the shortest path for (v, i, ·)
by one control input at a time.

The labeling of nodes ensures the number of rollouts from
the initial state in RIW(1) is at most O(|F | × b), where b =
maxxl

|U(xl)| is the maximum number of applicable control
variables in a state, i.e. maximum branching factor. When
the labeling is applied to stochastic shortest path problems,
the resulting lookahead tree is a relaxation of the original
SSP, as it allows just one possible outcome of a control input.
Alternatively, one can back-propagate the label solved to a
state xl iff 1) all admissible control inputs u ∈ U(xl) have
been applied resulting in states labeled as solved, and 2) the
tree contains all the possible resulting states of each control
input u ∈ U(xl). We refer to this new strategy to back-
propagate labels as λ-labeling. We denote as λ the maximum
number of states that can result from applying u ∈ U(xl−1)
in a state xl. That is, λ = maxx,u,w|f(x, u,w)|. RIW(1)
with λ-labeling will terminate after at most O(|F | × b× λ)
rollouts.

Furthermore, we can reconcile the notion of width over
classical planning problems (Lipovetzky and Geffner 2012)
with SSPs. A terminal state t made of features f ∈ F has
width 1 iff there is a trajectory x0, u0, . . . , un−1,xn for n ≤
N where xn = t, such that for each xj in the trajectory 1)
the prefix x0, u0, . . . , uj−1,xj reaches at least one feature
fj = (v, i, d) ∈ F where all (v, i, d′) ∈ F for d′ < d are
unreachable, i.e., it is a shortest path possible to reach a
value in xi, 2) any shortest path to fj can be extended with a
single control input u into a shortest path for a feature fj+1

complying with property 1) in state xj+1, and 3) the shortest
path for fn is also a shortest path for termination state t.
RIW(1) with the new labeling strategy is guaranteed to reach
all width 1 terminal states t.
Theorem 1. Rollout IW(1) with λ-labeling is guaranteed to
reach every width 1 terminal state t in polynomial time in
the number of features F if λ = 1.
If λ =∞, RIW(1) will not propagate any solved label, and
terminate only when the computational budget is exhausted.

For simplicity, we assumed shortest paths are equivalent to
the shortest sequence of control inputs. To generalize to posi-
tive non-uniform costs, the distance d in the features should
keep track of the cost of a path

∑
i g(xi, ui,wi) instead of

its length, and the horizon be applied to the cost of the path.

Cost-to-go Approximation
The most successful methods for obtaining cost-to-go ap-
proximations have revolved around the idea of running a
number of Monte Carlo simulations of a suboptimal base

policy π (Ginsberg 1999; Coulom 2006). This amounts to
generating a given number of samples for the expression
minimized in Equation 7 starting from the states xl over the
set of admissible controls ul ∈ U(xl) in Equation 10, aver-
aging the observed costs. Three main drawbacks (Bertsekas
2017) follow from this strategy. First, the costs associated
with the generated trajectories may be wildly overestimat-
ing J∗(xl) yet such trajectories can be very rare events for
the given policy. Second, some of the controls ul may be
clearly dominated by the rest, not warranting the same level
of sampling effort. Third, initially promising controls may
turn out to be quite bad later on. MCTS algorithms aim at
combining lookaheads with stochastic simulations of policies
and aim at trading off computational economy with a small
risk of degrading performance. We add two new methods to
the MCTS family, by combining the multi-step, width-based
lookahead strategy discussed in the previous section with
two simulation-based cost-to-go approximations subject to a
computational budget that limits the number of states visited
by both the lookahead and base policy simulation.

Width-based Lookaheads with Random Walks
The first method, which we call RIW-RW, uses as the base
policy a random walk, a stochastic policy that assigns the
same probability to each of the controls u admissible for state
x, and is generally regarded as the default choice when no
domain knowledge is readily available. A rolling horizon H
is set for the rollout algorithm that follows from combining
the RIW(1) lookahead with the simulation of random walks.
The maximal length of the latter is set to H − l, where l
is the depth of the non-novel state. Both simulations and
the unrolling of the lookahead are interrupted if the computa-
tional budget is exhausted. While this can result in trajectories
sometimes falling short from a terminal, it keeps a lid on the
possibility of obtaining extremely long trajectories that eat
into the computational budget allowed and preclude from
further extending the lookahead or sampling other potentially
more useful leaf states xl.

Worst-Case Estimates of Rollout Costs
One of the most striking properties of rollout algorithms
is the cost improvement property in Equation 8, suggesting
that upper bounds on costs-to-go can be used effectively
to approximate the optimal costs J∗. Inspired by this, the
second width-based MCTS method we discuss leverages
the sampling techniques known as stochastic enumeration
(SE) (Rubinstein and Kroese 2017) to obtain an unbiased
estimator for upper bounds on costs-to-go, or in other words,
estimates the maximal costs a stochastic rollout algorithm
with a large depth lookahead can incur.

SE methods are inspired by a classic algorithm by D. E.
Knuth to estimate the maximum search effort by backtrack-
ing search (1975). Knuth’s algorithm estimates the total cost
of a tree T with root u keeping track of two quantities, C
the estimate of the total cost, and D the expectation on the
number of nodes in T at any given level of the tree, and
the number of terminal nodes once the algorithm terminates.
Starting with the root vertex u and D ← 1, the algorithm
proceeds by updating D to be D ← |S(u)|D and choosing
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randomly a vertex v from the set of successors S(u) of u.
The estimate C is then updated C ← C + c(u, v)D using
the cost of the edge between vertices u and v. These steps
are then iterated until a vertex v′ is selected s.t. S(v′) = 0.
We observe that Knuth’s C quantity would correspond to the
worst-case cost-to-go J̄(x)k of a rollout algorithm using a
lookahead strategy with d set to the rolling horizon H and
the trivial base heuristic that assigns 0 to every leaf state.
Furthermore, we assume that the algorithm either does not
find any terminals within the limits imposed by the computa-
tional budget assigned, or if it finds one such state, it is too
the very last one being visited. Lookaheads define trees over
states connected by controls, edge costs c(u, v) correspond
directly with realisations of the random variable g(x, u,w)
and the set of successors S(v) of a vertex corresponds with
the set of admissible controls U(x). While Knuth’s algorithm
estimates are an unbiased estimator, the variance of this es-
timator can be exponential on the horizon, as the accuracy
of the estimator lies on the assumption that costs are evenly
distributed throughout the tree (Rubinstein and Kroese 2017).
In the experiments discussed next, we use Knuth’s algorithm
directly to provideHk(xk), adding the stopping conditions to
enforce the computational budget and limiting the length of
trajectories to H − l as above. In comparison with simulating
the random walk policy, the only overhead incurred is keep-
ing up-to-date quantities C and D with two multiplications
and an addition.

Experimental Study
Domains
To evaluate the different methods we use a number of
GridWorld (Sutton and Barto 2018) domains, an instance
of a SSP problem. The goal in GridWorld is to move from
an initial position in a grid to a goal position. In each state
4 actions are available: to move up, down, left or right. Any
action that causes a move outside of the grid results in no
change to the agent’s position. Actions have a cost of 1, with
the exception of actions that result in reaching the goal state,
that have a cost of 0. The complexity of GridWorld can
be scaled through the size of the grid and the location and
number of goals. GridWorld also allows for extensions,
which we use to have domains with a stationary goal, moving
goals, obstacles and partial observability. For each instance
of the GridWorld domain we have a d0 × d1 grid, and
the state is the current location of the agent, x = (a0, a1)
where ai is the agent’s position in dimension i. The transition
function is formalised as

xk+1 = xk + efuk
if xk + efuk

∈ Sk+1 ∧ xk /∈ Tk
(11)

where, ef specifies the change in the agent’s position for
each action, Tk ⊂ Sk is the set of goal states and xk+1 = xk
where the condition in Equation 11 is not met. The cost of a
transition is defined as

gk(xk, uk,wk) = 0 if xk+1 ∈ Tk+1 (12)

otherwise, gk(xk, uk,wk) = 1.
For the stationary goal setting we have a single goal state

which is positioned in the middle of the grid by dividing

Dim. Alg. Heu.
Simulator Budget

100 1000 10000

10

1Stp Rnd. 29.6± 2.5 13.5± 1.6 7.5± 0.9
UCT Rnd. 29.0± 2.6 17.1± 2.0 13.3± 1.5

RIW
NA 39.1± 2.8 38.1± 2.9 38.4± 2.9

Rnd. 33.7± 2.5 6.9± 0.7 4.7± 0.4

20

1Stp Rnd. 89.6± 3.7 59.8± 5.2 29.6± 3.1
UCT Rnd. 85.2± 4.3 72.7± 5.8 45.7± 4.4

RIW
NA 79.8± 5.5 79.8± 5.5 80.2± 5.5

Rnd. 88.2± 3.9 55.3± 5.2 10.5± 0.9

50

1Stp Rnd. 215.2± 11.5 201.8± 13.5 177.9± 13.5
UCT Rnd. 220.4± 10.8 199.2± 13.5 190.6± 13.9

RIW
NA 200.2± 13.8 200.2± 13.8 200.2± 13.8

Rnd. 223.2± 10.4 199.9± 13.6 145.5± 12.9

Table 1: Average and 95% confidence interval for the cost
on GridWorld with a stationary goal. Costs reported are
from 200 episodes over 10 different initial states (20 episodes
per initial state) of the GridWorld with a square grid with
width and length equal to the dimension (Dim.) value. The
horizon of each problem is 5 times the dimension value.

and rounding d0 and d1 by two. The problem setting with
moving goals, has the set of goal states modified as follows

Tk+1 = {tk + δtk | tk ∈ Tk} if xk /∈ Tk (13)

where δtk gives the relative change of the goal state tk for
the time step k + 1 and Tk+1 = Tk if xk ∈ Tk. We use
T0 = {(0, d1 − 1), (d0 − 1, 0)}, d0 = d1 and

δtk =





(1,−1) if tk = (0, d1 − 1)

(−1, 1) if tk = (d0 − 1, 0)

δtk−1
otherwise

(14)

Resulting in two goals starting at opposite corners of the grid
moving back and forth on the same diagonal. The obstacles
setting, uses the stationary goal, but modifies Sk such that,

Sk = {(s0, s1) | 0 ≤ s0 < d0, 0 ≤ s1 < d1} \O (15)

where O ⊂ N2 and is the set of obstacles, that is grid cells
in which the agent is not allowed.

Having partially observable obstacles in GridWorld pro-
vides an instance of the stochastic Canadian Traveller Prob-
lem (CTP) (Papadimitriou and Yannakakis 1991). The objec-
tive in CTP is to find the shortest path between one location
in a road map to another, however, there is a known probabil-
ity for each road in the map that due to weather conditions
the road is blocked. A road in CTP can only be observed
as being blocked or unblocked by visiting a location con-
nected to it, and once a road status is observed the status
remains unchanged. In terms of the GridWorld problem,
each grid cell has a known probability of being a member of
the obstacle set, O. The agent can only observe cells as being
obstacles or not when it is in a neighbouring cell. Once a grid
cell is observed it is then known that it is either an obstacle
or not for the remaining duration of the episode.

John Langford designed two MDP problems5 described
as Reinforcement Learning (RL) "Acid" intended to be

5https://github.com/JohnLangford/RL_acid
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Dim. Alg. Heu.
Simulator Budget

100 1000 10000

10

1Stp Rnd. 17.9± 2.1 10.1± 1.0 6.8± 0.5
UCT Rnd. 18.9± 2.2 11.0± 1.3 10.2± 1.1

RIW
NA 39.8± 2.7 38.6± 2.8 38.9± 2.8

Rnd. 21.3± 2.3 5.7± 0.5 4.4± 0.3

20

1Stp Rnd. 81.5± 4.2 45.0± 4.4 25.5± 2.8
UCT Rnd. 81.5± 4.3 44.9± 4.7 38.6± 3.7

RIW
NA 83.5± 4.8 82.6± 5.0 82.8± 4.9

Rnd. 83.4± 4.2 39.8± 4.2 10.8± 0.7

50

1Stp Rnd. 230.5± 7.8 195.3± 11.8 141.5± 12.1
UCT Rnd. 232.7± 7.6 196.7± 11.6 175.2± 11.9

RIW
NA 212.9± 11.3 215.9± 10.8 223.5± 9.8

Rnd. 236.2± 6.5 200.4± 11.4 110.6± 11.8

Table 2: Same experimental setting as Table 1 over
GridWorld with a moving goal.

difficult to solve using common RL algorithms, such as Q-
learning. Langford’s two problems allow two actions from
every state. The state space for the problems is Sk = {i | 0 ≤
i < N} where the number of states value,N , allows the com-
plexity of the problem to be controlled. Langford originally
specified the problems as reward-based, here we modify them
to be SSP cost-based problems. Reward shaping is commonly
used to make Reinforcement Learning easier by encouraging
actions, through higher rewards, towards a goal state or states.
The first of Langford’s problems is named Antishaping
and uses reward shaping to encourage actions away from the
goal state. Antishaping has the transition function

xk+1 =

{
xk + 1 if uk = 0 ∧ xk /∈ Tk
xk − 1 if uk = 1 ∧ xk − 1 ≥ 0 ∧ xk /∈ Tk

(16)

otherwise, the state remains unchanged, xk+1 = xk. The
set containing the goal state is Tk = {N − 1}, which can
be achieved by continuously selecting uk = 0. The cost
of each transition in Antishaping is 0.25 divided by N
- xk+1, except when xk+1 = N − 1 where the cost is 0.
The problem becomes a large plateau where longer paths
become more costly at larger rates. The motivation behind
Langford’s second problem, Combolock, is if many actions
lead back to a start state, random exploration is inadequate.
The Combolock problem has the transition function

xk+1 =

{
xk + 1 if uk = solxk

∧ xk /∈ Tk
xk if xk ∈ Tk

(17)

otherwise xk+1 is equal to the initial position of 0. The goal
state is Tk = {N − 1} and solxk

is either 0 or 1 assigned
to state xk which remains constant. For each state x ∈ S,
solx has an equal chance of either being 0 or 1. The cost of
each transition in Combolock is 1 except for the transition
that leads to the terminal state N − 1 where the cost is 0.
While common Reinforcement Learning algorithms such as
Q-Learning methods will struggle to solve these domains, it
is claimed by Langford that the E3 (Kearns and Singh 2002)
family of algorithms, whose exploration do not rely solely
on random policies or reward feedback but on exploring the
maximum number of states, will perform well.

Dim. Alg. Heu.
Simulator Budget

100 1000 10000

10

1Stp
Man. 38.1± 2.8 39.0± 2.7 38.8± 2.7
Rnd. 43.9± 1.9 35.9± 2.5 25.3± 2.4

UCT
Man. 37.0± 2.9 36.4± 2.9 36.4± 2.9
Rnd. 43.8± 1.9 38.5± 2.5 25.9± 1.9

RIW
Man. 36.4± 2.9 36.4± 2.9 36.4± 2.9
NA 49.8± 0.4 48.8± 1.0 49.3± 0.8

Rnd. 44.9± 1.7 34.5± 2.8 19.3± 2.1

20

1Stp
Man. 76.7± 5.5 77.1± 5.4 76.7± 5.5
Rnd. 97.9± 1.6 88.0± 3.4 62.7± 4.8

UCT
Man. 78.0± 5.4 78.4± 5.3 73.4± 5.7
Rnd. 98.7± 1.2 96.4± 1.9 77.2± 4.2

RIW
Man. 79.7± 4.9 76.7± 5.5 76.7± 5.5
NA 100.0± 0.0 100.0± 0.0 99.6± 0.8

Rnd. 98.5± 1.3 88.0± 3.4 29.3± 3.1

50

1Stp
Man. 194.6± 13.4 191.5± 13.6 196.6± 13.2
Rnd. 249.2± 1.1 244.4± 3.7 216.8± 9.3

UCT
Man. 194.6± 13.4 195.6± 13.3 184.4± 13.9
Rnd. 249.0± 1.9 243.1± 4.3 231.6± 7.9

RIW
Man. 208.6± 10.7 210.6± 11.1 193.5± 13.4
NA 250.0± 0.0 250.0± 0.0 250.0± 0.0

Rnd. 247.9± 2.6 242.9± 4.3 196.1± 11.3

Table 3: Same settings as Table 1 over GridWorld with
fully observable obstacles and a stationary goal.

Methodology
We evaluate the depth-first width-based rollout algorithm,
RIW(1), with and without being augmented using base poli-
cies. λ = 1 is used for the labels back-propagation. We did
not observe statistically significant changes with λ =∞. For
the GridWorld domain we define the features on which
RIW(1) plans over as F = {(a, i, d) | a ∈ D(xi)} where d
is the length of the control input path from the initial state, a
is the agent’s position in the grid in dimension i and D(xi)
is the domain of the agent’s position, a, in dimension i. For
Antishaping and Combolock the feature set will be
F = {(i, d) | i ∈ N)} where i is the state number the agent
is in and N is the number of states of the domain.

Two additional rollout algorithms are also considered, the
one-step rollout algorithm, RTDP (Barto, Bradtke, and Singh
1995) and the multi-step, selective, regret minimisation, roll-
out algorithm Upper Confidence bounds applied to Trees
(UCT) (Kocsis and Szepevari 2006). The exploration param-
eter of UCT is set to 1.0 for all experiments. For all the
methods that use a base policies the maximum depth of a
simulated trajectory is equal to H − l, where l is the depth
at which the simulated trajectory began and H is the horizon
value of the lookahead. Also, a single, as opposed to multiple,
simulated trajectory for the cost-to-go approximation is used,
as initial results indicated it is favourable. We also report
the algorithms using a Manhattan distance heuristic for the
GridWorld domains that use obstacles. Using the Manhat-
tan distance for the GridWorld problems with obstacles
provides a lower bound on the cost-to-go.

Each method on the domains is evaluated at different levels
of complexity by varying the number of states. The methods
are evaluated using different simulator budgets. The simulator
budgets are the maximum simulator calls allowed for the
evaluation at each time step. For each algorithm and domain
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Dim. Alg. Heu.
Simulator Budget

100 1000 10000

10

1Stp
Man. 36.6± 2.9 35.0± 3.0 35.9± 2.9
Rnd. 40.4± 2.1 27.2± 2.5 15.4± 1.6

UCT
Man. 28.4± 2.9 29.5± 3.1 18.5± 2.7
Rnd. 41.5± 2.0 36.1± 2.3 22.2± 2.0

RIW
Man. 28.1± 3.0 28.3± 3.0 26.5± 3.0
NA 49.5± 0.7 49.1± 0.9 49.8± 0.4

Rnd. 43.5± 1.9 23.4± 2.6 11.1± 1.3

20

1Stp
Man. 71.8± 5.8 74.0± 5.7 71.9± 5.8
Rnd. 97.0± 1.7 82.3± 3.9 49.8± 4.6

UCT
Man. 53.8± 5.7 60.9± 6.2 38.0± 5.5
Rnd. 98.0± 1.3 87.4± 4.0 63.0± 4.8

RIW
Man. 53.5± 5.6 44.1± 5.5 44.1± 5.6
NA 100.0± 0.0 99.5± 1.0 99.5± 1.0

Rnd. 97.6± 1.5 79.7± 4.4 20.7± 1.9

Table 4: Same settings as Table 1 over GridWorld with
partially observable obstacles and a stationary goal.

setting we evaluate the performance over 10 different initial
states with 20 episodes per initial state, equalling a total of
200 episodes. The values reported here for each algorithm and
domain setting are the average and 95% confidence interval of
the costs across the 200 episodes. Each episode was run using
a single AMD Opteron 63xx class CPU @ 1.8 GHz, with
an approximate runtime of 0.75 seconds per 1,000 simulator
calls across the different algorithm and domain settings.

Results are also presented for the Atari-2600 game
Skiing, which is a SSP problem. We use the OpenAI
gym’s (Brockman et al. 2016) interface of the Arcade Learn-
ing Environment (ALE) (Bellemare et al. 2013) and use the
slalom game mode of Skiing. In the slalom mode the aim is
to ski down the course as fast as possible while going through
all the gates. Once the finish line is reached, a 5 second time
penalty is applied for each gate that is missed. The reward
values provided by ALE for Skiing is the negative value of
the total time taken plus any time penalties in centiseconds,
which we use as a cost. We use the environment settings as
described by Machado et al. (2018) with a frame skip of 5
and a probability of 0.25 of repeating the previous action sent
to environment instead of the current one, which Machado
et al. call sticky actions. For evaluation we use a simulator
budget of 100 and partial caching as described by Bandres et
al. (2018), in that we cache simulator state-action transitions,
thus assuming determinism, but clear the cached transitions
when executing an action in the environment. However, the
lookahead tree itself is not cleared when executing an action
in the environment as is done for the other domains trialed.
The maximum episode length is capped at 18,000 frames
with a frame skip of 5 this equals 3,600 actions. Using a
simulation based cost-to-go approximation is infeasible with
a simulator budget of 100 and the maximum episode length
of 3,600 actions. Therefore we report the algorithms using
a heuristic cost-to-go estimate, which is the the number of
gates that have either been missed or are still left times the
time penalty of 500 centiseconds. For the RIW(1) algorithms
we use the pixel values from the current gray scaled screen
at full resolution, that is 180 by 210 pixels, as features.

All experiments were run within the OpenAI gym frame-

Number
Alg. Heu.

Simulator Budget
of States 100 500 1000

10

1Stp Rnd. 0.6± 0.1 0.5± 0.1 0.5± 0.1
UCT Rnd. 0.6± 0.1 0.5± 0.1 0.5± 0.1

RIW
NA 0.7± 0.1 0.7± 0.1 0.7± 0.1

Rnd. 0.5± 0.1 0.3± 0.0 0.3± 0.0

50

1Stp Rnd. 1.7± 0.1 1.2± 0.1 1.1± 0.1
UCT Rnd. 1.7± 0.1 1.3± 0.1 1.2± 0.1

RIW
NA 1.1± 0.0 1.1± 0.0 1.1± 0.0

Rnd. 1.7± 0.1 1.3± 0.1 1.1± 0.1

Table 5: Average and 95% confidence interval for the cost on
Antishaping. Costs reported are from 200 episodes over
10 different initial states (20 episodes per initial state). The
horizon of each problem is 4 times the number of states.

work (Brockman et al. 2016) and the code used for the algo-
rithms and domains is available through GitHub 6.

Results
The different H functions reported here are HNA = 0, the
random policy HRnd, and the Manhattan distance HMan. The
algorithms were also evaluated using Knuth’s algorithm with
a different range of rollouts for the cost-to-go estimate, how-
ever, the results are not reported here as they are either sta-
tistically indifferent or dominated by the results using HRnd
with a single rollout. Bertsekas (2017) suggests that MCTS
algorithms should readily benefit from stronger algorithms
to estimate costs-to-go by simulation of stochastic policies.
Our experiments showed that if synergies exist these do not
manifest when using off-the-shelf stochastic estimation tech-
niques like the ones discussed by Rubinstein and Kroese
(2017). Table 1, 2 and 3 report the results of the different
lookahead algorithms on the GridWorld domain variants
with a stationary goal, moving goals and obstacles respec-
tively. For these three domains, results were also collected
for a 100x100 grid, however, the results were omitted from
the tables as the simulator budgets used were not sufficient
to find anything meaningful.

The results on the stationary goal GridWorld domain
shown in Table 1 provide a number of insights about the roll-
out algorithms reported. First, we can see RIW(1) benefits
from using HRnd rather than HNA where the larger simulator
budgets are used. As the simulator budget increases, as could
be expected, so does the performance of all the methods us-
ing HRnd. On the contrary, with HNA RIW(1)’s performance
remains constant across the different budgets. The explana-
tion for this can be found in the motivating example we gave
previously in this paper with the agent preferring the shorter
trajectory of driving into the boundary of the grid. Table 1
also shows that given the largest budget and HRnd, RIW(1)
statistically outperforms the other algorithms on the three
domains of different size.

Table 2 for GridWorld with moving goals has similar
patterns as the stationary goal domain in that RIW(1) with
HRnd dominates performance for the largest budget. Also, the
majority of performances for the smaller budgets, excluding
RIW(1) with HNA, are statistically indifferent.

6https://github.com/miquelramirez/width-lookaheads-python
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Number
Alg. Heu.

Simulator Budget
of States 100 500 1000

10

1Stp Rnd. 23.4± 2.5 13.5± 2.1 10.4± 1.7
UCT Rnd. 23.6± 2.5 12.7± 2.0 9.6± 1.6

RIW
NA 27.4± 2.6 27.0± 2.6 27.9± 2.5

Rnd. 22.9± 2.2 3.6± 0.4 3.6± 0.4

50

1Stp Rnd. 200.0± 0.0 196.1± 3.8 191.2± 5.7
UCT Rnd. 199.0± 1.9 196.1± 3.8 190.2± 6.0

RIW
NA 200.0± 0.0 200.0± 0.0 199.0± 1.9

Rnd. 199.0± 1.9 193.1± 5.0 190.2± 6.0

Table 6: Same settings as Table 5 over Combolock.

GridWorld with a stationary goal and obstacles results
displayed in Table 3 continues the trend of results. Using the
largest budget RIW(1) with HRnd outperforms all methods
on the 10x10 and 20x20 domains. For the 50x50 a number
of results are statistically indifferent. For this domain the
algorithms using HMan as the base heuristic are also reported.
While using the largest budget on the 10x10 grid HRnd dom-
inates HMan, for the larger 50x50 we see HMan dominates
HRnd for UCT, and is competitive for the other methods.

For the smallest simulator budget on CTP reported in Ta-
ble 4 using HMan with RIW(1) and UCT are the dominate
methods. For the largest simulator budget RIW(1) usingHRnd
is dominant over all other methods for both sized domains.
We also see that in most cases for the two smaller budgets
HMan dominates the HRnd methods.

Table 5 and 6 show on the smaller 10 state domains
RIW(1) with HRnd is statistically dominant over all other
methods on Antishaping and Combolock for the 500
and 1000 simulator budgets. However, for the more complex
50 state domains, the results of all algorithms using HRnd are
statistically indifferent. It can be observed that using HRnd
with RIW(1) does improve its performance compared with
HNA across all the domain settings with simulator budgets of
500 and 1000, besides Antishaping with 50 states.

For the Skiing Atari-2600 game results in Table 7 HHeu
is the heuristic value based on the number of gates missed and
remaining as described in the previous section. RIW(1) using
HHeu dominates all other methods. Comparing RIW(1) using
HHeu results with those reported by Machado et al. (2018),
it has similar performance to the DQN algorithm (Mnih et
al. 2015) after 100 million frames of training. Since the sim-
ulation budget per action we use here is equivalent to 500
frames, and given that the maximum episode duration spans
3,600 actions, RIW(1) achieves the performance in Table 7
considering only 1.8 million frames.

Related Work
Bertsekas (2017) considers AlphaGo Zero (Silver et al. 2017)
to be state-of-the-art in MCTS algorithms. It combines the
reasoning over confidence intervals first introduced with
UCT (Kocsis and Szepevari 2006) and the classic simulation
of base policies (Ginsberg 1999), adding to both supervised
learning algorithms to obtain, offline, parametric represen-
tations of costs-to-go which are efficient to evaluate. The
resulting algorithm achieves super-human performance at the
game of Go, long considered too hard for AI agents. Rather

Alg. Heu.
Simulator Budget

100
1Stp Heu. 16,524.8± 396.1
UCT Heu. 16,220.5± 310.0

RIW
Heu. 14,222.2± 373.9
NA. 15,854.0± 332.9

Table 7: Average and 95% confidence interval for the cost on
the Atari-2600 Skiing game over 100 episodes.

than using descriptions of game states directly as we do, Al-
phaZero uses a CNN to extract automatically features that
describe spatial relations between game pieces. Like us, Al-
phaZero’s lookahead uses a stochastic policy to select what
paths to expand, but rather than Q-factors, uses estimated
win probabilities to prioritise controls, and simulates the op-
ponent strategy via self-play to generate successor states. Our
simulators are always given and remain unchanged, rather
than being dynamic as is the case for AlphaZero.

Junyent et al. (2019) have recently presented a hybrid
planning and learning approach that integrates Bandres et
al. (2018) rollout, with a deep neural network. Similarly to
AlphaZero, they use it to both guide the search, and also to
extract automatically the set of state features F . Interestingly,
Junyent et al.’s work does not use deep neural networks to
approximate costs-to-go as AlphaZero does. A significant im-
provement in performance over Bandres et al. original rollout
algorithm is reported with policies learnt after 40 million in-
teractions with the simulator, using an overall computational
budget much bigger than the one used by Bandres et al.

Discussion
MCTS approaches typically combine lookaheads and cost-to-
go approximations, along with statistical tests to determine
what are the most promising directions and focus their sam-
pling effort. The width-based methods described in this paper
do so too, but in ways which are, at first sight, orthogonal
to existing strategies. It remains an area of active research
to map out exactly how the width-based methods described
in this paper, and those elsewhere by Junyent et al. (2019)
too, provide alternatives to the limitations of existing MCTS
approaches. Having said this, there is no general theory guid-
ing the design of MCTS algorithms (Bertsekas 2017), and
to avoid generating ad-hoc, problem dependent solutions in-
voluntarily it is important to follow strict protocols that alert
of potential lack of statistical significance in results, while
relying on a diverse set of benchmarks that can be both easily
understood, and highlight limitations of existing state-of-the-
art methods and overcome them.
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Abstract

Pattern databases (PDBs) are memory-based abstraction
heuristics that are constructed prior to the planning process
which, if expressed symbolically, yield a very efficient repre-
sentation. Recent work in the automatic generation of sym-
bolic PDBs has established it as one of the most successful
approaches for cost-optimal domain-independent planning.
In this paper, we contribute two planners, both using bin-
packing for its pattern selection. In the second one, we in-
troduce a greedy selection algorithm called Partial-Gamer,
which complements the heuristic given by bin-packing. We
tested our approaches on the benchmarks of the last three
International Planning Competitions, optimal track, getting
very competitive results, with this simple and deterministic
algorithm.

1 Introduction
The automated generation of search heuristics is one of the
holy grails in AI, and goes back to early work of Gaschnik
(1979), Pearl (1984), and Prieditis (1993). In most cases
lower bound heuristics are problem relaxations: each plan
in the original state space maps to a shorter one in some
corresponding abstract one. In the worst case, searching the
abstract state spaces at every given search nodes exceeds the
time of blindly searching the concrete search space (Val-
torta 1984). With pattern databases (PDBs), all efforts in
searching the abstract state space are spent prior to the plan
search, so that these computations amortize through multi-
ple lookups.

Initial results of Culberson and Schaeffer (1998) in
sliding-tile puzzles, where the concept of a pattern is a selec-
tion of tiles, quickly carried over to a number of combinato-
rial search domains, and helped to optimally solve random
instances of the Rubik’s cube, with non-pattern labels be-
ing removed (Korf 1997). When shifting from breadth-first
to shortest-path search, the exploration of the abstract state-
space can be extended to include action costs.

The combination of several databases into one, however,
is tricky (Haslum et al. 2007). While the maximum of two
PDBs always yields a lower bound, the sum usually does
not. Korf and Felner (2002) showed that with a certain se-
lection of disjoint (or additive) patterns, the values in differ-
ent PDBs can be added while preserving admissibility. Holte
et al. (2004) indicated that several smaller PDBs may out-

perform one large PDB. The notion of a pattern has been
generalized to production systems in vector notation (Holte
and Hernádvölgyi 1999), while the automated pattern selec-
tion process for the construction of PDBs goes back to the
work of Edelkamp (2006).

Many planning problems can be translated into state
spaces of finite domain variables (Helmert 2004), where a
selection of variables (pattern) influences both states and op-
erators. For disjoint patterns, an operator must distribute its
original cost, if present in several abstractions (Katz and
Domshlak 2008; Yang et al. 2008).

During the PDB construction process, the memory de-
mands of the abstract state space sizes may exceed the
available resources. To handle large memory requirements,
symbolic PDBs succinctly represent state sets as binary
decision diagrams (Edelkamp 2002). However, there are
an exponential number of patterns, not counting alterna-
tive abstraction and cost partitioning methods. Hence, the
automated construction of informative PDB heuristics re-
mains a combinatorial challenge. Hill-climbing strategies
have been proposed (Haslum et al. 2007), as well as more
general optimization schemes such as genetic algorithms
(Edelkamp 2006; Franco et al. 2017). The biggest issue
in this area remains assessing the quality of the PDBs (in
terms of the heuristic values for the concrete state space)
which can only be estimated. Usually, this involves gen-
erating the PDBs and evaluating them (Edelkamp 2014;
Korf 1997).

This work contributes by improving the automated pat-
tern selection process. We first define the settings of cost-
optimal action planning and give a characterization of a
pattern database. We stress spurious states, as they are in-
evitable to PDB generation. Next, we move to the encod-
ing of the pattern selection problem and how to evaluate
the heuristics resulted from them. The main contribution is
a greedy partial PDB selection mechanism, which we show
that complements well with bin packing, giving close to state
of the art results on our benchmarks (bettering the results of
the winner of the 2018 International Planning Competition).

2 Background
There are a variety of planing formalisms. Fikes and Nil-
son (1971) invented the propositional specification language
STRIPS, inspiring PDDL (McDermott 1998). Holte and

46



Hernádvölgyi (1999) invented the production system vector
notation (PSVN) for permutation games. Bäckström (1992)
prefers the SAS+ formalism, which is a notation of finite-
domain state variables over partial states and operators with
pre-, (prevail-,) and postconditions.
Definition 1 (SAS+ Planning Task) is a quadruple P =
〈V,O, s0, s∗〉, where V = {v1, . . . , vn} is the set of finite-
domain variable; O are the operators which consist of pre-
conditions and effects. The remaining two, s0 and s∗ are
states. A (complete) state s = (a1, . . . , an) ∈ S assigns a
value ai to every vi ∈ V , with ai in a finite domain Di,
i = 1, . . . , n. For partial states s+ ∈ S+, each vi ∈ V is
given an extended domainD+

i = Di∪{ }. We have s0 ∈ S
and s∗ ∈ S+.

A state space abstraction φ is a mapping from states in
the original state space S to the states in the abstract state
space A.

Let an abstract operator o′ = φ(o) be defined as pre′ =
φ(pre), and post′ = φ(post). For planning task described
above, the corresponding abstract task is 〈V,O′, s′0, s′∗〉
with s′0 ∈ A, s′∗ ∈ A+, The result of applying operator
o′ = (pre′, post′) to an abstract state a = s′ satisfying
pre′, sets s′i = post′i 6= , for all i = 1, . . . , n.

A cost is assigned to each operator. In the context of cost-
optimal planning, the aim is to minimize the total cost over
all plans that lead from the initial state to one of the goals.

The set of reachable states is generated on-the-fly, start-
ing with the initial state by applying the operators. In most
state-of-the-art planners, lifted planning tasks are grounded
to SAS+. A STRIPS domain with states being subsets of
propositional atoms can be seen as a SAS+ instance with a
vector of Boolean variables. The core aspect of grounding is
to establish invariances, which minimizes the SAS+ encod-
ing.
Definition 2 (State-Space Homomorphism) A homomor-
phic abstraction φ imposes that if s′ is the successor of s
in the concrete state space we have φ(s′) is the successor of
φ(s) in abstract one. This suggests abstract operators φ(o)
leading from φ(s) to φ(s′) for each o ∈ O from s of s′.

As the planning problem spans a graph by applying a se-
lection of set of rules, the planning task abstraction is gen-
erated by abstracting the initial state, the partial goal state
and the operators. Plans in the original space have counter-
parts in the abstract space, but not vice verse. Usually, the
planning task of finding a plan from φ(s0) to φ(s∗) in A is
computationally easier than finding one from s0 to s∗ in P .

The main issue encountered when working with abstrac-
tions are spurious paths in the abstract state space that have
no corresponding path in the original (concrete) space. An
intuitive example of two disconnected paths s0 → s1 →
s2 → s3 → . . . → sl and sl+1 → sl+2 → sl+3 → . . . →
sm = s∗, is shown in Figure 1 with l = 3. As we map sl
and sl+1 to the same abstract state, we have an abstract plan
which has no preimage in the original one.

Homomorphic abstractions preserve the property that ev-
ery path (plan) present in the original space is also present
(and shorter) in the abstract state space. Still, abstract oper-
ators may yield spurious states.

Figure 1: Example of the spurious path problem.

This problem also pops up in unabstracted search spaces.
One cause for this is the nature of PDB construction, namely
regression search. To illustrate this, consider the (1 × 3)
sliding-tile puzzle with two tiles 1 and 2 and one empty po-
sition, the blank. In one SAS+ encoding we have three state
variables: two for the position of the tile ti ∈ {1, 2, 3}, i ∈
{1, 2}, and one for the position of the blank b ∈ {1, 2, 3}.
Let s0 = (t1, t2, b) = (2, 3, 1) and s∗ = (1, 2, ). The op-
erators have preconditions ti = x, b = x + 1, and effects
ti = x + 1, b = x, or preconditions ti = x, b = x − 1, and
effects ti = x − 1, b = x, for i = {1, 2} and x ∈ {1, 2, 3}
(whenever possible). Going backwards from s∗, the planner
does not know the location of the blank and beside the reach-
able state t1 = 2, t2 = 3, b = 3 it generates two additional
states t1 = t2 = 1, b = 2 and t1 = t2 = 2, b = 1.

How to mitigate the problem? We cannot expect to re-
move all spurious states, but there is hope to reduce their
number. In the case of the sliding-tile puzzle, there is a dual
SAS+ encoding with three variables denoting which tile (or
blank) is present at a given position p1, p2, or p3. This
exactly-one-of state invariance is inferred by the static an-
alyzer, but not used in the state encoding. The information,
however, can help to eliminate spurious states.

Either spurious paths through abstraction or though re-
gression, they do not affect the lower bound property of the
resulting abstraction heuristic. However, they can blow up
the PDBs considerably, given that there are abstract states
and paths for which no corresponding preimage in the for-
ward space exist. As a result, refined state invariants (in-
cluding mutex detection of contradicting facts) greatly im-
prove backward search and, thus, reduce the size of pattern
databases.

3 Pattern Databases
As planning is a PSPACE-complete problem (Bylander
1994), heuristic search has proven to be one of the best ways
to find solutions in a timely manner.

Definition 3 (Heuristic) A heuristic h is a mapping of the
set of states in P to positive reals R≥0. A heuristic is called
admissible, if h(s) is a lower bound of the cost of all goal-
reaching plans starting at s. Two heuristics h1 and h2 are
additive, if h defined by h(s) = h1(s)+h2(s) for all s ∈ S,
is admissible. A heuristic is consistent if for all operators o
from s to s′ we have h(s′)− h(s) + c(o) ≥ 0.

For admissible heuristics, search algorithms like A*
(Hart, Nilsson, and Raphael 1968) will return optimal plans.
If h is also consistent, no states will be reopened during
search. This is the usual case for PDBs.
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Definition 4 (Pattern Database) is an abstraction map-
ping for states and operators and a lookup table that for
each abstract state a provides the (minimal) cost value from
a to the goal state.

The minimal cost value is a lower bound for reaching the
goal of the state that is mapped to a in the original state
space. PDBs are generated in a backwards enumeration of
the abstract state space, starting with the abstract goal. They
are stored in a (perfect) hash table for explicit search, and
in the form of a BDD with all abstract states of a certain h
value while in symbolic search.

Showing that PDBs yield consistent heuristics is triv-
ial (Edelkamp 2014; Haslum et al. 2005), as shortest path
distances satisfy the triangular inequality. It has also been
shown that for PDBs the sum of heuristic values obtained via
projection to a disjoint variable set is admissible (Edelkamp
2014). The projection of state variables induces a projection
of operators and requires cost partitioning, which distributes
the cost c(o) of operators o to the abstract state spaces (Pom-
merening et al. 2015). We will discuss more about cost par-
titioning in section 4.

For ease of notation, we identify a pattern database with
its abstraction function φ. As we want to optimize PDBs via
genetic algorithms, we need an objective function.

Definition 5 (Average Fitness of PDB) The average fitness
fa of a PDB φ (interpreted as a set of pairs (a, h(a))) is the
average heuristic estimate fa(φ) =

∑
(a,h(a))∈φ h(a)/|φ|,

where |φ| denotes the size of the PDB φ.

There is also the option of evaluating the quality of PDB
based on a sample of paths in the original search space.

Definition 6 (Sample Fitness of PDB) The fitness fs of a
PDB φ wrt. a given sample of (random) paths π1, . . . , πm
and a given candidate pattern selection φ1, . . . , φk in the
search space is determined by whether the number of states
with a higher heuristic value (compared to heuristic values
in the existing collection) exceeds a certain thresholdC, i.e.,

m∑

i=1

[hφ(last(πi)) >
k

max
j=1
{hφj

(last(πi))}] > C,

where [cond] = 1, if cond is true, otherwise [cond] = 0, and
last(π) denotes the last state on π.

Definition 7 (Pattern Selection Problem) is to find a col-
lection of PDBs that fit into main memory, and maximize the
average heuristic value1.

Definition 8 (Perimeter PDB) is the result of an unab-
stracted (blind) backward shortest path search until mem-
ory resources are exhausted, setting the value of all yet un-
reached abstract space to the maximum cost value found in
the perimeter, while adding the minimum cost of an operator.

In several planning tasks, generating the perimeter PDB
already solved the problem (Franco et al. 2017).

1The average heuristic value has shown empirically that it is a
good metric. While it is not the solution to evaluating the pattern
selection problem perfectly, it is a good approximation up to this
point.

Symbolic Pattern Databases
In symbolic plan search, we encode each variable domain
Dj of the SAS+ encoding, j = 1, . . . , n, in binary. Then
we assign a Boolean variable xi to each i, 0 ≤ i <
dlog2 |D1|e + . . . + dlog2 |Dn|e. This eventually results in
a characteristic function χS(x) for any set of states S. The
ordering of the variables is important for a concise repre-
sentation, so that we keep finite domain variables as blocks
and move inter-depending variables together. The optimiza-
tion problem of finding such best linear variable arrange-
ment among them is NP-hard. It is also possible to encode
operators as Boolean functions χo(x, x′) and to progress
(and regress) a set of states to accelerate this (pre)image,
the disjunction of the individual operators images could be
optimized. For action costs, always expanding the set at-
tached to the minimum cost value yields optimal results
(Edelkamp 2002). As symbolic search is available for partial
states (which denote sets of states), both the forward and the
backward symbolic exploration in plan space become simi-
lar.

There has been considerable effort to show that PDB
heuristics can be generated symbolically and used in a sym-
bolic version of A* (Edelkamp 2002). The concise rep-
resentation of the Boolean formula for these characteristic
functions in a binary decision diagram (BDD) is a technique
to reduce the memory requirement during the search. Fre-
quently, the running time for the exploration often reduces
as well.

4 Pattern Selection and Cost Partitioning
Using multiple abstraction heuristics can lead to solving
more complex problems, but to maintain optimality, we need
to distribute the cost of an operator among the abstractions.
One way of doing this is present in (Seipp and Helmert
2018). Saturated Cost Partitioning (SCP) has shown bene-
fits to simpler cost partitioning methods. Given an ordered
set of heuristics, in our case PDBs, SCP relies on only using
those costs which each heuristic uses to create an abstract
plan. The remaining costs are left free to be used by any
subsequent heuristic. However, considering the limited time
budget, this approach is more time consuming compared to
other cost partitioning methods (Seipp, Keller, and Helmert
2017).

One such method is 0/1 cost partition, which zeroes any
cost for subsequent heuristics if the previous heuristic has
any variables affected by that operator. Both SCP and 0/1 al-
low heuristics values to be added admissibly. SCP dominates
0/1 cost partitioning (given a set of patterns and enough
time, SCP would produce better heuristic values), but it is
much more computationally expensive than 0/1 cost parti-
tioning.

Franco et al., (2017) shows that, in order to find good
complementary patterns, it is beneficial to try as many pat-
tern collections as possible. As such, we implemented 0/1
cost partitioning in our work. We tested using the canonical
cost partitioning (Haslum et al. 2007) method as well when-
ever we added a new PDB, but this resulted in a very pro-
nounced slow down which increased the more PDBs have
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already been selected. This was the reason we adopted a hy-
brid combination approach, where 0/1 cost partition is used
on-the-fly to generate new pattern collections, and, only af-
ter all interesting pattern collections have been selected, we
run the canonical combination method, slightly extended to
take into account that each pattern has its own 0/1 cost par-
tition.

Given a number of PDBs in the form of pattern collec-
tions (sets of individual patterns, each associated with a cost
partitioning function), canonical pattern databases will se-
lect the best admissible combination of PDB maximization
and addition. The computation of the canonical PDB is still
expensive, so we execute it only once, right before search
starts.

There are many alternatives for automated pattern se-
lection based on bin packing such as random bin packing
(PBP), causual dependency bin packing (CBP), which could
be refined by a genetic algorithm (Franco et al. 2017).

Greedy Selection
Franco et al. (2017) compared the pattern selection method
to the one of Gamer (Kissmann and Edelkamp 2011), which
tries to construct one single best PDB for a problem. Its pat-
tern selection method is an iterative process, starting with
all the goal variables in one pattern, where the causally con-
nected variables who would most increase the average h
value of the associated PDB are added to the pattern.

Following this work, we devised a new Gamer-style pat-
tern generation method, which behaves similarly, but which
adds the option of partial pattern database generation to it.
By partial we mean that we have a time and memory limit
for building each PDB. If the PDB building goes past this
limit, we truncate it in the same way we would do with a
perimeter PDB, i.e., any unmapped real state has the biggest
h value the PDB building was at when it was interrupted.

An important difference with the Gamer method is that
we do not try every possible pattern resulting of adding a
single causally connected variable to the latest pattern.

Genetic Algorithm Selection
A genetic algorithm (GA) is a general optimization method
in the class of evolutionary strategies (Holland 1975). It
refers to the recombination, selection, and mutation of genes
(states in a state-space) to optimize the fitness (objective)
function. In a GA, a population of candidate solutions is
sequentially evolved to generate a better performing popu-
lation of solutions, by mimicking the process of evolution.
Each candidate solution has a set of properties which can
be mutated and recombined. Traditionally, candidate solu-
tions are bitvectors, but there are strategies that work on real-
valued state vectors.

An early approach for the automated selection of PDB
variables by Edelkamp (2006) employed a GA with genes
representing state-space variable patterns in the form of a 0/1
matrix G, where Gi,j denotes that state variable i is chosen
in PDB j. Besides flipping and setting bits, mutations may
also add and delete PDBs in the set.

The PDBs corresponding to the bitvectors in the GA have
to fit into main memory, so we have to restrict the generation

Algorithm 1 Greedy PDBs Creation

1: function GREEDYPDBS(M ,T ,Smin ,Smax ,EM ) :
Require: time and memory limits T and M , min and max

PDB size Smin ad Smax , evaluation method EM .
2: SelPDBs← ∅
3: Psel ← Psel ∪ Packer(FFD,Smin ,M, T,EM)
4: Psel ← Psel ∪ Packer(FFI,Smin ,M, T,EM)
5: Psel ← Psel ∪ PartialGamer(M,T,EM)
6: Return Psel

7: end function
8:
9: function PACKER(Method,Smin , M , T ,EM ) :

10: SizeLim← Smin

11: while (t < T ) and (m < M) do
12: GENERATE P(Method,SizeLim)
13: if EM(P) then
14: Psel ← P
15: end if
16: Size← Size ∗ 10
17: end while
18: Return Psel

19: end function
20:
21: function PARTIALGAMER(M , T ,EvalMethod) :
22: InitialPDB ← all goal variables
23: SelPDBs← InitialPDB
24: while (t < T ) and (m < M) do
25: generate all CandidatePatterns resulting of

adding one casually connected variable to latest P ∈
Psel

26: for all P ∈ CandidatePatterns do
27: if EM(P) then
28: Psel ← P
29: break
30: end if
31: end for
32: end while
33: Return Psel

34: end function

of offsprings to the ones that represent a set of PDB that
respect the memory limitation. If time becomes an issue, we
stop evolving patterns and invoke the overall search (in our
case progressing explicit states) eventually. An alternative,
which sometimes is applied as a subroutine to generate the
initial population for the GA, is to use bin packing.

Bin Packing
The bin packing problem (BPP) is one of the first problems
shown to be NP-hard (Garey and Johnson 1979). Given ob-
jects of integer size a1, . . . , an and maximum bin sizeC, the
problem is to find the minimum number of bins k so that the
established mapping f : {1, . . . , n} → {1, . . . , k} of ob-
jects to bins maintains

∑
f(a)=i a ≤ C for all i ≤ k. The

problem is NP-hard in general, but there are good approxi-
mation strategies such as first-fit and best-fit decreasing (be-
ing at most 11/9 off the optimal solution (Dósa 2007)).
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In the PDBs selection process, however, the definition of
the BPP is slightly different. We estimate the size of the PDB
by computing the product (not the sum) of the variable do-
main sizes, aiming for a maximum bin capacity M imposed
by the available memory, and we find the minimum num-
ber of bins k, so that the established mapping f of objects
to bins maintains

∏
f(a)=i a ≤ M for all i ≤ k. By taking

the logs on both sides, we are back to sums, but the sizes
become fractional. In this case,

∏
f(a)=i is an upper bound

on the number of abstract states needed.
Taking the product of variable domain sizes is a coarse

upper bound. In some domains, the abstract state spaces are
much smaller. Bin packing chooses the memory bound on
each individual PDB, instead of limiting their sum. More-
over, for symbolic search, the correlation between the cross
product of the domains and the memory needs is rather
weak. However, because of its simplicity and effectiveness,
this form of bin packing currently is chosen for PDB con-
struction.

By limiting the amount of optimization time for each BPP,
we do not insist on optimal solutions, but we want fast ap-
proximations that are close-to-optimal. Recall, that subopti-
mal solutions to the BPP do not imply suboptimal solutions
to the planning problem. In fact, all solutions to the BPP lead
to admissible heuristics and therefore optimal plans.

For the sake of generality, we strive for solutions to the
problem that do not include problem-specific knowledge but
still work efficiently. Using a general framework also en-
ables us to participate in future solver developments. There-
fore, in both of the approaches we present in this paper, we
focus on the first-fit algorithm.

First-Fit Increasing (FFI), or Decreasing (FFD), is a fast
on-line approximation algorithm that first sorts the objects
according to their sizes and, then, starts placing the objects
into the bins, putting an object to the first bin it fits into.
In terms of planning, the variables are sorted by the size of
their domains in increasing/decreasing order. Next, the first
variable is chosen and packed at the same bin with the rest of
the variables which are related to it if there is space enough
in the bin. This process is repeated until all variables are
processed.

5 Symbolic PDB Planners
Based on the results from (Franco et al. 2017), we decided
to work only with Symbolic PDBs. Further experiments sug-
gested that PDBs heuristic performs well when it is comple-
mented with other methods. One good combination was us-
ing our method to complement a symbolic perimeter PDB,
method that we used in the first of the planners we present.
The selected method to be complemented first generates a
symbolic PDB up to a fixed time limit and memory limit.
One advantage of seeding our algorithm with such a perime-
ter search is that if there is an easy solution to be found in
what is basically a brute force backwards search, we are fin-
ished before even creating a PDB. Secondly, we combined
the Partial-Gamer with bin packing and saw very good re-
sults in how they complemented each other. In Figure 2 we
see that each method gives good results on their own, Bin-

Figure 2: Coverage of Bin Packing, Partial Gamer and of both com-
bined on three latest cost-optimal IPC benchmark problems.

Packing solving 434 and Partial-Gamer 457, but when used
together they increase to 475.

In our work, however, we decided to use a hybrid, keeping
the forward exploration explicit-state, and the PDBs gen-
erated in the backward exploration symbolic. Lookups are
slightly slower than in hash tables, but they are still in time
linear to the bitvector length.

In this section, we will present two symbolic plan-
ners, Planning-PDBs and GreedyPDB, based on the Fast-
Downward planning framework (Helmert 2006). The two
differ in the pattern selection methods that we use in each of
them.

GreedyPDB
We encountered that greedily constructed PDBs outperform
the perimeter PDB, which we decided not to use. The two
construction methods do not complement well, on the ex-
treme case greedy PDBs will build a perimeter PDB after
adding all the variables. There is a significant amount of
overlapping between both methods. The collection of pat-
terns received from bin packing, however, complements well
the greedily constructed PDBs. One reason for this is that
in domains amenable to cost-partitioning strategies, i.e. al-
ternative goals are easily parallelized into a complementary
collection of PDBs, bin packing can do significantly bet-
ter than the single PDB approach. Evaluation is based on
the definition of sample fitness. The sample is redrawn each
time an improvement was found.

Figure 3: High level architecture of GreedyPDB

Algorithm 1 shows how Greedy PDBs combines two bin
packing algorithms with a greedy selection method called
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Domain/Method Agr Cal DN Nur OSS PNA Set Sna Spi Ter Total
GreedyPDB 13 12 14 15 13 16 8 13 11 16 131

BP-PDB 6 12 14 12 13 19 8 11 12 16 123
Scorpion 1 12 14 12 13 0 10 13 15 14 104

SymBiDir 14 9 12 11 13 19 8 4 6 18 114
Complementary1 10 11 14 12 12 18 8 11 11 16 123
Complementary2 6 12 13 12 13 18 8 14 12 16 124

Oracle 14 12 14 15 13 19 10 14 15 18 142
Table 1: Coverage of PDB-type planners on the 2018 International Planning Competition for cost-optimal planning

Partial Gamer. The two bin packing algorithms use First Fit
Decreasing (FFD) and First Fit Increasing (FFI), same used
in Planning-PDBs. For FFD we set a limit of 50 seconds,
while for FFI we used a limit of 75 seconds (both limits
were found empirically to give the best results). To evaluate
(EM ) if the generated pattern collections should be added to
our selection (Psel ), we used as an evaluation method a ran-
dom walk. If enough of the sampled states heuristic values
are improved, the pattern is selected. Partial Gamer greed-
ily grows the largest possible PDB by adding causally con-
nected variables to the latest added pattern. If a pattern is
found to improve, as defined by the evaluation method, then
we add it to the list of selected pattern collections as a pattern
collection with a single PDB. Note that we are using sym-
bolic PDBs with time limits on PDB construction, hence a
PDB which includes all variables of a smaller PDB does not
necesarily dominate it since the smaller PDB might reach a
further depth.

An important difference with the Gamer method is that
we do not try every possible pattern resulting of adding a
single causally connected variable to the latest pattern. As
soon as a variable is shown to improve the pattern, we add
it and restart the search for an even larger improving pat-
tern. We found this to work better with the tight time limits
required by combining several approaches. All the resulting
pattern database collections are combined by simply max-
imizing their individual heuristic values. The PDBs inside
each collection were combined using zero-one cost parti-
tioning. The rationale behing the algorithm is that some do-
mains are more amenable to using several patterns where
costs are distributed between each patterns, while other do-
mains seem to favour looking for the best possible single
pattern.

Planning-PDBs
In Planning-PDBs2, we start with the construction of the
perimeter PDB, and continue by using two bin-packing
methods to create a collection of PDBs. The first method
uses first-fit increasing, while the second being first-fit de-
creasing. Bin-packing for PDBs creates a small number of
PDBs which use all available variables. Even though reduc-
ing the number of PDBs used to group all possible variables
does not guarantee a better PDB, by having a smaller PDB
collections, it is less likely to miss interactions between vari-
ables due to them being placed on different PDBs. The bin

2This planner has competed in the 2018 IPC on the Optimal
track (Martinez et al. 2018) - https://tinyurl.com/PlanningPDBs

packing algorithms used ensures that each PDB has a least
one goal variable.

If no solution is found after the perimeter PDB has been
finished, the method will start generating pattern collec-
tions stochastically until either the generation time limit or
the overall PDB memory limit are reached. We then decide
whether to add a pattern collection to the list of selected pat-
terns if it is estimated that adding such PDB will speed up
search. We optimize the results given by the bin-packing al-
gorithm giving it to a GA. It then resolve operator overlaps
in a 0/1 cost partitioning. To evaluate the fitness function, the
corresponding PDBs is built —a time-consuming operation,
which nevertheless payed off in most cases. Once all pat-
terns have been selected, the resulting canonical PDB com-
bination is used as an admissible heuristic to do A* search.

6 Experiments
Following is an ablation-type study were we analyze which
components worked best. We run different configurations on
the competition benchmarks on our cluster that utilized Intel
Xeon E5-2660 V4 with 2.00GHz processors. We compare
GreedyPDB and Planning-PDBs with other pattern database
and symbolic planners that competed in the 2018 Interna-
tional Planning Competition in the most prestigious and at-
tended deterministic cost-optimal track.

Year/Method 98-09 2011 2014 2018 Total
GreedyPDB 665 204 140 131 1140

Planning-PDB 678 190 131 123 1122
Scorpion 785 190 118 104 1197

SymBiDir 686 174 129 114 1064
Comp1 680 185 111 123 1099
Comp2 686 204 155 124 1169
Oracle 820 227 171 143 1361

Table 2: Overall coverage of PDB-type planners across different
International Planning Competitions for cost-optimal planning. All
benchmark sets are complete except for the 98-09, in which we use
31 of the domains

Looking at the results of various cost-optimal planners
across all domains from the IPC competitions from 1998 to
2018 in Table ??, we get a good overall picture on the PDB
planner performance. Symbolic bidirectional, the bench-
mark planner in the IPC18 (1064 problems solved overall,
412 for the last 3 IPCs) is almost on par with Scorpion (412)
and Complementary1 (419) on the last 3 IPCs, but when
adding the 98-09 domains it falls last compared with all
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Planner/
Domain

Greedy
PDB

Greedy
PDB

BinPack

Greedy
PDB

PartGamer

Planning
PDB Scorpion SymBiDir Comp1 Comp2 Oracle

Agr 13 4 8 6 1 14 10 6 14
Cal 12 12 12 12 12 9 11 12 12
DN 14 14 12 14 14 12 14 13 14
Nur 14 12 16 12 12 11 12 12 16
OSS 13 13 13 13 13 13 12 13 13
PNA 18 6 17 19 0 19 18 18 19
Set 9 9 9 8 10 8 8 8 10
Sna 12 11 14 11 13 4 11 14 14
Spi 11 11 11 12 15 6 11 12 15
Ter 15 12 16 16 14 18 16 16 18

Bar14 3 3 4 3 3 6 3 3 6
Cave14 7 7 7 6 7 7 7 7 7
Child14 0 0 0 5 0 4 0 1 5
City14 10 10 10 11 14 18 10 13 18
Fl14 20 20 20 20 8 20 14 20 20
GED 20 20 20 20 20 20 20 20 20
Hike 17 17 16 12 10 10 10 19 19
Mai 5 5 5 5 5 5 5 5 5

OS14 8 3 8 5 2 8 5 13 13
Pa 4 4 4 3 6 2 3 4 6

Tet14 11 11 12 14 13 10 11 13 14
TB14 13 11 12 5 7 3 7 13 13
Tr14 9 9 9 9 10 9 9 9 10
Va14 13 14 10 14 13 7 7 15 15
Bar11 7 8 8 8 7 9 8 8 9
Elev 19 19 19 19 19 20 19 19 20
Floor 12 12 12 12 6 12 12 12 12
Mys 20 20 20 14 14 11 14 14 20
OS 19 16 16 13 14 14 18 20 20
PP 16 16 16 18 20 14 18 18 20
Pa 1 1 1 4 7 1 1 1 7

Peg 20 20 20 16 17 17 16 19 20
Scan 9 9 9 8 12 8 7 9 12
Sok 20 20 20 20 20 20 20 20 20
TB 17 15 15 12 13 9 13 17 17
Tr 11 11 11 13 13 10 10 11 13
Vis 15 16 16 14 8 9 10 17 17
Wo 18 13 13 19 20 20 19 19 20

Table 3: Complete coverage (total number of problems solved) on all of the domains from the previous 3 IPC, cost-optimal track (2011,
2014 and 2018). Domain names have been abbreviated. The planners tested are: three versions of GreedyPDB (one only using Bin Packing,
one only using Partial Gamer, and one with both approaches combined); BP-PDB planner; Scorpion and both versions of Complementary
planners from IPC 2018; SymBiDir (benchmark planner from IPC 2018).

the others. Scorpion is the overall best in term of instances
solved (1197) being by far the best on the older benchmarks.
Complementary2 solves a close number of instances 1169,
with GreedyPDB close behind with 1140 instances solved.

The reason for the swing in problems solved pre-2011 in
favour of the approach Scorpion implements is due to the
nature of the domains from that time, most of them cater-
ing towards explicit planning. It is also noteworthy that most
domains in 2011-2018 benchmarks have 20 instances, while
the pre-2011 are on average of 35, with some getting to 202.

By normalizing per domain, we get a slightly different pic-
ture, seen in Table 4. As there are some repeating domains in
the benchmark sets from different IPCs, we insist on show-
ing the results split over different IPCs, which are meant to
encourage domain-independent planning.

On the 2018 benchmark, likely the most challenging one
featuring a wide range of expressive application domain
models, GreedyPDB would have actually won the competi-
tion (Table 1). This indicates that for several planning prob-
lems, the best option is to keep growing one PDB with the
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Problems
Solved Coverage Normalized

Coverage
GreedyPDBs 1140 55.04% 61.08%

Planning-PDBs 1122 54.17% 59.42%
Scorpion 1197 57.79% 59.26%

Sym-BiDir 1053 50.84% 55.46%
Complementary1 1099 53.06% 57.60%
Complementary2 1164 56.15% 62.08%

Table 4: Results as number of problems solved, coverage and nor-
malized coverage.

greedy pattern selector, and compare and merge the results
with a PDB collection based on bin packing 3.

7 Related Work
Pattern Databases have become very popular since the 2018
International Planning Competition showed that top five
planners employed the heuristic in their solver. However, the
topic has been vastly researched prior to this competition, a
lot of work going in the automated creation of a PDB, with
the best know being the iPDB of Haslum et al., (2007) and
the GA-PDB by Edelkamp (2006). The first performs a hill-
climbing search in the space of possible pattern collections,
while the other employs a bin-packing algorithm to create
initial collections, that will be used as an initial population
for a genetic algorithm. iPDB evaluates the patterns by se-
lecting the one with the higher h-value in a selected sample
set of states, while the GA of the GA-PDB uses the average
heuristic value as its fitness function.

Another two approaches related to our work is Gamer
(Kissmann and Edelkamp 2011) and CPC (Franco et al.
2017). The first is in the search of only one best PDB, start-
ing with all the goal variables, and adding the one that it will
increase the average heuristic value. CPC is a revolution of
the GA-PDB approach, aiming to create pattern collections
with PDBs that are complementary to eachother. It also em-
ployes a GA and its evaluation is based on Stratified Sam-
pling.

8 Conclusion and Discussion
The 2018 International Planning Competition in cost-
optimal planning revealed that symbolic PDB planning
probably is the best non-portfolio approach. In fact, five of
the top six IPC planners were based on heuristic search with
PDB and/or symbolic search, while the winning portfolio
used such a planner (namely SymBA*, the winner of IPC
2014) for more than half of its successful runs.

In this paper, we present two methods building on top
of the CPC approach by Franco et al., (2017), one incre-
mental on an existing work (Planning-PDB), and one that
is a reformulation of how it creates complementary pattern
collections (GreedyPDB), by combining it with an adapted
version of the Gamer approach (Kissmann and Edelkamp

3We include all the results of our experiments IPC11-18 in Ta-
ble 3. The rest are available online.

2011). In both we have only one bin-packing solver, remov-
ing the multi-armed bandit algorithm to select its packing al-
gorithm. In GreedyPDB, we also removed the optimization
done with a GA over the pattern collections, seeing that bin-
packing and partial-gamer complement already very well
each other. Overall, the structure of GreedyPDB in compar-
ison with CPC is very much simplified, with a small loss of
coverage on the problem set of the IPC 2014.

Using different pattern generators to complement the two
seeding heuristics was extremely successful. It improved our
overall results for all the methods we tested compared to
simply using the seeding heuristics. One of the best perform-
ing method is the combination of an incremental pattern se-
lection with advanced bin packing. When combining both
pattern selection methods, the results are greatly improved,
and GreedyPDB would have won the last IPC even ahead of
the best portfolio planners (solving 5 more problems), thus
contributing a new state-of-the-art in cost-optimal planning.

It is probable that using SCP instead of canonical would
improve results. It is also likely that if we used SCP online,
i.e., for evaluating whether to add a PDB to the current se-
lected set, instead of the current 0/1 approach a PDB is eval-
uated, would significantly reduce the total number of pat-
terns we can try given the IPC time limit. How to navigate
the trade-off between SCP’s better heuristic values vs 0/1’s
faster computational time is future research.

However, as seen with the impressive results of Com-
plementary2 in the 2011 and 2014 competition benchmark,
there is no free lunch. Which pattern generator method is
best depends on the benchmark domain it is applied to. By
the obtained diversity in the individual solutions, an oracle
deciding which pattern selector to take would have solved
more problems, so that a portfolio planner could exploit this.
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Abstract
In many AI planning applications, an agent receives new
jobs (additional non-conflicting goals) while plan execution
is still ongoing. Vanilla solutions are to (a) finish execution
before tackling the new job, or to (b) interrupt execution
and re-plan immediately. Option (a) misses opportunities to
smoothly integrate the new job into the plan, while (b) leaves
the agent idle during re-planning. We introduce simultane-
ous re-planning and execution (SRE), a planning algorithm
that avoids both disadvantages. SRE re-plans for both the old
and new jobs while the current plan is still being executed.
The key difficulty is that, then, the initial state for the re-
vised plan–the state in which plan execution is at the end of
re-planning–depends on the time taken for re-planning. We
address this through a variant of A∗ that starts with several
speculative initial states, and incorporates time-aware search
information to differentiate between these. On a collection
of extended planning competition benchmarks, our algorithm
consistently outperforms both (a) and (b).

Introduction
In AI planning (Ghallab, Nau, and Traverso 2004), the task
is to find a schedule of actions leading from the initial state
of an agent to a goal state. Planning tools are given a descrip-
tion of states, actions, and goal as input, and should automat-
ically produce a plan. While planning is often seen as a dis-
cipline of “thinking before acting,” many problems require a
constant interplay between thinking and acting (Myers 1999;
Ghallab, Nau, and Traverso 2016): e.g., Mars rovers (Estlin
et al. 2000; Knight et al. 2001), high-speed manufacturing
(Ruml, Do, and Fromherz 2005), or modular printer con-
trollers (Ruml et al. 2011). Here, we address continual on-
line planning (Lemons et al. 2010; Burns et al. 2012), where
an agent has to tackle a changing set of goals. We consider a
special case we call continual online job arrival, where the
new goal is akin to an additional job, that does not conflict
with the previous goal.

Similar problems have been considered in different cir-
cumstances and under different assumptions. Agents with
knowledge about the goal arrival distribution can anticipate
future goals and plan accordingly (Burns et al. 2012). If the
new goals are known to be similar to the old ones, plan re-
pair can be used (Fox et al. 2006). Here we make neither of
these assumptions, tackling arbitrary new goals/jobs arriving
online.

There are two vanilla solutions for an online plan execu-
tion and re-planning loop in our context: (a) keep executing
the current plan to its end before starting the execution of
the (re-planned) new plan incorporating the new job; or (b)
interrupt the execution of the current plan and wait for the
re-planning process to finish. Both strategies have pros and
cons. Option (a) allows (some of) the re-planning to be done
in parallel to the execution. However, while moving towards
the old goal, the agent might be moving away from the new
goal, thus missing the opportunity to smoothly incorporate
the new job into the current plan. Option (b) takes this op-
portunity, but leaves the agent idle for the entire re-planning
process, which is wasteful when re-planning takes a long
time. In this paper we direct our attention towards scenarios
where the planning time can not be assumed to be negligible
with respect to execution time.

We propose a simultaneous re-planning and executing al-
gorithm (that we will refer to as SRE) that plans for both
the old and the new task while executing the current plan,
thus combining the advantages of both previously described
strategies. This raises a new challenge: the agent changes
its state while re-planning, so the initial state for the revised
plan depends on the time taken by the re-planning process.
That process must thus be aware of, and reason about, its
own duration in order to determine the initial state for the
revised plan.

Planners able to reason about their own planning time
are called time-aware (e.g., (Burns, Ruml, and Do 2013;
Cashmore et al. 2018)). Unlike classical planners, which op-
timize plan cost (e.g. the plan duration), time-aware planners
use the (estimated) time needed for planning as a part of
their cost function. To illustrate: a user cares about the time
needed to get a cup of coffee from a robot; what fraction
of that time was spent planning, and what fraction was spent
executing the plan, is irrelevant to the user. Time-aware plan-
ners do not solve our challenge here as they still assume a
fixed initial state. However, as we shall see, the techniques
used by time-aware planners can help address that challenge
in our context.

Our SRE algorithm is a variant of A∗ (Hart, Nilsson,
and Raphael 1968) that takes advantage of time-aware tech-
niques to adapt to the setting with asynchronous task ar-
rivals. There are two high-level differences between SRE
and A∗.
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First, while A∗ starts its search from a single initial state,
SRE starts with a number of potential initial states. These
states represent a speculation on the state in which the agent
might be once the planning is done. Second, A∗’s order-
ing function is extended with an additional heuristic func-
tion, estimation of when the planning process will finish, in-
forming the search about which of the possible initial states,
and search paths below these, is promising to explore. We
prove that, under suitable conditions on the heuristic func-
tions used by SRE, the first solution it finds is better than
any other it might find by continuing the search. This prop-
erty and its proof correspond to a similar property of the
time-aware search algorithm Bugsy (Burns, Ruml, and Do
2013).

Overall, our contributions are

• a time-aware search algorithm for online AI planning with
asynchronous task arrival;

• an implementation of the algorithm in Fast Down-
ward (Helmert 2006), leveraging time-aware planning
techniques (Dionne, Thayer, and Ruml 2011) as well
as heuristic search planning techniques (Hoffmann and
Nebel 2001);

• an empirical comparison of the algorithm to two baselines
on a collection of benchmarks from the international plan-
ning competition (IPC), which we extended for our online
setting; SRE consistently outperforms both vanilla solu-
tions.

Problem definition
We formulate our setting as a variant of classical planning
with online job arrivals during an ongoing execution. The
focus is on the moment when a new task arrives while the
agent is already executing its current plan. This generalizes
straighforwardly to a series of arriving jobs, assuming that
they arrive once the planning phase is done.

Background
We consider the finite-domain representation (FDR)
(Bäckström and Nebel 1995; Helmert 2009) for classical
planning tasks:

Definition 1. A planning task is a tuple (V,A, c, s0, s∗):

• V is a finite set of state variables, each with a finite do-
main of possible values,

• A is a finite set of actions. Each action a is a pair
(prea, eff a) of partial variable assignments called pre-
conditions and effects,

• c : A→ R is a function assigning a cost to every action,
• s0 is a complete variable assignment called initial state,
• s∗ is a partial variable assignment called goal.

We denote the set of all complete variable assignments, or
states, by S. A partial assignment p is said to be compliant
with a state s ∈ S (denoted by p ⊆ s) if there is no variable
in the domain of p to which p and s assign different values.
An action a ∈ A can only be applied to a state s ∈ S if
prea ⊆ s. The outcome of that application is state sJaK, that

is the same as s, except that the variables in the domain of
partial assignment eff a are changed accordingly.

A solution (plan) to a planning task is a se-
quence of actions a1, a2, . . . , an with the overall cost
C(a1, a2, . . . , an) =

∑n
i=1 c(ai), leading from s0 to a state

compliant with s∗.
In what follows, the costs of actions (function c) will

be interpreted as the duration to execute them. We do not,
however, consider concurrent plans as in temporal plan-
ning (Fox and Long 2003), limiting our focus to sequen-
tial plans with action durations instead. Exploring concur-
rent temporal planning remains an important topic for future
work.

We are considering tasks where the set of goals is not
fixed, and new goals may appear online. This has been
called continual online planning (COP) (Lemons et al. 2010;
Burns et al. 2012). COP tasks have been defined as Markov
Decision Processes where additional goals may arrive at
each time step, and world states are extended with the cur-
rent goal set. We adapt this notion to COP tasks as classical
planning tasks that are extended with a second goal condi-
tion, assumed to arrive during the execution of the plan for
the original goal.
Definition 2. A continual online planning (COP) task is
a tuple (V,A, c, sOLD

∗ , sNEW
∗ , s0, πs0,sOLD

∗
) where

• V is a finite set of state variables, each with a finite do-
main of possible values.

• A is a finite set of actions. Each action a is a pair
(prea, eff a) of partial variable assignments,

• c : A→ R is a function that assigns a cost to every action
a ∈ A. We interpret the cost c(a) as the duration needed
to execute action a,

• sOLD
∗ is a partial variable assignment called old goal,

• sNEW
∗ is a partial variable assignment called new goal,

• s0 is the state denoting the agent’s position at the time
when sNEW

∗ , the new goal, appeared,
• πs0,sOLD

∗
= a1a2 . . . an is a sequence of actions, taking the

agent from the state s0 to a state compliant with the old
goal sOLD

∗ (the agent’s current plan).
A solution to a COP task is a plan π consisting of two parts:
a prefix of πs0,sOLD

∗
and the newly planned extension. There

must exist 1 ≤ j ≤ n such that π = a1a2 . . . ajb1 . . . bm
(where the extension, denoted by actions b1 to bm, can be
empty). The state (partial assignment) to which the plan π
takes the agent must be compliant with both sOLD

∗ and sNEW
∗ .

A solution is said to be optimal if it minimizes the overall
planning and execution time, i.e., the time from the arrival
of the new job sNEW

∗ to the end of the execution of π.

Continual Planning for Online Job Arrival
In this work we consider COP tasks with particular proper-
ties making the achievement of planning goals arriving on-
line akin to the achieval of “jobs” as in scheduling prob-
lems. Namely, (i) executing plans for previous goals should
not preclude the possibility to achieve new goals; and (ii)
achieving new goals should not necessitate deleting previ-
ous ones.
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Definition 3. A continual planning for online job ar-
rival (COJA) task is a COP task (V,A, c, sOLD

∗ , sNEW
∗ , s0,

πs0,sOLD
∗

) with the following two properties.

(i) recoverable states: for every state s′ reached from a state
s with an action sequence ~α, there exists an action se-
quence ~α so that s′J ~αK agrees with s on all variable values
that appear as preconditions or goals in the task.

(ii) stable goals: for every state s from which sNEW
∗ can be

achieved, there exists a minimum-cost action sequence α
doing so without ever changing the assignment s ∩ sOLD

∗ .

Restriction (i) relates to known notions of invertibility and
undoability (e.g. (Hoffmann 2005; Daum et al. 2016)). It
serves two purposes. First, it allows to err in the prediction
of when re-planning will terminate (and thus what the new
initial state will be). If the re-planning takes longer than es-
timated, then the plan execution will have arrived at a state
sj behind the new initial state si used by the new plan. Re-
coverable states allow to nevertheless use the new plan, by
going back from sj to (a state subsuming) si first. Second,
(i) alleviates necessary, or accidental, conflicts between the
previous goal sOLD

∗ vs. the new goal sNEW
∗ . It may, in gen-

eral, happen that the new plan temporarily deletes sOLD
∗ (e.g.

in the Blocksworld if sNEW
∗ requires to move a block at the

bottom of a stack). Given (i), re-achieving sOLD
∗ is always

possible.
Stable goals (ii) demand that at least one optimal plan for

sNEW
∗ does not delete whichever parts of sOLD

∗ are already
achieved. This restriction is sensible as it excludes neces-
sary conflicts between the previous vs. the new goals, i.e.,
situations where achieving sNEW

∗ necessarily involves delet-
ing sOLD

∗ . The optimality requirement makes sure that delet-
ing sOLD

∗ can be avoided without a cost penalty.
Even with (ii), it may of course happen that parts of the

previous plan, executed during re-planning in our approach,
have to be un-done later on. Furthermore, the re-planning
process may not find a minimum-cost plan, or for other rea-
sons return a plan deleting sOLD

∗ . Such accidental goal con-
flicts are, however, qualitatively different from the necessary
ones excluded by (ii). That said, stable goals are not a strict
requirement of our approach, but merely a “nice to have”
property. Indeed, one of our benchmark domains does not
satisfy (ii).

Many applications have recoverable states and stable
goals. Examples include warehouse logistics, abstract en-
codings of Mars rover control, and various types of manu-
facturing problems. Hoffmann (2005) specifies syntactic cri-
teria allowing to identify tasks with recoverable states, and,
given an action sequence ~α, to quickly find the recovery se-
quence ~α.

In our experiments, we focus on domains where each ac-
tion has an immediate inverse action, and thus the cost of
~α equals that of ~α. This simplifies matters as, given ~α, the

cost of the recovery sequence is known exactly. It remains a
topic for future work to drop this assumption (e.g. drawing
on Hoffmann’s criteria as just mentioned).

Algorithm 1 SRE
1: procedure SRE(s0, sOLD

∗ , h, πs0,sOLD
∗

, sNEW
∗ , R)

2: γ ← 0
3: open← {(r, r) | r ∈ R}
4: closed← ∅
5: while open 6= ∅ do
6: γ ← γ + 1
7: (s, ref s)← argmin(m,ref m)∈open f(m, ref m, γ)

8: if (sOLD
∗ ∪ sNEW

∗ ) ⊆ s then
9: return path to s

10: closed← closed ∪ {(s, ref s)}
11: for m ∈ successors(s) do
12: ref m ← ref s
13: if ((m, ref m) 6∈ (open ∪ closed) or

g(ref m,m) < gold(ref m,m)) then
14: open = open ∪ {(m, ref m)}
15: return fail

16: f :: (m, ref m, γ) 7→ g(s0, ref m)+
g(ref m,m) + h(m)+
overshot(m, ref m, γ)

Simultaneous Re-Planning and Execution
We now describe our simultaneous re-planning and execu-
tion algorithm SRE, which is an extension of A∗ to solve
COJA tasks. We first specify the algorithm (and how it re-
lates to A∗), then we discuss its theoretical properties.

Algorithm
Algorithm 1 shows the pseudocode of the SRE algorithm.
Its structure closely resembles the structure of A∗, and the
important differences in the pseudocode are highlighted in
red.

In contrast to A∗, SRE uses a set of potential starting
nodes, which we call reference nodes and which are given
to the algorithm as a parameter R. These starting nodes are
different “guesses” on which state the agent will be in when
the planning finishes. Each reference node is a potential last
state of the current plan towards sOLD

∗ before deviating from
it (the current plan is also given as a parameter πs0,sOLD

∗
).

The open list (open) is initialized using the reference
nodes (line 3). Each element of open is a pair containing
the search node and its corresponding reference node (the
node at which it deviates from the original plan). Each newly
created search node retains the reference node of its parent
(line 12).

Like in A∗, nodes in the open list are expanded in a best-
first order according to a scoring function f , and put into
the closed list afterwards. When a node is expanded, its suc-
cessors are inserted into the open list if they are new or are
reached with a lower g-value than before (line 13).

Line 8 shows the termination condition. Following Defi-
nition 2, we must check whether both the original goal sOLD

∗
and the new goal sNEW

∗ are achieved.
Finally, the most important difference is the ordering

function f for the open list (line 16). The modified f -
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function has three parameters1: a node, its reference node,
and the number of expansions made by the algorithm so
far, γ. The f -function assigns a score to a pair (m, ref m)
based on three parts. The first part is g(s0, ref m).2 It rep-
resents the time required to move from the initial node
s0 to the reference node that was used to reach m. The
second part is g(ref m,m) + h(m), the same as A∗’s f -
function. It represents the time needed to get from the ref-
erence node ref m to m, the node under consideration, com-
bined with the estimate of the time needed to reach the goal
from m. The third part depends on the function denoted by
overshot(m, ref m, γ). This represents the penalty of having
to go back to the correct reference node if the agent has al-
ready moved past it before planning finishes. This is possible
because in COJA tasks, states are recoverable.

We denote the heuristic function estimating the remain-
ing number of expansions until planning finishes by η(m).
In order to connect this to the execution time, the number
of expansions is multiplied by the time per expansion texp
(Burns, Ruml, and Do 2013).

We define the overshot function with respect to a node m,
its reference node ref m, and the number of expansions so
far γ. Let ~α be the subsequence of actions on πs0,sOLD

∗
taking

the agent from the reference node ref m to the state in which
it would be at time (γ+η(m)) · texp if planning is estimated
to end after the execution reaches ref m, and an empty se-
quence otherwise. Let ~α be the recovery sequence of ~α. The
overshot is then defined as overshot(m, ref m, γ) =
C(~α) + C( ~α) + max((γ + η(m)) · texp − C(πs0,sOLD

∗
), 0).

The overshot is 0 if the planning is estimated to finish
before reaching the reference node ref m. Otherwise, it de-
scribes the additional execution time incurred by moving
past the reference node and back. If planning takes longer
than total execution of πs0,sOLD

∗
, then the agent will addition-

ally have to wait in sn, the last node of πs0,sOLD
∗

(this is de-
scribed by the last term of the overshot function).

Consider the following illustration:

time

current execution

γ · texp η(m) · texp

snref m

overshot

The red dashed bar denotes the time needed to execute the
current plan leading to sn ⊆ sOLD

∗ . The green bar labeled by
γ · texp is time spent planning so far and the dashed green
bar (η(m) · texp) shows the estimation on when the planning
will finish. In the illustration, the planning time is estimated
to exceed the time when the selected reference node ref m
is reached. The overshot describes this additional execution
time, plus the time it takes to go back to ref m.

Having γ as an argument for f has an interesting conse-
quence: it now matters when the function f is evaluated for
the relative order of the nodes in open. In practice, we do not
re-evaluate f on all the nodes in the open list each time the

1s0 is treated as a default parameter
2In SRE the g-function takes two arguments, and returns the

cost (time in our context) from the first to the second. In A∗ this is
implicit as it is only used to denote the cost from the initial node.

best element is retrieved (line 7). Instead, we approximate
the value of f -function by keeping the search nodes sorted
only by g + h, but separately for each reference node. Sub-
sequently, we do the full evaluation only to select the next
reference node for which a node should be expanded using
the nodes with minimal g + h for each reference node. This
approximation is justified by the fact that a changed value of
γ affects all the nodes corresponding to the same reference
node equally. The loss of precision comes from disregarding
differences in η.

Coming back to the classical A∗ formulation, note that
there is a parallelism between g and γ · texp (execution time
and planning time so far) as well as between h and η·texp (es-
timated time till the end of execution and planning, respec-
tively). There is an important difference though: while ex-
ploring a node will not influence the g value of other nodes,
γ will change its value for all nodes expanded in the future.
Note additionally that the true value of function g (usually
denoted by g∗) does not depend in any way on heuristic g. In
contrast, how many expansions are needed until the end of
planning (denoted by η∗) depends on the heuristic function
η.

Theoretical Analysis
For A∗, it can be shown that the algorithm finds an optimal
solution, provided that the heuristic function is admissible
(and nodes can be reopenend). A similar guarantee can not
be given for SRE. The essential difference between the two
settings (and thus necessarily between the two algorithms) is
that for a classical planning task, the exploration of the state
space during the planning phase comes at no cost. On the
other hand, in an online setting, exploring a part of the search
space that is not going to be used in the solution can decrease
the quality of the final plan, since that time was not used
effectively. Therefore, unless the heuristic functions η and
h were perfect, there is no guarantee that SRE will find an
optimal solution. We are, however, able to prove that SRE’s
stopping policy is the correct one. Moreover, in this section,
we revisit the baselines mentioned in the introduction and
analyze the circumstances under which they can outperform
SRE.

SRE stops the search as soon as the first state compli-
ant with both of its goals is found, which raises the ques-
tion if there is some trade-off between continuing the search
and the quality of the solution. We show that continuing the
search can not result in a better plan, assuming the heuristic
functions h and η are admissible.

We will use h∗(m) to denote the true value of the cost
to reach the goal from m, and η∗(m) to denote the num-
ber of expansions from node m to the end of planning.
Following the same notation style, f∗(m, ref m, γm), and
overshot∗(m, ref m, γm) denote functions f and overshot
calculated using h∗(m) and η∗(m) instead of the heuristics
h and η. We are using the notation γ = γm to indicate that
the third argument of the f -function is the value of γ when
the node m was explored.

Theorem 1. Let h be admissible with respect to planned
execution time and η admissible with respect to number
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of expansions. Additionally, assume that for the path α
that is a prefix of the path α′ it holds C(~α) + C( ~α) ≤
C(~α′) + C( ~α′) (well-behaved recovery paths). Let σ1 =
s0s1 . . . sip1p2 . . . pm be the sequence of states correspond-
ing to the first solution π1 found by SRE (si is the reference
node and pm is the final state of σ1). Assume the algorithm
continued the search and found another solution, with its se-
quence of states being σ2 = s0s1 . . . sjq1q2 . . . qn (sj is the
reference node and qn is the final state of σ2). It holds that
f∗(pm, si, γpm) ≤ f∗(qn, sj , γqn)
Proof.

f∗(pm, si, γpm) =

= g(s0, si) + g(si, pm) + overshot∗(pm, si, γpm)

= f(pm, si, γpm) (1)
≤ f(ql, sj , γpm) (2)
= g(s0, sj) + g(sj , ql) + h(ql) + overshot(ql, sj , γpm)

≤ g(s0, sj) + g(sj , ql) + h∗(ql) + overshot∗(ql, sj , γpm)
(3)

≤ g(s0, sj) + g(sj , ql) + h∗(ql) + overshot∗(ql, sj , γql)
(4)

≤ g(s0, sj) + g(sj , qn) + overshot∗(qn, sj , γqn) (5)
= f∗(qn, sj , γqn)

The true cost of the solution π1 is f∗(pm, si, γpm) =
g(s0, si) + g(si, pm) + overshot∗(pm, si, γpm). Following
the search structure of SRE, at some point we chose to ex-
pand pm. Since pm is the last node on the path and our
heuristic functions are admissible, the true cost f∗ is equal
to the cost function f (equality 1). Inequality 2 comes from
our choice of the node pm over some node ql from σ2.
The admissibility of function η and the assumption of well-
behaved recovery paths yields the admissibility of the func-
tion overshot . Having h and overshot admissible with re-
spect to h∗ and overshot∗, we get inequality 3.

If the overshot would be calculated at some later point γql
when exploring ql, its value would be greater or equal to the
value at time point γpm (inequality 4). Finally, inequality 5
results from γqn + η∗(qn) = γql + η∗(ql) and the fact that
g(sj , ql) + h∗(ql) ≤ g(sj , qn).

We initially described SRE as A∗ with multiple poten-
tial starting nodes that accounts for planning times. A dif-
ferent intuition can be obtained by thinking of SRE as simi-
lar to running multiple instances of A∗ with different initial
states, and giving them computation time depending on the
value of their f -function, combined with reasoning about
the time that has passed and the time needed to finish the
search. However, different search instances may influence
each other, as the time passes for all of them simultaneously
and thus affects their reasoning about planning time.

In SRE, the set of reference nodes R is considered to be
supplied by the user (a parameter the user can adjust de-
pending on the application). IfR would have many elements
(e.g., all the nodes of the original plan), it would saturate
the processor, but the decision on when to deviate from the
original plan would not be limited by sparsity of the set of

reference nodes. If R = {sn}, containing only the last node
of the original plan, then SRE collapses to the baseline that
always finishes execution before starting a new plan, thus
missing out on the opportunities to deviate from the original
plan to make progress towards the new job.

Planning for only one node limits the possibilities the
agent has, but focuses the effort (there is no split attention
between paths from different reference nodes). Thus, even
though SRE offers the advantage of deviating from the orig-
inal path sooner and finding a better path that way, there is
no guarantee it will always outperform the baseline. Con-
sider a scenario in which R = {r, sn} and the optimal path
starts from sn. Furthermore, the planning time, if planned
only for sn as the initial node, is exactly the time that the
agent will take to execute the original path (so the baseline
does not have any waiting time in sn). If at any point, due
to imprecise heuristic functions, SRE would explore a node
with r as its reference node, the time would be irretrievably
lost and the agent would have to wait in sn until planning is
finished.

The same is true for the second baseline we are consid-
ering: stopping the execution immediately when a new job
arrives. If moving any further along the original plan is get-
ting the agent further away from the new goal (and the old
goal may also be achieved on a plan towards the new one),
SRE will be outperformed as it will have to move back even-
tually.

Having noted the situations in which the baselines outper-
form SRE, outside the edge cases, SRE’s parallel planning
and execution on the one side, and the flexibility in choos-
ing when to deviate from the original plan on the other side,
makes it better suited for tasks with jobs arriving online.

Experiments
We implemented SRE in Fast Downward (Helmert 2006). In
our implementation, we use a standard A∗ open list for each
reference node, using the SRE extensions to the f -function
only to select the open list to be used for the next expansion
to avoid having to re-sort the open list. When overshooting
a reference node, our implementation assumes that each ac-
tion has an inverse action with the same cost.

Like Bugsy (Burns, Ruml, and Do 2013), we estimate the
remaining number of expansions as η(m) = delay ∗ d(m)
(Dionne, Thayer, and Ruml 2011), where delay is the (mov-
ing) average number of expansions between inserting a node
into the open list and expanding it, and d is an estimation
of the remaining steps to the goal (like h, but ignoring ac-
tion costs) under node m. The expansion delay is important
to counteract search vacillation (Dionne, Thayer, and Ruml
2011), referring to the search fluctuating between different
solution paths and, in our case, potentially of different refer-
ence nodes.

Our key performance metric is the total time, i.e. overall
time for planning and execution. We are using an instance-
specific factor to translate plan cost into execution time as a
number of expansions, so the total time is also measured in
number of expansions.

In all experiments, the popular FF heuristic (Hoffmann
and Nebel 2001) is used to guide the search. For the expan-
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sion delay, we use a moving average over the last 100 expan-
sions. The experiments were run on a cluster of Intel Xeon
E5-2660 CPUs with a clock rate of 2.20 GHz. The time and
memory limits were set to 30 minutes respectively 4 GB.

Benchmarks
We adapted the IPC domains Elevators, Logistics, Rovers,
Tidybot, Transport, and VisitAll to our setting, as represen-
tatives of applications where goals have a job-like nature in
the sense of (i) recoverable states and (ii) stable goals. We
included some variance though to test borderline situations.
Elevators, Logistics, Transport, and VisitAll satisfy (i) and
(ii), plus the additional assumption that an action sequence
~α and its recovery sequence ~α have the same cost. Rovers
also satisfies (i) and (ii), but not the same-cost assumption:
actions like taking an image don’t need to be inverted. In
assuming the opposite, our implementation is pessimistic
which may adversely affect the plan cost reported. In Tidy-
bot, finally, there are cases where objects are placed behind
each other, and the robot cannot reach behind the object in
the front. We added an “un-finish” action to ensure (i) re-
coverability. However, previously finished objects must be
picked up again in these cases. Thus the nice-to-have condi-
tion (ii) is not satisfied.

The instances were adapted by splitting the set of goals
in two: the first half is available in the beginning, and the
other one becomes available later. The second set of goals
is scheduled to appear during the execution of the first com-
puted plan to obtain interesting instances. Since we are inter-
ested in a combination of planning and execution time, we
need to convert both into the same unit.

A run of SRE on one such instance will look as follows:

time

initial planning

initial (planned) execution

reference nodes

new set of goals appears

The initially computed plan is being executed as a new job
arrives. Here, the planner considers 5 reference nodes as po-
tential initial states for the new plan.

time

initial planning

initial execution

second planning

second execution

selected reference node

The planner has computed an updated plan that starts from
the second to last reference node. The initially computed
plan is executed until that point before switching to the new
plan. The total time is the time from the start of the first
planning phase to the end of the overall execution.

In order to obtain interesting benchmark instances, we
tried to ensure that the second planning phase starts and ends
during the first planned execution. Thus, we let the second
set of goals appear after a fraction of 0.1 of the initial plan
is executed. We estimated the length of the second planning
phase by running the planner offline with all goals enabled,

0 5 10 15 20 25
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·104

Figure 1: Total time as geometric mean over all instances
(Y-axis) for SRE with different numbers of reference nodes
(X-axis).

0.2 0.4 0.6 0.8

0.9

1

1.1 stopping
finishing

SRE

Figure 2: Total time as geometric mean over all instances rel-
ative to stopping and re-planning immediately (Y-axis) for
E = 0.2, 0.3, . . . , 0.9 (X-axis).

and used that to generate instances where the second plan-
ning phase is estimated to end at E = 0.2, 0.3, . . . , 0.9 of
the initially planned execution. This is achieved by adjusting
the factor for the translation of the action cost to execution
time, thereby changing the duration of the initially planned
execution.

Results
SRE has one important parameter: the selection of the ref-
erence nodes. In our implementation, we set a number of
reference nodes nR, which are then selected in uniform in-
tervals from the current plan. Figure 1 shows the total time
(in number of expansions) for different values of nR across
our full benchmark set. If there are too few reference nodes,
the algorithm does not have the best starting point for the
next plan available. On the other hand, the performance also
decreases slightly if too many reference nodes are used, as
it becomes more difficult to settle on the most promising
one quickly (especially if the planning time estimation is
not very accurate). On average, SRE chooses nodes for ex-
pansion corresponding to the reference node which is used
for the solution 34% of the time, more for fewer reference
nodes (43% for nR = 3), and less the more reference nodes
are used (28% for nr = 24). The overall best results are
obtained with nR = 8, and we use that setting for the re-
maining experiments.

We compare SRE to the two baselines: (a) finishing exe-
cution while planning only for the new goals and (b) stop-
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ping execution and re-planning immediately. Figure 2 shows
the results for different expected end points of the second
planning phase, as total time relative to the performance of
stopping and re-planning immediately. If the planning time
is very short compared to the execution time (small values of
E), stopping works well. However, if planning is non-trivial
(E ≥ 0.3), SRE performs better. Furthermore, SRE always
outperforms baseline (a), for all values of E on all domains.
On average, SRE reduces the total time by 6.9% compared
to stopping and re-planning immediately, and by 5.6% com-
pared to finishing the planned execution. The results are sim-
ilar across all domains, except that the relative strength of the
baselines differs. On Transport and VisitAll, stopping is bet-
ter than finishing for E ≤ 0.6 respectively E ≤ 0.7, though
SRE is the best algorithm for E ≥ 0.4. On Rovers, stop-
ping is only better than finishing for E = 0.2, and SRE is
the best algorithm for all values ofE. The biggest advantage
over both baselines is obtained in Elevators, with a total time
reduction 7.1% and 7% over stopping and finishing respec-
tively.

Both baselines waste time, though in different ways. Halt-
ing the execution is inefficient as the agent is idle while plan-
ning. Finishing the execution exploits the parallelism of pro-
ceeding with the execution. However, planning only for the
second set of goals is usually quite fast, and there would be
more time available while waiting for the execution of the
initial plan to finish. SRE uses this time more efficiently to
compute better overall plans, and effectively improves the
combined planning and execution time over both baselines.

Conclusion

Many planning applications feature the arrival of new jobs
while a plan is already being executed. We introduced
an algorithm, SRE, which solves this problem effectively:
planning simultaneously for multiple potential initial states
while proceeding with the execution. The algorithm is aware
of its own planning time to select such an initial state in an
informed manner. On a set of planning benchmarks, SRE
clearly outperforms both vanilla solutions, (a) finishing ex-
ecution prior to executing the new plan, and (b) stopping
execution and waiting for re-planning to terminate.

An interesting question for future research is whether our
approach can be extended to, and be useful in, situations
with unrecoverable states, i.e., where goals may be in di-
rect conflict. We also believe that our ideas may be brought
to bear on domain-specific solutions to achieve better per-
formance, for example in warehouse logistics.
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Abstract

We examine techniques for combining generalized policies
with search algorithms to exploit the strengths and overcome
the weaknesses of each when solving probabilistic planning
problems. The Action Schema Network (ASNet) is a recent
contribution to planning that uses deep learning and neural
networks to learn generalized policies for probabilistic plan-
ning problems. ASNets are well suited to problems where lo-
cal knowledge of the environment can be exploited to im-
prove performance, but may fail to generalize to problems
they were not trained on. Monte-Carlo Tree Search (MCTS)
is a forward-chaining state space search algorithm for optimal
decision making which performs simulations to incremen-
tally build a search tree and estimate the values of each state.
Although MCTS can achieve state-of-the-art results when
paired with domain-specific knowledge, without this knowl-
edge, MCTS requires a large number of simulations in order
to obtain reliable estimates in the search tree. By combining
ASNets with MCTS, we are able to improve the capability of
an ASNet to generalize beyond the distribution of problems
it was trained on, as well as enhance the navigation of the
search space by MCTS.

1 Introduction
Planning is the essential ability of a rational agent to solve
the problem of choosing which actions to take in an envi-
ronment to achieve a certain goal. This paper is mainly con-
cerned with combining the advantages of forward-chaining
state space search through UCT (Kocsis and Szepesvári
2006), an instance of Monte-Carlo Tree Search (MCTS)
(Browne et al. 2012), with the domain-specific knowledge
learned by Action Schema Networks (ASNets) (Toyer et al.
2018), a domain-independent learning algorithm. By com-
bining UCT and ASNets, we hope to more effectively solve
planning problems, and achieve the best of both worlds.

The Action Schema Network (ASNet) is a recent contri-
bution in planning that uses deep learning and neural net-
works to learn generalized policies for planning problems.
A generalized policy is a policy that can be applied to any
problem from a given planning domain. Ideally, this gen-
eralized policy is able to reliably solve all problems in the

This paper is subsumed by “Guiding Search with Generalized
Policies for Probabilistic Planning”, which has been published in
the Symposium on Combinatorial Search 2019.

given domain, although this is not always feasible. ASNets
are well suited to problems where “local knowledge of the
environment can help to avoid certain traps” (Toyer et al.
2018). In such problems, an ASNet can significantly out-
perform traditional planners that use heuristic search. More-
over, a significant advantage of ASNets is that a network can
be trained on a limited number of small problems, and gen-
eralize to problems of any size. However, an ASNet is not
guaranteed to reliably solve all problems of a given domain.
For example, an ASNet could fail to generalize to difficult
problems that it was not trained on – an issue often encoun-
tered with machine learning algorithms. Moreover, the pol-
icy learned by an ASNet could be suboptimal due to a poor
choice of hyperparameters that has led to an undertrained or
overtrained network. Although our discussion is closely tied
to ASNets, our contributions are more generally applicable
to any method of learning a (generalized) policy.

Monte-Carlo Tree Search (MCTS) is a state-space search
algorithm for optimal decision making which relies on per-
forming Monte-Carlo simulations to build a search tree and
estimate the values of each state (Browne et al. 2012). As we
perform more and more of these simulations, the state es-
timates become more accurate. MCTS-based game-playing
algorithms have often achieved state-of-the-art performance
when paired with domain-specific knowledge, the most no-
table being AlphaGo (Silver et al. 2016). One significant
limitation of vanilla MCTS is that we may require a large
number of simulations in order to obtain reliable estimates in
the search tree. Moreover, because simulations are random,
the search may not be able to sense that certain branches of
the tree will lead to sub-optimal outcomes. We are concerned
with UCT, a variant of MCTS that balances the trade-off be-
tween exploration and exploitation. However, our work can
be more generally used with other search algorithms.

Combining ASNets with UCT achieves three goals. (1)
Learn what we have not learned: improve the capability of
an ASNet to generalize beyond the distribution of problems
it was trained on, and of UCT to bias the exploration of ac-
tions to those that an ASNet wishes to exploit. (2) Improve
on sub-optimal learning: obtain reasonable evaluation-time
performance even when an ASNet was trained with sub-
optimal hyperparameters, and allow UCT to converge to the
optimal action in a smaller number of trials. (3) Be robust
to changes in the environment or domain: improve perfor-
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mance when the test environment differs substantially from
the training environment.

The rest of the paper is organized as follows. Section 2
formalizes probabilistic planning as solving a Stochastic
Shortest Path problem and gives an overview of ASNets and
MCTS along with its variants. Section 3 defines a frame-
work for Dynamic Programming UCT (DP-UCT) (Keller
and Helmert 2013). Next, Section 4 examines techniques
for combining the policy learned by an ASNet with DP-
UCT. Section 5 then presents and analyzes our results. Fi-
nally, Section 6 summarizes our contributions and discusses
related and future work.

2 Background
A Stochastic Shortest Path problem (SSP) is a tuple
〈S, s0, G,A, P,C〉 (Bertsekas and Tsitsiklis 1991) where S
is the finite set of states, s0 ∈ S is the initial state, G ⊆ S
is the finite set of goal states, A is the finite set of actions,
P (s′ | a, s) is the probability that we transition into s′ after
applying action a in state s, and C(s, a) ∈ (0,∞) is the
cost of applying action a in state s. A solution to an SSP
is a stochastic policy π : A × S → [0, 1], where π(a | s)
represents the probability action a is applied in the current
state s. An optimal policy π∗, is a policy that selects actions
which minimize the expected cost of reaching a goal. For
SSPs, there always exists an optimal policy that is determin-
istic which may be obtained by finding the fixed-point of
the state-value function V ∗ known as the Bellman optimal-
ity equation (Bertsekas and Tsitsiklis 1991), and the action-
value function Q∗. That is, in the state s, we obtain π∗ by
finding the action a that minimizes Q∗(s, a).

V ∗(s) =

{
0 if s ∈ G
mina∈AQ∗(s, a) otherwise

Q∗(s, a) = C(s, a) +
∑

s′∈S
P (s′ | a, s) · V ∗(s′)

We handle dead ends using the finite-penalty approach
(Kolobov, Mausam, and Weld 2012). That is, we introduce
a fixed dead-end penalty D ∈ (0,∞) which acts as a limit
to bound the maximum expected cost to reach a goal, and
a give-up action which is selected if the expected cost is
greater than or equal to D.

2.1 Action Schema Networks (ASNets)
The ASNet is a neural network architecture that exploits
deep learning techniques in order to learn generalized poli-
cies for probabilistic planning problems (Toyer et al. 2018).
An ASNet consists of alternating action layers and proposi-
tion layers (Figure 1), where the first and last layer are al-
ways action layers. The output of the final layer is a stochas-
tic policy π : A× S → [0, 1].

An action layer is composed of a single action module
for each ground action in the planning problem. Similarly, a
proposition layer is composed of a single proposition mod-
ule for each ground proposition in the problem. These mod-
ules are sparsely connected, ensuring that only the relevant
action modules in one layer are connected to a proposition

Action
layer 1

πθ(a | s)
Input

features

Proposition
layer 1

Action
layer 2

Figure 1: ASNet with 1 hidden layer (Toyer et al. 2018)

module in the next layer. An action module in one layer is
connected to a proposition module in the next layer only if
the ground proposition appears in the preconditions or ef-
fects of a ground action. Similarly, a proposition module in
one layer is connected to an action module in the next layer
only if the ground proposition appears in the preconditions
or effects of the relevant ground action. Since all ground ac-
tions instantiated from the same action schema will have
the same structure, we can share the same set of weights
between their corresponding action modules in a single ac-
tion layer. Similarly, weights are shared between proposition
modules in a single proposition layer that correspond to the
same predicate. It is easy to see that by learning a set of com-
mon weights θ for each action schema and predicate, we can
scale an ASNet to any problem of the same domain.

ASNets only have a fixed number of layers, and are thus
unable to solve all problems in domains that require arbitrar-
ily long chains of reasoning about action–proposition rela-
tionships. Moreover, like most machine learning algorithms,
an ASNet could fail to generalize to new problems if not
trained properly. This could be due to a poor choice of hy-
perparameters, overfitting to the problems the network was
trained on, or an unrepresentative training set.

2.2 Monte-Carlo Tree Search (MCTS)
MCTS is a state-space search algorithm that builds a search
tree in an incremental manner by performing trials until
we reach some computational budget (e.g. time, memory)
at each decision step (Browne et al. 2012), at which point
MCTS returns the action that gives the best estimated value.

A trial is composed of four phases. Firstly, in the selec-
tion phase, MCTS recursively selects nodes in the tree using
a child selection policy until it encounters an unexpanded
node, i.e. a node without any children. Next, in the expan-
sion phase, one or more child nodes of the leaf node are
created in the search tree according to the available actions.
Now, in the simulation phase, a simulation of the scenario is
played-out from one of the new child nodes until we reach
a goal or dead end, or exceed the computational budget. Fi-
nally, in the backpropagation phase, the result of this trial
is backpropagated through the selected nodes in the tree to
update their estimated values. The updated estimates affect
the child selection policy in future trials.

Upper Confidence Bounds applied to Trees (UCT)
(Kocsis and Szepesvári 2006) is a variant of MCTS that
addresses the trade-off between the exploration of nodes
that have not been visited often, and the exploitation of
nodes that currently have good state estimates. UCT treats
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the choice of a child node as a multi-armed bandit problem
by selecting the node which maximizes the Upper Confi-
dence Bound 1 (UCB1) term, which we detail in the selec-
tion phase in Section 3.1.

Trial-Based Heuristic Tree Search (THTS) (Keller and
Helmert 2013) is an algorithmic framework that generalizes
MCTS, dynamic programming, and heuristic search plan-
ning algorithms. In a THTS algorithm, we must specify
five ingredients: action selection, backup function, heuristic
function, outcome selection and the trial length. We discuss
these ingredients and a modified version of THTS to addi-
tionally support UCT with ASNets in Section 3.

Using these ingredients, Keller and Helmert (2013) create
three new algorithms, all of which provide superior theoreti-
cal properties over UCT: MaxUCT, Dynamic Programming
UCT (DP-UCT) and UCT*. DP-UCT and its variant UCT*,
which use Bellman backups, were found to outperform orig-
inal UCT and MaxUCT. Because of this, we will focus on
DP-UCT, which we formally define in the next section.

3 DP-UCT Framework
Our framework is a modification of DP-UCT from THTS. It
is designed for SSPs with dead ends instead of finite horizon
MDPs and is focused on minimizing the cost to a goal rather
than maximizing rewards. It also introduces the simulation
function, a generalization of random rollouts used in MCTS.

We adopt the representation of alternating decision nodes
and chance nodes in our search tree, as seen in THTS. A de-
cision node nd is a tuple 〈s, Ck, V k, {n1, . . . , nm}〉, where
s ∈ S is the state, Ck ∈ Z+

0 is the number of visits to the
node in the first k trials, V k ∈ R+

0 is the state-value estimate
based on the first k trials, and {n1, . . . , nm} are the succes-
sor nodes (i.e. children) of nd. A chance node nc is a tuple
〈s, a, Ck, Qk, {n1, . . . , nm}〉, where additionally, a ∈ A is
the action, and Qk is the action-value estimate based on the
first k trials.

We use V k(nd) to refer to the state-value estimate of a
decision node nd, a(nc) to refer to the action of a chance
node nc, and so on for all the elements of nd and nc. Ad-
ditionally, we use S(n) to represent the successor nodes
{n1, . . . , nm} of a search node n, and we also employ
the shorthand P (nd |nc) = P (s(nd) | a(nc), s(nc)) and
c(nc) = c(s(nc), a(nc)). Initially, the search tree contains
a single decision node nd with s(nd) = s0, representing the
initial state of our problem.

3.1 Algorithm
UCT is described as an online planning algorithm, as it inter-
leaves planning with execution. At each decision step, UCT
returns an action either when a time cutoff is reached, or a
maximum number of trials is performed. UCT then selects
the chance node nc from the children of the root decision
node that has the highest action-value estimate,Qk(nc), and
applies its action a(nc). We sample a decision node nd from
S(nc) based on the transition probabilities P (nd |nc) and
set nd to be the new root of the tree.

A single trial under our framework consists of the selec-
tion, expansion, simulation and backup phase.

Selection Phase. As described in THTS, in this phase we
traverse the explicit nodes in the search tree by alternating
between action selection for decision nodes, and outcome
selection for chance nodes until we reach an unexpanded
decision node nd, which we call the tip node of the trial.

Action selection is concerned with selecting a child
chance node nc from the successors S(nd) of a decision
node nd. UCT selects the child chance node that maximizes
the UCB1 term, i.e. arg maxnc∈S(nd) UCB1(nd, nc), where

UCB1(nd, nc) = B ·
√

logCk(nd)

Ck(nc)︸ ︷︷ ︸
exploration

− Qk(nc)︸ ︷︷ ︸
exploitation

.

B is the bias term which allows us to adjust the
trade-off between exploration and exploitation. We set
UCB1(nd, nc) =∞ if Ck(nc) = 0 to force the exploration
of chance nodes that have not been visited.

In outcome selection, we randomly sample an outcome
of an action, i.e. sample a child decision node nd from the
successors S(nc) of a chance node nc based on the transition
probabilities P (nd |nc).

Expansion Phase. In this phase, we expand the tip node
nd and optionally initialize the Q-values of its child chance
nodes, S(nd). Calculating an estimated Q-value requires
calculating a weighted sum of the form:

Qk(nc) = c(nc) +
∑

nd∈S(nc)

P (nd |nc) ·H(s(nd)) ,

where H is some domain-independent SSP heuristic func-
tion such as hadd, hmax, hpom, or hroc (Teichteil-Königsbuch,
Vidal, and Infantes 2011; Trevizan, Thiébaux, and Haslum
2017). This can be expensive when nc has many successor
decision nodes.

Simulation Phase. Immediately after the expansion
phase, we transition to the simulation phase. Here we per-
form a simulation (also known as a rollout) of the planning
problem from the tip node’s state s(nd), until we reach a
goal or dead-end state, or exceed the trial length. This stands
in contrast to the behaviour of THTS, which lacks a simu-
lation phase and would continuously switch between the se-
lection and expansion phases until the trial length is reached.

We use the simulation function to choose which action to
take in a given state, and sample the next state according
to the transition probabilities. If we complete a simulation
without reaching a goal or dead end, we add a heuristic es-
timate H(s′) to the rollout cost, where s′ is the final rollout
state. If s′ is a dead end, then we set the rollout cost to be the
dead-end penalty D.

The trial length bounds how many steps can be applied
in the simulation phase, and hence allows us to adjust the
lookahead capability of DP-UCT. By setting the trial length
to be very small, we can focus the search on nodes closer
to the root of the tree, much like breadth-first search (Keller
and Helmert 2013). Following the steps above, if the trial
length is 0, we do not perform any simulations and simply
take a heuristic estimate for the tip node of the trial, or D if
the tip node represents a dead-end.
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Traditional MCTS-based algorithms use a random simu-
lation function, where each available action in the state has
the same probability of being selected. However, this is not
very suitable for SSPs as we can continuously loop around
a set of states and never reach a goal state. Moreover, using
a random simulation function requires an extremely large
number of simulations to obtain good estimates for state-
values and action-values within the search tree. Because of
this, the simulation phase in MCTS-based algorithms for
planning is often neglected and replaced by a heuristic es-
timate. This is equivalent to setting the trial length to be 0,
where we backup a heuristic estimate once we expand the
tip node of the trial.

However, there can be situations where the heuristic func-
tion is misleading or uninformative and thus misguides the
search. In such a scenario, it could be more productive to
use a random simulation function, or a simulation function
influenced by domain-specific knowledge (i.e., the knowl-
edge learned by an ASNet) to calculate estimates.

Backup Phase. After the simulation phase, we must prop-
agate the information we have gained from the current trial
back up the search tree. We use the backup function to up-
date the state-value estimate V k(nd) for decision nodes and
the action-value estimate Qk(nc) for chance nodes. We do
this by propagating the information we gained during the
simulation in reverse order through the nodes in the trial
path, by continuously applying the backup function for each
node until we reach the root node of the search tree.

Original UCT is defined with Monte-Carlo backups, in
which the transition model is unknown and hence estimated
based on the number of visits to nodes. However, in our
work we consider the transition model to be known a pri-
ori. For that reason, DP-UCT only considers Bellman back-
ups (Keller and Helmert 2013), which additionally take the
probabilities of outcomes into consideration when backing
up action value estimates Qk(nc):

V k(nd) =





0 if s(nd) is a goal
D if s(nd) is a dead end

min
nc∈S(nd)

Qk(nc) otherwise,

Qk(nc) = min



D, c(nc) +

∑

nd∈Υk(nc)

P̂ (nd |nc) · V k(nd)



 ,

where Υk(nc) =
{
nd |nd ∈ S(nc), C

k(nd) > 0
}
,

and P̂ (nd |nc) =
P (nd |nc)∑

n′
d∈Υk(nc) P (n′d |nc)

.

Υk(nc) represents the child decision nodes of nc that have
already been visited in the first k trials and hence have state-
value estimates. Thus, P̂ (nd |nc) allows us to weigh the
state-value estimate V k(nd) of each visited child decision
node nd proportionally by its probability P (nd |nc) and that
of the unvisited child decision nodes.

It should be obvious that Bellman backups are derived di-
rectly from the Bellman optimality equations we presented
in Section 2. Thus a flavor of UCT using Bellman backups is

asymptotically optimal given a correct selection of ingredi-
ents that will ensure all nodes are explored infinitely often.

4 Combining DP-UCT with ASNets
4.1 Using ASNets as a Simulation Function
Recall that an ASNet learns a stochastic policy π : A×S →
[0, 1], where π(a | s) represents the probability action a is
applied in state s. We introduce two simulation functions
which make use of a trained ASNet: STOCHASTIC AS-
NETS which simply samples from the probability distribu-
tion given by π to select an action, and MAXIMUM ASNETS
which selects the action with the highest probability – i.e.
arg maxa∈A(s) π(a | s).

Since the navigation of the search space is heavily influ-
enced by the state-value and action-value estimates we ob-
tain from performing simulations, DP-UCT with an ASNet-
based simulation function would ideally converge to the op-
timal policy in a smaller number of simulations compared
to if we used the random simulation function. Of course, we
expect this to be the case if an ASNet has learned some use-
ful features or tricks about the environment or domain of the
problem we are tackling.

However, using ASNets as a simulation function may not
be very robust if the learned policy is misleading and un-
informative. Here, robustness indicates how well UCT can
recover from the misleading information it has been pro-
vided. In this situation, DP-UCT with ASNets as a simula-
tion function would require a significantly larger number of
simulations in order to converge to the optimal policy than
DP-UCT with a random simulation function. Regardless the
quality of the learned policy, DP-UCT remains asymptoti-
cally optimal when using an ASNet-based simulation func-
tion if the selection of ingredients guarantees that our search
algorithm will explore all nodes infinitely often. Nonethe-
less, an ASNet-based simulation function should only be
used if its simulation from the tip node nd better approxi-
mates V ∗(nd) than a heuristic estimate H(s(nd)).

Choosing between STOCHASTIC ASNETS and MAXI-
MUM ASNETS. We can perceive the probability distri-
bution given by the policy π of an ASNet to represent the
‘confidence’ the network has in applying each action. Obvi-
ously, MAXIMUM ASNETS will completely bias the simu-
lations towards what an ASNet believes is the best action
for a given state. If the probability distribution is highly
skewed towards a single action, then MAXIMUM ASNETS
would be the better choice, as the ASNet is very ‘confident’
in its decision to choose the corresponding action. On the
other hand, if the probability distribution is relatively uni-
form, then STOCHASTIC ASNETS would likely be the bet-
ter choice. In this situation, the ASNet may be uncertain and
not very ‘confident’ in its decision to choose among a set of
actions. Thus, to determine which ASNet-based simulation
function to use, we should carefully consider to what extent
an ASNet is able to solve the given problem reliably.

4.2 Using ASNets in UCB1
The UCB1 term allows us to balance the trade-off between
exploration of actions in the search tree that have not been
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applied often, and exploitation of actions that we already
know have good action-value estimates based on previ-
ous trials. By including an ASNet’s influence within UCB1
through its policy π, we hope to maintain this fundamen-
tal trade-off yet further bias the action selection to what the
ASNet believes are promising actions.

Simple ASNet Action Selection. We select the child
chance node nc of a decision node nd that maximizes:

SIMPLE-ASNET(nd, nc) =
M · π(nc)

Ck(nc)
+ UCB1(nd, nc)

=
M · π(nc)

Ck(nc)
+B ·

√
logCk(nd)

Ck(nc)︸ ︷︷ ︸
exploration

− Qk(nc)︸ ︷︷ ︸
exploitation

where M ∈ R+ and π(nc) = π(a(nc) | s(nc)) for the
stochastic policy π learned by ASNet. Similar to UCB1,
if a child chance node nc has not been visited before (i.e.,
Ck(nc) = 0), we set SIMPLE-ASNET(nd, nc) = ∞ to
force its exploration. The new parameter M , called the in-
fluence constant, allows us to control the exploitation of an
ASNet’s policy π for exploration and, the higher M is, the
higher the influence of the ASNet in the action selection.

Notice that the influence of the ASNet diminishes
as we apply the action a(nc) more often because
M ·π(nc)/C

k(nc) decreases as the number of visits to the
chance node nc increases. Moreover, since the bias provided
byM ·π(nc)/C

k(nc) diminishes to 0 asCk(nc)→∞ faster
than B ·

√
logCk(nd)/Ck(nc) (i.e., the original UCB1 bias

term), SIMPLE-ASNET preserves the asymptotic optimal-
ity of UCB1: as Ck(nc) → ∞, SIMPLE-ASNET(nd, nc)
equals UCB1(nd, nc) and both converge to the optimal
action-value Q∗(nc) (Kocsis and Szepesvári 2006).

Because of this similarity with UCB1 and their same ini-
tial condition (i.e., treating divisions by Ck(nc) = 0 as∞),
we expect that SIMPLE-ASNET action selection will be ro-
bust to any misleading information provided by the policy
of a trained ASNet. Nonetheless, the higher the value of the
influence constant M , the more trials we require to combat
any uninformative information.

Ranked ASNet Action Selection. One pitfall of the in-
finite exploration bonus in SIMPLE-ASNET action selec-
tion when Ck(nc) = 0 is that all child chance nodes
must be visited at least once before we actually exploit
the policy learned by an ASNet. Ideally, we should use
the knowledge learned by an ASNet to select the order in
which unvisited chance nodes are explored. Thus, we in-
troduce RANKED-ASNET action selection, an extension to
SIMPLE-ASNET action selection.

RANKED-ASNET(nd, nc) =




SIMPLE-ASNET(nd, nc) if ∀n′c ∈ S(nd), C
k(n′c) > 0

π(nc) if Ck(nc) = 0

−∞ otherwise

The first condition stipulates that all chance nodes are se-
lected and visited at least once before SIMPLE-ASNET ac-

tion selection is used. Otherwise, chance nodes that have al-
ready been visited are given a value of −∞, while the val-
ues of unvisited nodes correspond to their probability in the
policy π. Thus, unvisited child chance nodes are visited in
decreasing order of their probability within the policy π.

RANKED-ASNET action selection will allow DP-UCT to
focus the initial stages of its search on what an ASNet be-
lieves are the most promising parts of the state space. Given
that the ASNet has learned some useful knowledge of which
action to apply at each step, we expect RANKED-ASNET
action selection to require a smaller number of trials to con-
verge to the optimal action in comparison with SIMPLE-
ASNET action selection. However, RANKED-ASNET may
not be as robust as SIMPLE-ASNET when the policy learned
by an ASNet is misleading or uninformative. For example,
if the optimal action has the lowest probability among all
actions in the ASNet policy and is hence explored last, then
we would require an increased number of trials to converge
to this optimum.

Comparison with ASNet-based Simulation Functions.
DP-UCT with ASNet-influenced action selection is more
robust to misleading information than DP-UCT with an
ASNet-based simulation function. Since SIMPLE-ASNET
and RANKED-ASNET action selection decreases the influ-
ence of a network as we apply an action it has suggested
more frequently, we will eventually explore actions that may
have a small probability in the policy learned by the AS-
Net but are in fact optimal. We would require a much larger
number of trials to achieve this when using an ASNet-based
simulation function, as the state-value and action-value es-
timates in the search tree would be directly derived from
ASNet-based simulations.

5 Empirical Evaluation
5.1 Experimental Setup
All experiments were performed on an Amazon Web Ser-
vices EC2 c5.4x large instance with 16 CPUs and 32GB of
memory. Each experiment was limited to one CPU core with
a maximum turbo clock speed of 3.5 GHz. No restrictions
were placed on the amount of memory an experiment used.

Considered Planners. For our experiments, we consider
two baseline planners: the original ASNets algorithm and
UCT*. The latter is a variation of DP-UCT where the trial
length is 0 while still using UCB1 to select actions, Bellman
backups as the backup function, and no simulation function.
UCT* was chosen as a baseline because it outperforms origi-
nal DP-UCT due to its stronger theoretical properties (Keller
and Helmert 2013). We consider four parametrizations of
our algorithms – namely, (i) Simple ASNets, (ii) Ranked
ASNets, (iii) Stochastic ASNets, and (iv) Maximum AS-
Nets – where: parametrizations (i) and (ii) are UCT* us-
ing SIMPLE and RANKED-ASNET action selection, respec-
tively; and parametrizations (iii) and (iv) are DP-UCT with
a problem-dependent trial length using STOCHASTIC and
MAXIMUM ASNETS as the simulation function, respec-
tively.
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ASNet Configuration. We use the same ASNet hyperpa-
rameters as described by Toyer et al. to train each network.
Unless otherwise specified, we imposed a strict two hour
time limit to train the network, though in most situations, the
network finished training within one hour. All ASNets were
trained using an LRTDP-based (Bonet and Geffner 2003)
teacher that used LM-cut (Helmert and Domshlak 2009) as
the heuristic to compute optimal policies. We only report the
time taken to solve each problem for the final results for an
ASNet, and hence do not include the training time.

DP-UCT Configuration. For all DP-UCT configurations
we used hadd (Bonet and Geffner 2001) as the heuristic func-
tion because it allowed DP-UCT to converge to a good so-
lution in a reasonable time in our experiments, and set the
UCB1 bias parameter B to

√
2. For all problems with dead

ends, we enabled Q-value initialization, as it helps us avoid
selecting a chance node for exploration that may lead to a
dead end. We did not enable this for problems without dead
ends because estimating Q-values is computationally expen-
sive, and not beneficial in comparison to the number of trials
that could have been performed in the same time frame.

We gave all configurations a 10 second time cutoff to do
trials and limited the maximum number of trials to 10,000 at
each decision step to ensure fairness. Moreover, we set the
dead-end penalty to be 500. We gave each planning round a
maximum time of 1 hour, and a maximum of 100 execution
steps. We ran 30 rounds per planner for each experiment.

5.2 Domains
Stack Blocksworld. Stack Blocksworld is a special case
of the deterministic Blocksworld domain in which the goal
is to stack n blocks initially on the table into a single tower.
We train an ASNet to unstack n blocks from a single tower
and put them all down on the table. Since the network has
never learned how to stack blocks, it completely fails at
stacking the n blocks on the table into a single tower. A set-
ting like this one—where the distributions of training and
testing problems have non-overlapping support—represents
a near-worst-case scenario for inductive learners like AS-
Nets. In contrast, stacking blocks into a single tower is a
relatively easy problem for UCT*. Our aim in this experi-
ment is to show that DP-UCT can overcome the misleading
information learned by ASNet policy. We train an ASNet on
unstack problems with 2 to 10 blocks, and evaluate DP-UCT
and ASNets on stack problems with 5 to 20 blocks.

Exploding Blocksworld. This domain is an extension of
deterministic Blocksworld, and is featured in the Interna-
tional Probabilistic Planning Competitions (IPPC). In Ex-
ploding Blocksworld, putting down a block can detonate and
destroy the block or the table it was put down on. Once a
block or the table is exploded, we can no longer use it; there-
fore, this domain contains unavoidable dead ends. A good
policy avoids placing a block down on the table or down on
another block that is required for the goal state (if possible).
It is very difficult for an ASNet to reliably solve Exploding
Blocksworld problems as each problem could have its own
‘trick’ in order to avoid dead ends and reach the goal with
minimal cost.

Toll 1 ... Toll nShop Customer

Figure 2: The CosaNostra Pizza Domain

We train an ASNet for 5 hours on a selected set of 16
problems (including those with avoidable and unavoidable
dead ends) that were optimally solved by LRTDP within
2 minutes.1 We evaluate ASNets and DP-UCT on the first
eight problems from IPPC 2008 (Bryce and Buffet 2008).
By combining DP-UCT and ASNets, we hope to exploit the
limited knowledge and ‘tricks’ learned by an ASNet on the
problems it was trained on to navigate the search space. That
is, we aim to learn what we have not learned, and improve
suboptimal learning.

CosaNostra Pizza (Toyer et al. 2018). The objective in
CosaNostra Pizza is to safely deliver a pizza from the pizza
shop to the waiting customer and then return to the shop.
There is a series of toll booths on the two-way road be-
tween the pizza shop and the customer (Figure 2). At each
toll booth, you can choose to either pay the toll operator or
drive straight through without paying. We save a time step
by driving straight through without paying but the operator
becomes angry. Angry operators drop their toll gate on you
and crush your car (leading to a dead end) with a probability
of 50% when you next pass through their booth. Hence, the
optimal policy is to only pay the toll operators on the trip
to the customer, but not on the trip back to the pizza shop
(as we will not revisit the booth). This ensures a safe return,
as there will be no chance of a toll operator crushing your
car at any stage. Thus, CosaNostra Pizza is an example of a
problem with avoidable dead ends.

An ASNet is able to learn the trick of paying the toll oper-
ators only on the trip to the customer, and scales up to large
instances while heuristic search planners based on determin-
isation (either for search or for heuristic computation) do not
scale up (Toyer et al. 2018). The reason for the underperfor-
mance of determinisation-based techniques (e.g., using hadd

as heuristic) is the presence of avoidable dead ends in the
CosaNostra domain. Moreover, heuristics based on delete
relaxation (e.g., hadd) also underperform in the CosaNostra
domain because they consider that the agent crosses each
toll booth only once, i.e., this relaxation ignores the return
path since it uses the same propositions as the path to the
customer. Thus, we expect UCT* to not scale up to larger in-
stances since it will require extremely long reasoning chains
in order to always pay the toll operator on the trip to the
customer; however, by combining DP-UCT with the opti-
mal policy learned by an ASNet, we expect to scale up to
much larger instances than UCT* alone.

For the CosaNostra Pizza problems, we train an ASNet on
problems with 1 to 5 toll-booths, and evaluate DP-UCT and
ASNets on problems with 2 to 15 toll booths.

1The training problems are available here:
https://s3.amazonaws.com/ex-blocksworld/problems.zip
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Figure 3: Coverage results for Stack Blocksworld.

5.3 Results
Stack Blocksworld. We allocate to each execution step
n/2 seconds for all runs of DP-UCT, where n is the num-
ber of blocks in the problem. We use Simple ASNets with
the influence constant M set to 10, 50 and 100 to demon-
strate how DP-UCT can overcome the misleading informa-
tion provided by the ASNet. We do not run experiments that
use ASNets as a simulation function, as that would result
in completely misleading state-value and action-value esti-
mates in the search tree, meaning DP-UCT would achieve
near-zero coverage.

Figure 3 depicts our results. ASNets achieves zero cov-
erage, while UCT* is able to reliably achieve near-full cov-
erage for all problems up to 20 blocks. In general, as we
increase M , the coverage of Simple ASNets decays earlier
as the number of blocks increases. This is not unexpected,
as by increasing M , we increasingly ‘push’ the UCB1 term
to select actions that the ASNet wishes to exploit, and hence
misguide the navigation of the search space. Nevertheless,
Simple ASNets is able to achieve near-full coverage for
problems with up to 17 blocks for M = 10, 15 blocks for
M = 50, and approximately 11 blocks for M = 100. We
also observed a general increase in the time taken to reach a
goal as we increasedM , though this was not always the case
due to the noise of DP-UCT.

This experiment shows that Simple ASNets is capable of
learning what ASNet has not learned and being robust to
changes in the environment by correcting the bad actions the
ASNet suggests through search and eventually converging
to the optimal solution.

Exploding Blocksworld. For all DP-UCT flavors, we in-
creased the UCB1 bias parameter B to 4 and set the maxi-
mum number of trials to 30,000 in order to promote more
exploration. To combine DP-UCT with ASNets, we use
Ranked ASNets with the influence constant M set to 10, 50
and 100. Note, that the coverage for Exploding Blocksworld
is an approximation of the true probability of reaching the
goal. Since we only run each algorithm 30 times, the results
are susceptible to chance.

Table 1 shows our results.2 Since the training set used by
ASNets was likely not representative of the evaluation prob-
lems (i.e., the IPPC 2008 problems), the policy learned by
ASNets is suboptimal and failed to to reach the goal for the

2Since the difficulty of Exploding Blocksworld instances does
not increase monotonically with problem size, presenting the re-
sults as a plot can be misleading.
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Figure 4: Coverage results for CosaNostra Pizza. Both AS-
Nets and Maximum ASNets obtained perfect coverage.

relatively easy problems (e.g., p04 and p07) while UCT*
was able to more reliably solve these problems.

By combining DP-UCT with ASNets through Ranked
ASNets, we were able to either match the performance of
UCT* or outperform it, even when ASNet achieved zero
coverage for the given problem. However, for certain con-
figurations, we were able to improve upon all other config-
urations. For p08, Ranked ASNets with M = 50 achieves
a coverage of 10/30, while all other configurations of DP-
UCT are only able to achieve a coverage of around 4/30.
Despite the fact that the ASNet achieved zero coverage in
this experiment, the general knowledge learned by the AS-
Net helped us navigate the search tree more effectively and
efficiently, even if the suggestions provided by the ASNet
are not optimal. The same reasoning applies to the results
for p04, where Ranked ASNets with M = 50 achieves a
higher coverage than all other configurations.

We have demonstrated that we can exploit the policy
learned by an ASNet to achieve more promising results than
UCT* and the network itself, even if this policy is subopti-
mal. Thus, we have shown that Ranked ASNets is capable
of learning what the ASNet has not learned and improving
the suboptimal policy learned by the network.

CosaNostra Pizza. For this experiment, we considered
ASNets as both a simulation function (Stochastic and Max-
imum ASNets), and in the UCB1 term for action selection
(Simple and Ranked ASNets with M = 100) to improve
upon UCT*. The optimal policy for CosaNostra Pizza takes
3n + 4 steps, where n is the number of toll booths in the
problem. We set the trial length when using ASNets as a
simulation function to be b1.25 · (3n + 4)c, where the 25%
increase gives some leeway for Stochastic ASNets.

Figure 4 shows our results – the curves for ASNets and
Maximum ASNets overlap, as well as the curves for Sim-
ple and Ranked ASNets. ASNets achieves full coverage for
all problems, while UCT* alone is only able to achieve full
coverage for the problems with 2 and 3 toll booths. Using
ASNets in the action selection ingredient through Simple or
Ranked ASNets with the influence constant M = 100 only
allows us to additionally achieve full coverage for the prob-
lem with 4 toll booths. This is because Simple and Ranked
ASNets guide the action selection towards the optimal ac-
tion, but UCT still forces the exploration of other parts of
the state space.

We are able to more reliably solve CosaNostra Pizza prob-
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Planner/Prob. p01 p02 p03 p04 p05 p06 p07 p08

ASNets
16/30

8.0 ± 0.0
0.18 ± 0.14s

10/30
12.0 ± 0.0

0.17 ± 0.01s

6/30
10.0 ± 0.0
0.2 ± 0.04s

-
30/30

6.0 ± 0.0
0.19 ± 0.07s

19/30
12.0 ± 0.0

0.42 ± 0.12s
- -

UCT*
26/30

10.92 ± 0.52
102.51 ± 5.24s

9/30
18.22 ± 1.62

175.01 ± 16.24s

13/30
25.23 ± 8.86

222.27 ± 88.77s

11/30
14.55 ± 0.63

136.46 ± 6.75s

30/30
6.13 ± 0.19
36.51 ± 2.4s

28/30
13.93 ± 0.8

132.36 ± 8.11s

30/30
13.0 ± 0.73

107.11 ± 6.95s

5/30
36.4 ± 5.09

335.87 ± 54.56s

Ranked ASNets
M = 10

25/30
10.96 ± 0.48

100.21 ± 6.01s

6/30
17.0 ± 3.45

164.77 ± 34.89s

11/30
30.0 ± 13.64

280.25 ± 135.07s

10/30
14.4 ± 0.6

125.74 ± 11.93s

30/30
6.0 ± 0.0

38.11 ± 1.17s

25/30
13.6 ± 0.83

113.56 ± 8.11s

30/30
12.07 ± 0.14
116.36 ± 1.4s

4/30
35.0 ± 7.58

340.82 ± 75.18s

Ranked ASNets
M = 50

23/30
11.04 ± 0.58
94.17 ± 6.51s

10/30
17.6 ± 2.85

166.29 ± 27.91s

14/30
35.71 ± 7.87

352.14 ± 78.66s

15/30
14.4 ± 0.46

123.06 ± 5.75s

30/30
6.0 ± 0.0

38.85 ± 1.15s

27/30
13.33 ± 0.76

127.69 ± 7.59s

30/30
12.07 ± 0.14

102.57 ± 1.38s

10/30
38.6 ± 0.97

374.93 ± 12.01s

Ranked ASNets
M = 100

25/30
11.04 ± 0.48

105.26 ± 4.83s

12/30
17.33 ± 2.44

167.75 ± 24.5s

14/30
28.43 ± 6.54

259.18 ± 65.16s

10/30
14.6 ± 0.69

126.61 ± 6.41s

30/30
6.0 ± 0.0

39.41 ± 1.08s

29/30
13.38 ± 0.74

111.66 ± 7.15s

30/30
12.33 ± 0.28

103.56 ± 3.16s

4/30
36.5 ± 9.14

344.06 ± 93.88s

Table 1: Results for Exploding Blocksworld. The coverage (i.e., the number of runs that successfully reached the goal) is
presented in the 1st line of each cell. The 2nd and 3rd lines of each cell show the mean cost and mean time to reach a goal,
respectively, and their associated 95% confidence interval.

lems when using ASNets as a simulation function. Since the
ASNet learns the optimal policy, an ASNet-based simula-
tion function allow us to obtain much better state-value es-
timates for nodes in the search tree than those provided by
a domain-independent heuristic. It is easy to see that when
we use Maximum ASNets, the state-value V ∗(nd) for the
tip node of a trial nd obtained from the simulation is optimal
(assuming a sufficiently large trial length). Thus, Maximum
ASNets achieves full coverage for all problems as Maximum
ASNets will always provide DP-UCT with a path directly to
the goal which it will eventually fall back to. For Stochastic
ASNets, we see an exponential decay in the coverage as the
problem size increases above 10 toll booths. The reason for
this is because as the problem size increases, the probability
of obtaining a path that leads directly to the goal decreases
as the state space increases exponentially. Hence, DP-UCT
cannot fall back to the path the ASNet has provided it, as
this path may not have been taken before.

The explanations above also justify why Maximum AS-
Nets took less time to reach a goal than all other configura-
tions of DP-UCT. For this same reason, Maximum ASNets
took less time to reach a goal than all other configurations of
DP-UCT, e.g., for n= 4, the mean time to reach a goal and
the 95% confidence interval for the considered planners are:
ASNets (0.15 ± 0.05s), UCT* (64.95 ± 7.16s), Maximum
ASNets (54.51± 0.19s), Stochastic ASNets (64.7± 3.17s),
Simple ASNets with M = 100 (104.45 ± 2.38s), Ranked
ASNets with M = 100 (124.41± 7.27s).

In this experiment, we have shown how using ASNets in
UCB1 through SIMPLE-ASNET or RANKED-ASNET ac-
tion selection can only provide marginal improvements over
UCT* when the number of reachable states increases ex-
ponentially with the problem size, and the heuristic esti-
mates are misleading. We also demonstrated how we can
combat this sub-optimal performance of DP-UCT by using
ASNets as a simulation function, as it allows us to more ef-
ficiently explore the search space and find the optimal ac-
tions. Thus, an ASNet-based simulation function may help
DP-UCT learn what it has not learned.

Triangle Tireworld (Little and Thiébaux 2007). Triangle
Tireworld is a domain with avoidable dead ends. ASNets is
trivially able to find the optimal policy which always avoids
dead ends. The results of our new algorithms on Triangle
Tireworld are very similar to the results in the CosaNostra
experiments, as the algorithms leverage the fact that ASNets
finds the optimal generalized policy for both domains.

6 Conclusion, Related and Future Work
In this paper, we have investigated techniques to improve
search using generalized policies. We discussed a frame-
work for DP-UCT, extended from THTS, that allowed us
to generate different flavors of DP-UCT including those that
exploited the generalized policy learned by an ASNet. We
then introduced methods of using this generalized policy
in the simulation function, through STOCHASTIC ASNETS
and MAXIMUM ASNETS. These allowed us to obtain more
accurate state-value estimates and action-value estimates in
the search tree. We also extended UCB1 to bias the naviga-
tion of the search space to the actions that an ASNet wants
to exploit whilst maintaining the fundamental balance be-
tween exploration and exploitation, by introducing SIMPLE-
ASNET and RANKED-ASNET action selection.

We have demonstrated through our experiments that our
algorithms are capable of improving the capability of an
ASNet to generalize beyond the distribution of problems it
was trained on, as well as improve sub-optimal learning. By
combining DP-UCT with ASNets, we are able to bias the ex-
ploration of actions to those that an ASNet wishes to exploit,
and allow DP-UCT to converge to the optimal action in a
smaller number of trials. Our experiments have also demon-
strated that by harnessing the power of search, we may over-
come any misleading information provided by an ASNet due
to a change in the environment. Hence, we achieved the three
following goals: (1) Learn what we have not learned, (2) Im-
prove on sub-optimal learning, and (3) Be robust to changes
in the environment or domain.

It is important to observe that our contributions are more
generally applicable to any method of learning a (general-
ized) policy (not just ASNets), and potentially to other trial-
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based search algorithms including (L)RTDP.
In the deterministic setting, there has been a long tra-

dition of learning generalized policies and using them to
guide heuristic Best First Search (BFS). For instance, Yoon
et al. (Yoon, Fern, and Givan 2007) add the states result-
ing from selecting actions prescribed by the learned gen-
eralized policy to the the queue of a BFS guided by a
relaxed-plan heuristic, and de la Rosa et al. (2011) learn
and use generalized policies to generate lookahead states
within a BFS guided by the FF heuristic. These authors
observe that generalized policies provide effective search
guidance, and that search helps correcting deficiencies in
the learned policy. Search control knowledge à la TLPlan,
Talplanner or SHOP2 has been successfully used to prune
the search of probabilistic planners (Kuter and Nau 2005;
Thiébaux et al. 2006). More recently, Steinmetz et al. (2016)
have also experimented with the use of preferred actions in
variants of RTDP (Barto, Bradtke, and Singh 1995) and AO*
(Nilsson 1980), albeit with limited success. Our work dif-
fers from these approaches by focusing explicitly on MCTS
as the search algorithm and, unlike existing work combin-
ing deep learning and MCTS (e.g. AlphaGo (Silver et al.
2016)), looks not only at using neural network policies as a
simulation function for rollouts, but also as a means to bias
the UCB1 action selection rule.

There are still many potential avenues for future work. We
may investigate how to automatically learn the influence pa-
rameter M for SIMPLE-ASNET and RANKED-ASNET ac-
tion selection, or how to combat bad information provided
by an ASNet in a simulation function by mixing ASNet
simulations with random simulations. We may also inves-
tigate techniques to interleave planning with learning by us-
ing UCT with ASNets as a ‘teacher’ for training an AS-
Net, similar to the ‘leapfrogging’ idea presented by Gro-
shev et al. (2018). ASNets may also be replaced by Deep
Reactive Policies (Issakkimuthu, Fern, and Tadepalli 2018;
Bajpai, Garg, and Mausam 2018), which learn reactive poli-
cies for RDDL problems. We hope that such work would
bridge the gap between symbolic AI and deep learning, and
improve the state-of-the-art in probabilistic planning.
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Abstract

Pattern databases are the foundation of some of the strongest
admissible heuristics for optimal classical planning. Experi-
ments showed that the most informative way of combining
information from multiple pattern databases is to use satu-
rated cost partitioning. Previous work selected patterns and
computed saturated cost partitionings over the resulting pat-
tern database heuristics in two separate steps. We introduce
a new method that uses saturated cost partitioning to select
patterns and show that it outperforms all existing pattern se-
lection algorithms.

1 Introduction
A∗ search (Hart, Nilsson, and Raphael 1968) with an ad-
missible heuristic (Pearl 1984) is one of the most success-
ful methods for solving classical planning tasks optimally.
An important building block of some of the strongest ad-
missible heuristics are pattern database (PDB) heuristics. A
PDB heuristic precomputes all goal distances in a simpli-
fied state space obtained by projecting the task to a sub-
set of state variables, the pattern, and uses these distances
as lower bounds on the true goal distances. PDB heuristics
were originally introduced for solving the 15-puzzle (Cul-
berson and Schaeffer 1996) and have later been generalized
to many other combinatorial search tasks (e.g., Korf 1997;
Felner, Korf, and Hanan 2004) and to the setting of domain-
independent planning (Edelkamp 2001).

Using a single PDB heuristic of reasonable size is usually
not enough to cover sufficiently many aspects of challeng-
ing planning tasks. It is therefore often beneficial to com-
pute multiple PDB heuristics and to combine their estimates
admissibly (Holte et al. 2006). The simplest approach for
this is to choose the PDB with the highest estimate in each
state. Instead of this maximization scheme, we would like
to sum estimates, but this renders the resulting heuristic in-
admissible in general. However, if two PDBs are affected
by disjoint sets of operators, they are independent and we
can admissibly add their estimates (Korf and Felner 2002;
Felner, Korf, and Hanan 2004). Haslum et al. (2007) later
generalized this idea by introducing the canonical heuris-
tic for PDBs, which computes all maximal subsets of pair-
wise independent PDBs and then uses the maximum over
the sums of independent PDBs as the heuristic value.

Cost partitioning (Katz and Domshlak 2008; Yang et al.
2008) is a generalization of the independence-based meth-
ods above. It makes the sum of heuristic estimates ad-
missible by distributing the costs of each operator among
the heuristics. The literature contains many different cost
partitioning algorithms such as zero-one cost partitioning
(Edelkamp 2002; Haslum et al. 2007), uniform cost parti-
tioning (Katz and Domshlak 2008), optimal cost partition-
ing (Katz and Domshlak 2008; Karpas and Domshlak 2009;
Katz and Domshlak 2010; Pommerening et al. 2015), post-
hoc optimization (Pommerening, Röger, and Helmert 2013)
and delta cost partitioning (Fan, Müller, and Holte 2017).

In previous work (Seipp, Keller, and Helmert 2017a), we
showed experimentally for the benchmark tasks from pre-
vious International Planning Competitions (IPC) that sat-
urated cost partitioning (SCP) (Seipp and Helmert 2014;
2018) is the cost partitioning algorithm of choice for PDB
heuristics. Saturated cost partitioning considers an ordered
sequence of heuristics. Iteratively, it gives each heuristic the
minimum amount of costs that the heuristic needs to justify
all its estimates and then uses the remaining costs for sub-
sequent heuristics until all heuristics have been served this
way.

Before we can compute a saturated cost partitioning over
pattern database heuristics, we need to select a collection
of patterns. The first domain-independent automated pat-
tern selection algorithm is due to Edelkamp (2001). It parti-
tions the state variables into patterns via best-fit bin packing.
Edelkamp (2006) later used a genetic algorithm to search
for a pattern collection that maximizes the average heuristic
value of a zero-one cost partitioning over the PDB heuristics.

Haslum et al. (2007) proposed an algorithm that performs
a hill-climbing search in the space of pattern collections
(HC). HC evaluates a collection C by estimating the search
effort of the canonical heuristic over C based on a model of
IDA∗ runtime (Korf, Reid, and Edelkamp 2001).

Franco et al. (2017) presented the Complementary PDBs
Creation (CPC) method, that combines bin packing and ge-
netic algorithms to create a pattern collection minimizing
the estimated search effort of an A∗ search (Lelis, Stern, and
Sturtevant 2014).

Rovner, Sievers, and Helmert (2019) repeatedly com-
pute patterns using counterexample-guided abstraction re-
finement (CEGAR): starting from a random goal variable,
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their CEGAR algorithm iteratively finds solutions in the cor-
responding projection and executes them in the original state
space. Whenever a solution cannot be executed due to a vio-
lated precondition, it adds the missing precondition variable
to the pattern.

Finally, Pommerening, Röger, and Helmert (2013) sys-
tematically generate all interesting patterns up to a given
size X (SYS-X). Experiments showed that cost-partitioned
heuristics over SYS-2 and SYS-3 yield accurate estimates
(Pommerening, Röger, and Helmert 2013; Seipp, Keller, and
Helmert 2017a), but using all interesting patterns of larger
sizes is usually infeasible.

We introduce SYS-SCP, a new pattern selection algo-
rithm based on saturated cost partitioning that potentially
considers all interesting patterns, but only selects useful
ones. SYS-SCP builds multiple pattern sequences that to-
gether form the resulting pattern collection. For each se-
quence σ, it considers the interesting patterns in increasing
order by size and adds a pattern P to σ if P is not part of an
earlier sequence and the saturated cost partitioning heuristic
over σ plus P is more informative than the one over σ alone.

2 Background
We consider optimal classical planning tasks in a SAS+-like
notation (Bäckström and Nebel 1995) and represent a plan-
ning task Π as a tuple 〈V,O, s0, s?〉. Each variable v in the
finite set of variables V has a finite domain dom(v). A par-
tial state s is defined over a subset of variables vars(s) ⊆ V
and maps each v ∈ vars(s) to a value in dom(v), written as
s[v]. We call the pair 〈v, s[v]〉 an atom and interchangeably
treat partial states as mappings from variables to values or
as sets of atoms. If vars(s) = V , we call s a state. We write
S(Π) for the set of all states in Π.

Each operator o in the finite set of operators O has a pre-
condition pre(o) and an effect eff(o), both of which are par-
tial states, and a cost cost(o) ∈ R+

0 . An operator o is appli-
cable in a state s if pre(o) ⊆ s. Applying o in s leads into
state s′ = sJoK with s′[v] = eff(o)[v] for all v ∈ vars(eff(o))
and s′[v] = s[v] for all variables v ∈ V \ vars(eff(o)). The
state s0 is called the initial state and s? is a partial state, the
goal.

Transition systems assign semantics to planning tasks.

Definition 1 (Transition Systems). A transition system T is
a labeled digraph defined by a finite set of states S(T ), a
finite set of labels L(T ), a set T (T ) of labeled transitions
s

`−→ s′ with s, s′ ∈ S(T ) and ` ∈ L(T ), an initial state
s0(T ), and a set S?(T ) of goal states.

A planning task Π = 〈V,O, s0, s?〉 induces a transition
system T with states S(Π), labels O, transitions {s o−→
sJoK | s ∈ S(Π), o ∈ O, pre(o) ⊆ s}, initial state s0 and
goal states {s ∈ S(Π) | s? ⊆ s}.

Separating transition systems from cost functions allows
us to evaluate the same transition system under different cost
functions, which is important for cost partitioning.

Definition 2 (Cost Functions). A cost function for transition
system T is a function cost : L(T ) → R ∪ {−∞,∞}. It is

finite if −∞ < cost(`) < ∞ for all labels `. It is non-
negative if cost(`) ≥ 0 for all labels `. We write C(T ) for
the set of all cost functions for T .

Note that we assume that the cost function of the planning
task is non-negative and finite, but as in previous work we
allow negative (Pommerening et al. 2015) and infinite costs
(Seipp and Helmert 2019) in cost partitionings. The gener-
alization to infinite costs is necessary to cleanly state some
of our definitions.

Definition 3 (Weighted Transition Systems). A weighted
transition system is a pair 〈T , cost〉 where T is a transition
system and cost ∈ C(T ) is a cost function for T .

The cost of a path π = 〈s0 `1−→ s1, . . . , sn−1 `n−→ sn〉 in a
weighted transition system 〈T , cost〉 is defined as cost(π) =∑n
i=1 cost(`i). It is ∞ if the sum contains both +∞ and

−∞. If sn is a goal state, π is called a goal path for s0.

Definition 4 (Goal Distances and Optimal Paths). The goal
distance of a state s ∈ S(T ) in a weighted transition system
〈T , cost〉 is defined as infπ∈Π?(T ,s) cost(π), where Π?(T , s)
is the set of goal paths from s in T . (The infimum of the
empty set is∞.) We write h∗T (cost, s) for the goal distance
of s. If h∗T (cost, s) = ∞, we call s unsolvable. A goal path
π from s is optimal if cost(π) = h∗T (cost, s).

Optimal classical planning is the problem of finding an
optimal goal path from s0 or showing that s0 is unsolvable.

We use heuristics to estimate goal distances (Pearl 1984).

Definition 5 (Heuristics). A heuristic for a transition system
T is a function h : C(T )×S(T )→ R∪{−∞,∞}. Heuristic
h is admissible if h(cost, s) ≤ h∗T (cost, s) for all cost ∈
C(T ) and all s ∈ S(T ).

Cost partitioning makes adding heuristics admissible by
distributing the costs of each operator among the heuristics.

Definition 6 (Cost Partitioning). Let T be a transition sys-
tem. A cost partitioning for a cost function cost ∈ C(T ) is
a tuple 〈cost1, . . . , costn〉 ∈ C(T )n whose sum is bounded
by cost:

∑n
i=1 costi(`) ≤ cost(`) for all ` ∈ L(T ). A cost

partitioning 〈cost1, . . . , costn〉 ∈ C(T )n over the heuris-
tics 〈h1, . . . , hn〉 for T induces the cost-partitioned heuristic
h(cost, s) =

∑n
i=1 hi(costi, s). If the sum contains +∞ and

−∞, it evaluates to the leftmost infinite value.

One of the cost partitioning algorithms from the literature
is saturated cost partitioning (Seipp and Helmert 2018). It
is based on the insight that we can often reduce the amount
of costs given to a heuristic without changing any heuristic
estimates. Saturated cost functions formalize this idea.

Definition 7 (Saturated Cost Function). Consider a tran-
sition system T , a heuristic h for T and a cost function
cost ∈ C(T ). A cost function scf ∈ C(T ) is saturated for
h and cost if

1. scf(`) ≤ cost(`) for all labels ` ∈ L(T ) and
2. h(scf, s) = h(cost, s) for all states s ∈ S(T ).

A saturated cost function scf is minimal if there is no other
saturated cost function scf′ for h and cost with scf(`) ≤
scf′(`) for all labels ` ∈ L(T ).
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Whether we can efficiently compute a minimal satu-
rated cost function depends on the type of heuristic. In
earlier work (Seipp and Helmert 2018), we showed that
this is possible for explicitly-represented abstraction heuris-
tics (Helmert, Haslum, and Hoffmann 2007), which include
PDB heuristics.
Definition 8 (Minimum Saturated Cost Function for Ab-
straction Heuristics). Let 〈T , cost〉 be a weighted transition
system and h an abstraction heuristic for T with abstract
transition system T ′. The minimum saturated cost function
mscf for h and cost is

mscf(`) = sup

a
`−→b∈T (T ′)

(h∗T ′(cost, a)− h∗T ′(cost, b))

for all ` ∈ L(T ), where x−y = −∞ iff x = −∞ or y =∞.
Given a sequence of abstraction heuristics, the saturated

cost partitioning algorithm iteratively assigns to each heuris-
tic only the costs that the heuristic needs to preserve its es-
timates and uses the remaining costs for subsequent heuris-
tics.
Definition 9 (Saturated Cost Partitioning). Consider a tran-
sition system T and a sequence of abstraction heuristics
H = 〈h1, . . . , hn〉 for T . For all 1 ≤ i ≤ n, saturatei :
C(T ) → C(T ) receives a cost function rem and returns
the minimum saturated cost function for hi and rem. The
saturated cost partitioning 〈cost1, . . . , costn〉 of a function
cost ∈ C(T ) overH is defined as:

rem0 = cost
costi = saturatei(remi−1) for all 1 ≤ i ≤ n
remi = remi−1 − costi for all 1 ≤ i ≤ n,

where the auxiliary cost functions remi represent the re-
maining costs after processing the first i heuristics inH.

We write hSCP
H for the saturated cost partitioning heuristic

over the sequence of heuristicsH. In this work, we compute
saturated cost partitionings over pattern database heuristics.

A pattern for task Π with variables V is a subset P ⊆ V .
By syntactically removing all variables from Π that are not
in P , we obtain the projected task Π|P inducing the abstract
transition system TP . The PDB heuristic hP for a pattern P
is defined as hP (cost, s) = h∗TP (cost, s|P ), where s|P is the
abstract state that s is projected to in Π|P . For the pattern se-
quence 〈P1, . . . , Pn〉 we define hSCP

〈P1,...,Pn〉 = hSCP
〈hP1 ,...,hPn 〉.

One of the simplest pattern selection algorithms is to gen-
erate all patterns up to a given size X (Felner, Korf, and
Hanan 2004) and we call this approach SYS-NAIVE-X. It is
easy to see that for tasks with n variables, SYS-NAIVE-X
generates

∑X
i=1

(
n
i

)
patterns. Usually, many of these pat-

terns do not add much information to a cost-partitioned
heuristic over the patterns. Unfortunately, there is no effi-
ciently computable test that allows us to discard such unin-
formative patterns. Even patterns without any goal variables
can increase heuristic estimates in a cost partitioning (Pom-
merening 2017).

However, in the setting where only non-negative cost
functions are allowed in cost partitionings, there are effi-
ciently computable criteria for deciding whether a pattern

Algorithm 1 SYS-SCP: Given a planning task with states
S(T ), cost function cost and interesting patterns SYS, select
a subset C ⊆ SYS.

1: function SYS-SCP(Π)
2: C ← ∅
3: repeat for at most Tx seconds
4: σ← 〈〉
5: for P ∈ ORDER(SYS) and at most Ty seconds do
6: if P /∈ C and PATTERNUSEFUL(σ, P ) then
7: σ← σ ⊕ P
8: C ← C ∪ {P}
9: until σ = 〈〉

10: return C

11: function PATTERNUSEFUL(σ, P )
12: return ∃s ∈ S(T ) :

hSCP
σ (cost, s) < hSCP

σ⊕P (cost, s) <∞

is interesting, i.e., whether it cannot be replaced by a set of
smaller patterns that together yield the same heuristic esti-
mates (Pommerening, Röger, and Helmert 2013).

The criteria are based on the causal graph CG(Π) of a
task Π (Helmert 2004). CG(Π) is a directed graph with a
node for each variable in Π. If there is an operator with a
precondition on u and an effect on v 6= u, CG(Π) contains
a precondition arc from u to v. If an operator affects both u
and v, CG(Π) contains co-effect arcs from u to v and from
v to u.
Definition 10 (Interesting Patterns). A pattern P is interest-
ing if
1. CG(Π|P ) is weakly connected, and
2. CG(Π|P ) contains a directed path via precondition arcs

from each node to some goal variable node.
The systematic pattern generation method SYS-X gener-

ates all interesting patterns up to size X . We let SYS denote
the set of all interesting patterns for a given task. On IPC
benchmark tasks, SYS-X often generates much fewer pat-
terns than SYS-NAIVE-X for the same size limit X . Still,
it is usually infeasible to compute all SYS-X patterns and
the corresponding projections for X > 3 within reason-
able amounts of time and memory. Also, we hypothesize
that even when considering only interesting patterns, usu-
ally only a small percentage of the systematic patterns up to
size 3 contribute much information to the resulting heuristic.

For these two reasons we propose a new pattern selection
algorithm that potentially considers all interesting patterns,
but only selects the ones that it deems useful.

3 Sys-SCP Pattern Selection Algorithm
Our new pattern selection algorithm repeatedly creates a
new empty pattern sequence σ and only appends those inter-
esting patterns to σ that increase any finite heuristic values
of a saturated cost partitioning heuristic computed over σ.

Algorithm 1 shows pseudo-code for the procedure, which
we call SYS-SCP. It starts with an empty pattern collection
C. In each iteration of the outer loop, SYS-SCP creates a
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new empty pattern sequence σ and then loops over the in-
teresting patterns P ∈ SYS in the order chosen by ORDER
(see Section 3.2) for at most Ty seconds. SYS-SCP appends
a pattern P to σ and includes it in C if there is a state s for
which the saturated cost partitioning over σ extended by P
has a higher finite heuristic value than the one over σ alone.
Once an iteration selects no new patterns or SYS-SCP hits
the time limit Tx, the algorithm stops and returns C.

We impose a time limit Tx on the outer loop of the al-
gorithm since the number of interesting patterns is expo-
nential in the number of variables and therefore SYS-SCP
usually cannot evaluate them all in a reasonable amount of
time. By imposing a time limit Ty on the inner loop, we al-
low SYS-SCP to periodically start over with a new empty
pattern sequence.

The most important component of the SYS-SCP algo-
rithm is the PATTERNUSEFUL function that decides whether
to select a pattern P . The function enumerates all states
s ∈ S(Π), which is obviously infeasible for all but the
smallest tasks Π. Fortunately, we can efficiently compute an
equivalent test in the projection to P .

Lemma 1. Consider a planning task Π with non-negative
cost function cost and induced transition system T . Let s ∈
S(T ) be a state, P be a pattern for Π and σ be a (possibly
empty) sequence of patterns 〈P1, . . . , Pn〉 for Π. Finally, let
rem be the remaining cost function after computing hSCP

σ for
cost.

hSCP
σ (cost, s) < hSCP

σ⊕P (cost, s) <∞
⇔ 0 < h∗TP (rem, s|P ) <∞

Proof. hSCP
σ (cost, s) < hSCP

σ⊕P (cost, s) <∞
(1)⇔ hSCP

〈P1,...,Pn〉(cost, s) < hSCP
〈P1,...,Pn,P 〉(cost, s) <∞

(2)⇔
n∑

i=1

hPi(costi, s) <
n∑

i=1

hPi(costi, s) + hP (rem, s) <∞

(3)⇔ 0 < hP (rem, s) <∞ (4)⇔ 0 < h∗TP (rem, s|P ) <∞
Step 1 substitutes 〈P1, . . . , Pn〉 for σ and Step 2 uses the

definition of saturated cost partitioning heuristics. For Step 3
we need to show that x =

∑n
i=1 h

Pi(costi, s) is finite.
The inequality states x <∞. We now show x ≥ 0, which

implies x > −∞. Using requirement 1 for saturated cost
functions from Definition 7 and the fact that rem0 = cost
is non-negative, it is easy to see that all remaining cost
functions are non-negative. Consequently, hPi(costi, s) =
hPi(remi−1, s) ≥ 0 for all s ∈ S(T ), which uses require-
ment 2 from Definition 7 and the fact that goal distances
are non-negative in transition systems with non-negative
weights.

Step 4 uses the definition of PDB heuristics.

Theorem 1 (Computing PATTERNUSEFUL on Projections).
Consider a planning task Π with non-negative cost function
cost and induced transition system T . Let P be a single pat-
tern and σ be a (possibly empty) sequence of patterns. Fi-
nally, let rem be the remaining cost function after computing

hSCP
σ for cost.

∃s ∈ S(T ) : hSCP
σ (cost, s) < hSCP

σ⊕P (cost, s) <∞
⇔ ∃s′ ∈ S(TP ) : 0 < h∗TP (rem, s′) <∞

Proof. Follows directly from Lemma 1 and the fact that pro-
jections are induced abstractions: for each abstract state s′ in
an induced abstraction there is at least one concrete state s
which is projected to s′.

We use Theorem 1 in our SYS-SCP implementation by
keeping track of the cost function rem, i.e., the costs that
remain after computing hSCP

σ . We select a pattern P if there
are any goal distances d with 0 < d <∞ in TP under rem.

Theorem 1 also removes the need to compute hSCP
σ⊕P from

scratch for every pattern P . This is important since we want
to decide whether or not to add P quickly and this operation
should not become slower when σ contains more patterns.

3.1 Dead Ends
To obtain high finite heuristic values for solvable states it
is important to choose good cost partitionings. In contrast,
cost functions are irrelevant for detecting unsolvable states.
This is the underlying reason why Lemma 1 only holds for
finite values and therefore why SYS-SCP ignores unsolvable
states.

However, we can still use the information about unsolv-
able states contained in projections. It is easy to see that each
abstract state in a projection corresponds to a partial state in
the original task. If an abstract state is unsolvable in a pro-
jection, we call the corresponding partial state a dead end.
Since projections preserve all paths, any state in the original
task subsuming a dead end is unsolvable. We can extract all
dead ends from the projections that SYS-SCP evaluates and
use this information to prune unsolvable states during the A∗

search (Pommerening and Seipp 2016).

3.2 Ordering Patterns
We showed in earlier work that the order in which satu-
rated cost partitioning considers the component heuristics
has a strong influence on the quality of the resulting heuris-
tic (Seipp, Keller, and Helmert 2017b). Choosing a good or-
der is even more important for SYS-SCP, since it usually
only sees a subset of interesting patterns within the allotted
time. To ensure that this subset of interesting patterns cov-
ers different aspects of the planning task, we let the ORDER
function generate the interesting patterns in increasing order
by size.

This leaves the question how to sort patterns of the same
size. We propose four methods for making this decision. The
first one (random) simply orders patterns of the same size
randomly. The remaining three assign a key to each pattern,
allowing us to sort by key in increasing or decreasing order.

Causal Graph. The first ordering method is based on
the insight that it is often more important to have accu-
rate heuristic estimates near the goal states rather than else-
where in the state space (e.g., Holte et al. 2006; Torralba,
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Linares López, and Borrajo 2018). We therefore want to fo-
cus on patterns containing goal variables or variables that
are closely connected to goal variables. To quantify “goal-
connectedness” we use an approximate topological order-
ing ≺ of the causal graph CG(Π). We let the function cg :
V → N+

0 assign each variable v ∈ V to its index in ≺. For
a given pattern P , the cg ordering method returns the key
〈cg(v1), . . . , cg(vn)〉, where vi ∈ P and cg(vi) < cg(vj)
for all 1 ≤ i < j ≤ n. Since the keys are unique, they de-
fine a total order. Sorting the patterns by cg in decreasing
order (cg-down), yields the desired order which starts with
“goal-connected” patterns.

States in Projection. Given a pattern P , the ordering
method states returns the key |S(Π|P )|, i.e., the number of
states in the projection to P . We use cg-down to break ties.

Active Operators. Given a pattern P , the ops ordering
method returns the number of operators that affect a vari-
able in P . We break ties with cg-down.

4 Experiments
We implemented the SYS-SCP pattern selection algorithm
in the Fast Downward planning system (Helmert 2006)
and conducted experiments with the Downward Lab toolkit
(Seipp et al. 2017) on Intel Xeon Silver 4114 processors. Our
benchmark set consists of all 1827 tasks without conditional
effects from the optimization tracks of the 1998–2018 IPCs.
The tasks belong to 48 different domains. We limit time by
30 minutes and memory by 3.5 GiB. All benchmarks1, code2

and experimental data3 have been published online.
To fairly compare the quality of different pattern collec-

tions, we use the same cost partitioning algorithm for all
collections. Saturated cost partitioning is the obvious choice
for the evaluation since experiments showed that it is prefer-
able to all other cost partitioning algorithms for HC, SYS-2
and CPC patterns in almost all evaluated benchmark do-
mains (Seipp, Keller, and Helmert 2017a; Rovner, Sievers,
and Helmert 2019).

Diverse Saturated Cost Partitioning Heuristics. For a
given pattern collection C, we compute diverse saturated
cost partitioning heuristics using the diversification proce-
dure by Seipp, Keller, and Helmert (2017b): we start with an
empty family of saturated cost partitioning heuristics F and
a set Ŝ of 1000 sample states obtained with random walks
(Haslum et al. 2007). Then we iteratively sample a new state
s and compute a greedy order ω of C that works well for
s (Seipp 2017). If hSCP

ω has a higher heuristic estimate for
any state s′ ∈ Ŝ than all heuristics in F , we add hSCP

ω to
F . We stop this diversification procedure after 200 seconds
and then perform an A∗ search using the maximum over the
heuristics in F .

1Benchmarks: https://doi.org/10.5281/zenodo.2616479
2Code: https://doi.org/10.5281/zenodo.3233330
3Experimental data: https://doi.org/10.5281/zenodo.3233326

Coverage 10s 100s 1000s ∞
1s 1137 1132 1055 716
10s 1077 1168 1142 337
100s 1077 1082 1154 284
∞ 1077 1082 989 227

Table 1: Number of tasks solved by SYS-SCP using differ-
ent time limits Tx and Ty for the outer loop (x axis) and
inner loop (y axis).
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Coverage

cg-up – 5 6 5 4 3 3 1140.0
states-up 6 – 6 8 5 2 2 1153.0
random 10 10 – 8 7 6 3 1148.2
ops-down 7 8 9 – 4 7 3 1141.0
states-down 9 8 9 7 – 4 2 1152.0
ops-up 11 12 12 11 11 – 6 1166.0
cg-down 12 10 12 10 9 6 – 1168.0

Table 2: Per-domain coverage comparison of different or-
ders for patterns of the same size. The entry in row r and
column c shows the number of domains in which order r
solves more tasks than order c. For each order pair we high-
light the maximum of the entries (r, c) and (c, r) in bold.
Right: Total number of solved tasks. The results for random
are averaged over 10 runs (standard deviation: 3.36).

Before we compare SYS-SCP to other pattern selection
algorithms, we evaluate the effects of changing its parame-
ters in four ablation studies. We use at most 2M states per
PDB and 20M states in the PDB collection for all SYS-SCP
runs.

4.1 Time Limits
Table 1 shows that a time limit for the outer loop is more
important than one for the inner loop, but for maximum cov-
erage we need both limits. The combination that solves the
highest number of tasks is 10s for the inner and 100s for the
outer loop. We use these values in all other experiments.

4.2 Dead Ends
All configurations from Table 1 store the dead ends from all
projections evaluated by SYS-SCP and use them to prune
unsolvable states during the A∗ search. For the best config-
uration from Table 1, coverage decreases from 1168 to 1153
tasks if we ignore the dead ends. Therefore, we use dead
ends for pruning unsolvable states in all other experiments.

4.3 Pattern Orders
Table 2 compares the different methods for ordering patterns
of the same size. For all of states, ops and cg, at least one or-
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Max pattern size 1 2 3 4 5

SYS-NAIVE 840 937 914 752 571
SYS-NAIVE-LIM 840 968 1004 912 878
SYS 840 986 1057 922 731
SYS-LIM 840 985 1088 1050 1035

Table 3: Number of solved tasks for naive (SYS-NAIVE) and
interesting patterns (SYS). We evaluate both versions with-
out and with time and memory limits and using different
maximum pattern sizes.

dering direction (up or down) is preferable to using random
orders. The ops-up method is preferable to ops-down for 11
domains, but there are also 7 domains where the opposite
is the case. The relation between states-down and states-up
is similar. The only ordering method where one direction is
clearly preferable to the other is cg: cg-down solves more
tasks than cg-up in 12 domains, while the opposite is the
case in only 3 domains. Since cg-down also has the highest
overall coverage, we use it in all other experiments.

4.4 Using Pattern Sequences for Diversification
Instead of discarding the computed pattern sequences when
SYS-SCP finishes, we can turn each pattern sequence σ into
a full pattern order by randomly appending all SYS-SCP
patterns missing from σ to σ and pass the resulting order
to the diversification procedure.

Feeding the diversification exclusively with such orders
leads to solving 1130 tasks, while using only greedy orders
for sample states (Seipp 2017) solves 1156 tasks. We obtain
the best results by diversifying both types of orders, solving
1168 tasks, and we use this variant in all other experiments.

4.5 Systematic Patterns With Limits
In the next experiment, we evaluate the obvious baseline for
SYS-SCP: selecting all (interesting) patterns up to a fixed
size. Table 3 holds coverage results of SYS-NAIVE-X and
SYS-X for 1 ≤ X ≤ 5. We also include variants (*-LIM)
that use at most 100 seconds, no more than 2M states in each
projection and at most 20M states per collection. For the *-
LIM variants, we sort the patterns in the cg-down order.

The results show that interesting patterns are always
preferable to naive patterns, both with and without lim-
its, which is why we only consider interesting patterns in
SYS-SCP. Imposing limits is not important for SYS-1 and
SYS-2, but leads to solving many more tasks for X ≥ 3.
Overall, SYS-3-LIM has the highest total coverage (1088
tasks).

4.6 Comparison of Pattern Selection Algorithms
In Table 4 we compare SYS-SCP to the strongest pattern
selection algorithms from the literature: HC, SYS-3-LIM,
CPC and CEGAR. (See Table 6 for per-domain coverage
results.) We run each algorithm with its preferred parameter
values, which implies using at most 900s for HC and CPC
and 100s for the other algorithms.

HC is outperformed by all other algorithms. Interestingly,
already the simple SYS-3-LIM approach is competitive with
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Coverage

HC – 8 10 8 3 966
SYS-3-LIM 19 – 14 10 2 1088
CPC 20 15 – 12 3 1055
CEGAR 22 14 16 – 3 1098
SYS-SCP 28 23 21 21 – 1168

Table 4: Per-domain coverage comparison of pattern selec-
tion algorithms. For an explanation of the data see the cap-
tion of Table 2.

CPC and CEGAR. However, we obtain the best results with
SYS-SCP. It is preferable to all other pattern selection algo-
rithms in per-domain comparisons: no algorithm has higher
coverage than SYS-SCP in more than three domains, while
SYS-SCP solves more tasks than each of the other algo-
rithms in at least 21 domains. SYS-SCP also has the highest
total coverage of 1168 tasks, solving 70 more tasks than the
strongest contender. This is a considerable improvement in
the setting of optimal classical planning, where task diffi-
culty tends to scale exponentially.

4.7 Comparison to IPC Planners
In our final experiment, we evaluate whether Scorpion
(Seipp 2018), one of the strongest optimal planners in
IPC 2018, benefits from using SYS-SCP patterns. Scorpion
computes diverse saturated cost partitioning heuristics over
HC and SYS-2 PDB heuristics and Cartesian abstraction
heuristics (CART) (Seipp and Helmert 2018). We abbrevi-
ate this combination with COMB=HC+SYS-2+CART. In Ta-
ble 5 we compare the original Scorpion planner, three Scor-
pion variants that use different sets of heuristics and the
top three optimal planners from IPC 2018, Delfi 1 (Siev-
ers et al. 2019), Complementary 1 (Franco et al. 2018) and
Complementary 2 (Franco et al. 2017). (Table 6 holds per-
domain coverage results.) In contrast to the configurations
we evaluated above, all planners in Table 5 prune irrele-
vant operators in a preprocessing step (Alcázar and Torralba
2015).

The results show that all Scorpion variants outperform the
top three IPC 2018 planners in per-domain comparisons. We
also see that Scorpion benefits from using SYS-SCP PDBs
instead of the COMB heuristics in many domains. Using
the union of both sets is clearly preferable to using either
COMB or SYS-SCP alone, since it raises the total cover-
age to 1261 by 56 and 44 tasks, respectively. For maximum
coverage (1265 tasks), Scorpion only needs SYS-SCP PDBs
and Cartesian abstraction heuristics.

5 Conclusion
We introduced a new pattern selection algorithm based on
saturated cost partitioning and showed that it outperforms
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Complementary 1 – 7 4 12 9 9 9 1030
Complementary 2 24 – 7 12 10 9 8 1093
Delfi 1 35 28 – 16 15 13 13 1236
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COMB 28 27 19 – 7 5 2 1205
SYS-SCP 29 25 21 15 – 4 4 1217
SYS-SCP+CART 29 26 22 16 10 – 4 1265
SYS-SCP+COMB 30 27 23 13 13 5 – 1261

Table 5: Comparison of IPC 2018 planners and Scorpion
variants.

all other pattern selection algorithms from the literature. The
algorithm selects a pattern if it is useful for any state in
the state space. In future work, we would like to evaluate
whether it is beneficial to restrict this criterion to a subset of
states, such as all reachable states or a set of sample states.
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Abstract

Oversubscription planning (OSP) is the problem
of finding plans that maximize the utility value
of their end state while staying within a specified
cost bound. Recently, it has been shown that OSP
problems can be reformulated as classical planning
problems with multiple cost functions but no utili-
ties. Here we take advantage of this reformulation
to show that OSP problems can be solved optimally
using the A∗ search algorithm, in contrast to previ-
ous approaches that have used variations on branch-
and-bound search. This allows many powerful
techniques developed for classical planning to be
applied to OSP problems. We also introduce novel
bound-sensitive heuristics, which are able to reason
about the primary cost of a solution while taking
into account secondary cost functions and bounds,
to provide superior guidance compared to heuris-
tics that do not take these bounds into account.
We implement two such bound-sensitive variants
of existing classical planning heuristics, and show
experimentally that the resulting search is signif-
icantly more informed than comparable heuristics
that do not consider bounds.

Introduction
Oversubscription planning (OSP) problems are a family of
deterministic planning problems. In contrast to classical plan-
ning, where a set of hard goals is specified and the planner
searches for a minimal (or low) cost plan that reaches a state
in which all of the goals are made true, oversubscription plan-
ning specifies a utility function that describes the benefit as-
sociated with achieving different possible states, and asks for
a plan whose cost does not exceed a set bound and achieves
as high a utility as possible [Smith, 2004].

While domain-independent classical planning approaches
have increasingly standardized around variations on A∗

search and heuristics that are automatically extracted from the
problem description [Bonet and Geffner, 2001; Keyder and
Geffner, 2008; Haslum and Geffner, 2000; Edelkamp, 2001;
Helmert et al., 2014; Helmert and Domshlak, 2009], OSP has
generally been solved with branch-and-bound algorithms and

heuristics that compute an admissible (in this context non-
under) estimate of the utility achievable from a state. In or-
der to obtain these estimates, recent approaches often adapt
classical planning techniques such as landmarks [Mirkis and
Domshlak, 2014; Muller and Karpas, 2018] or abstractions
[Mirkis and Domshlak, 2013], and enhance them with rea-
soning that is specific to the context of OSP, such as the
knowledge that there always exists an optimal plan that ends
with a utility-increasing action, or that the cost bound for the
problem can be reduced under specific conditions to aid the
search algorithm in detecting that improving over the cur-
rently achieved utility is impossible.

In contrast to these approaches, our aim here is to show
that general methods from classical planning, including A∗
search, can be used in the OSP setting nearly as is. This previ-
ously turned out to be the case for the related net-benefit plan-
ning problem, where classical planners solving a compilation
were shown to outperform planners designed specifically for
that task [Keyder and Geffner, 2009]. Here, we use a similar,
recently proposed compilation that converts OSP problems
into classical planning problems with multiple cost functions
but no utilities [Katz et al., 2019a]. In addition, we demon-
strate that existing classical planning heuristics can be used
to guide the search for optimal plans. While these heuristics
are typically uninformative out-of-the-box, they require only
minor modifications (and no specific reasoning about utili-
ties) to render them sensitive to the secondary cost functions
and bounds that are introduced by the compilation. Our ex-
periments with A∗ and the newly introduced estimators that
we refer to as bound-sensitive heuristics show that they lead
to informed searches that are competitive with, and in some
cases outperform, the state of the art for optimal OSP.

One related area of research in the classical setting is
that of bounded-cost planning, where the planner looks for
any plan with (primary) cost below a given bound, simi-
lar to the treatment of the secondary cost in the OSP set-
ting. Approaches proposed for this setting include dedicated
search algorithms [Stern et al., 2011] and heuristics that take
into account accumulated cost and plan length at the cur-
rent search node [Thayer and Ruml, 2011; Haslum, 2013;
Dobson and Haslum, 2017]. These approaches work by pref-
erentially expanding nodes in areas of the search space that
are likely to have a solution under the cost bound. Optimal
OSP, however, requires expanding all nodes that potentially
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lie on a path to state with maximal utility. Furthermore, it
cannot be assumed that solutions necessarily achieve all soft
goals. Heuristics that are able to take into account bounds on
secondary cost functions have also been investigated in the
stochastic shortest path setting, where they were used as ad-
ditional constraints in an LP-based heuristic to consider limi-
tations on fuel or time resources [Trevizan et al., 2017].

We now briefly review the various flavors of planning that
we consider in this work, and introduce the formalisms by
which we describe them.

Background

We describe planning problems in terms of extensions to the
SAS+ formalism [Bäckström and Nebel, 1995]. A classical
planning task Π = 〈V ,O; sI , G, C 〉 is given by a set of vari-
ables V , with each variable v ∈ V having a finite domain
dom(v), a set of actions O, with each action o ∈ O described
by a pair 〈pre(o), eff(o)〉 of partial assignments to V , called
the precondition and effect of o, respectively, initial state sI
and goal condition G, which are full and partial assignments
to V , respectively, and the cost function C : O → R0+. A
state s is given by a full assignment to V . An action is said
to be applicable in a state s if pre(o) ⊆ s, and sJoK denotes
the result of applying o in s, where the value of each v ∈ V
is given by eff(o)[v] if defined and s[v] otherwise. An op-
erator sequence π = 〈o1, . . . , ok〉 is applicable in s if there
exist states s0, · · · , sk such that (i) s0 = s, and (ii) for each
1 ≤ i ≤ k, oi is applicable in si−1 and si = si−1JoiK. We
refer to the state sk by sJπK and call it the end state of π. An
operator sequence π is a plan for a classical planning problem
if it is applicable in sI and G ⊆ sIJπK. The cost of a plan π
is given by C(π) =

∑
o∈π C(o); the goal of optimal classical

planning is to find a plan with minimal cost. We refer to a pair
of variable v and its value ϑ ∈ dom(v) as a fact and denote
it by 〈v, ϑ〉. We sometimes abuse notation and treat partial
assignments as sets of facts.

An oversubscription planning (OSP) problem is given by
ΠOSP = 〈V ,O, sI , C , u,B〉, where V , O, sI , and C are as in
classical planning, u : (〈v, ϑ〉)→ R0+ is a non-negative val-
ued utility function over variable assignments (facts), and B
is a cost bound for the plan, imposing the additional require-
ment that only plans π such that C(π) ≤ B are valid. The
utility of a plan π is given by

∑
〈v,ϑ〉∈sIJπK u(〈v, ϑ〉); the ob-

jective of OSP problems is to find valid plans with maximal
utility.

A multiple cost function (MCF) problem is given by
ΠMCF = 〈V,O, sI , G, C0,C 〉, where V , O, sI , and C0 are
as in classical planning, C0 is the primary cost function, and
C = {〈Ci,Bi〉 | 1 ≤ i ≤ n} is a set of secondary cost
functions Ci : O → R0+, and bounds, both non-negative.
Valid plans for MCF planning problems fulfill the condition
Ci(π) ≤ Bi for all secondary cost functions, and optimal
plans for MCF planning have minimal primary cost C0(π).
In this paper we only consider MCF problems with a single
secondary cost function, i.e. n = 1.

Reformulating OSP Problems
It has recently been shown that an OSP problem can be com-
piled into an MCF planning problem with a single secondary
cost function that corresponds to the cost function C of the
original problem, and is constrained to not exceed the spec-
ified bound B [Katz et al., 2019a]. The primary cost func-
tion for the problem, or the cost function to be optimized,
results from compiling the utilities from the original problem
into costs. Two different compilations have been proposed
for this task: (i) the soft goals compilation, which adds for
each variable v that has some value ϑ ∈ dom(v) for which
a utility is specified, a hard goal, along with actions that are
able to achieve this hard goal at different costs, and (ii) the
state delta compilation which encodes in the cost of each ac-
tion the change in state utility that results from applying it.
Here we consider only (i), as (ii) introduces negative action
costs that A∗ and existing classical planning heuristics are
not designed to handle. Note, however, that our methods do
not depend on the specific choice of compilation, as long as
they remove utilities from the problem and do not introduce
negative action costs.

The soft goals compilation was originally introduced in the
context of net-benefit planning, which is similar to oversub-
scription planning but does not specify a bound on plan cost,
having instead as an objective the minimization of the dif-
ference between the achieved utility and the cost of the plan
[Keyder and Geffner, 2009]. It can be applied in the OSP
setting to result in an MCF planning problem as follows:

Definition 1 Let ΠOSP = 〈V ,O, sI , C , u,B〉 be an over-
subscription planning task. The soft goals reformulation
Πsg

MCF = 〈V ′, O′, sI , G′, C0, {〈C ′,B〉}〉 of ΠOSP is an MCF
planning task, where

• V ′ = {v′|v ∈ V }, with

dom(v′) =

{
dom(v) ∪ {gv} umax(v) > 0

dom(v) otherwise,

• O′ = O ∪ {ov,ϑ = 〈{〈v, ϑ〉}, {〈v, gv〉}〉 | ϑ ∈
dom(v), v ∈ V, umax(v) > 0}
• G′ = {〈v, gv〉|v ∈ V, umax(v) > 0},

• C0(o) =

{
0 o ∈ O
umax(v)− u(〈v, ϑ〉) o = ov,ϑ,

• C ′(o) =

{C(o) o ∈ O
0 otherwise,

with umax(v) := maxϑ∈dom(v) u(〈v, ϑ〉) denoting the maxi-
mum utility over the values of the variable v.

In the reformulated problem, only the ov,ϑ actions for
which ϑ is not the maximum utility value of v have posi-
tive primary costs. These actions make explicit that a par-
ticular utility will not be achieved, and that the plan has in-
stead chosen to achieve the associated gv by accepting the
associated cost penalty. The primary cost of a plan π for
the reformulated problem is then given by

∑
v∈V umax(v) −∑

f∈sJπK u(f).
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Note that this compilation assumes that utilities are defined
for single facts. The more general case, in which utilities are
instead defined for logical formulae ϕ, can be handled as in
the soft goals compilation by introducing a new variable vϕ,
and two actions that achieve its goal value with cost 0 and
precondition ϕ, and cost u(ϕ) and precondition ∅, respec-
tively [Keyder and Geffner, 2009]. Since we consider only
single fact utilities here, we do not discuss this case in detail.

While this compilation is sound as stated, two further op-
timizations can be made to reduce the state space of the re-
sulting compiled problem. First, an arbitrary ordering can be
introduced over V to ensure that the gv values are achieved in
a fixed sequence, to avoid searching over different orderings.
Second, a new precondition fact that is deleted by the ov,ϑ
actions can be added to the original domain actions to ensure
that ov,ϑ actions happen only at the end of the plan and are
not interleaved with the original domain actions. We make
use of both of these optimizations here.

A∗ for MCF Planning Problems

TheA∗ algorithm extends blind search techniques such as Di-
jkstra’s algorithm by allowing the incorporation of admissible
(non-overestimating) heuristics [Hart et al., 1968]. In each it-
eration of its main loop, A∗ picks a node n to expand with
minimal f(n) = g(n) + h(n) value, where g(n) is the cost
of the path to n, and h(n) is an admissible estimate of the re-
maining cost to the goal. An optimal solution to the problem
is found when a node n with minimal f(n) value is a goal
node.

To adapt A∗ to the MCF planning setting, we store at each
node n a set of accumulated path costs gi(n) resulting from
each of the secondary cost functions C1, . . . , Cn, in addition
to the accumulated primary cost g0(n). When a node is taken
from the priority queue and expanded, generated successor
nodes for which any gi(n) > Bi can be immediately pruned,
as all Ci are assumed to be non-negative, and they cannot
constitute valid prefixes for solution paths.

One key optimization used in modern A∗ implementations
in the classical setting is duplicate detection, which allows
states that are rediscovered during search to be discarded, if
the new g value exceeds the cost of the path to the state that
was previously found, or to be updated with a new parent, if
the cost of the new path is less. In the MCF setting, care must
be taken to ensure that newly discovered nodes are discarded
(or replace existing nodes), only when they are dominated
by (or dominate), the existing node in all cost dimensions.
While the only necessary property of the open list from a cor-
rectness perspective is that it order nodes by increasing pri-
mary f(n) value, the choice of a secondary ordering heuris-
tic plays a role here: an ordering that causes a dominating
node to be generated first and enables subsequently generated
nodes to be immediately discarded as dominated results in su-
perior performance. In our implementation of the algorithm,
we therefore use an open list that orders nodes by increasing
gi(n) value when their primary f(n) values are the same.

l0 l1

u(visited(l1)) : 10

l2

u(visited(l2)) : 10

1 1

Figure 1: An OSP problem based on the VISIT-ALL domain.

Bound-Sensitive Heuristics
While any admissible heuristic can be used to guide search
in MCF planning, classical planning heuristics that ignore
bounds entirely are typically extremely uninformative. Con-
sider the problem shown in Figure 1: the agent is initially
at l0, and can obtain a utility of 10 by visiting each of the
locations l1 and l2. The costs of the actions move(l0, l1)
and move(l1, l2) are both 1. In the compiled MCF version
of this problem, an optimal but naive heuristic that ignores
the bound will give an estimate for the primary cost of 0, as
both visited(l1) and visited(l2) can be made true, and the as-
sociated 0-primary cost ovisited(l∗) actions applied to reach the
newly introduced hard goals corresponding to each utility. If,
however, B = 1, the optimal C0 cost at l0 is 10, since l2
cannot be reached at cost ≤ B and the agent must use the
onot-visited(l2) action to achieve the associated hard goal with a
cost of 10. Similarly, if B = 0, the C0 cost of the optimal plan
is 20, since the value of C1 for all available actions exceeds
the bound B. In practice, it turns out that the OSP versions
of many classical planning problems have similar behavior:
their state spaces are strongly connected, so any variable as-
signment can be achieved from any state, and classical plan-
ning heuristics that ignore bounds are no more informed than
blind search.

In order to obtain estimates that take secondary cost bounds
into account and can guide heuristic search towards feasible
solutions, we therefore introduce bound-sensitive heuristics.
In the following, we use b to denote a budget vector of non-
negative reals that indicate the unused component of each of
the secondary cost bounds Bi at a given search node.

Definition 2 (Optimal bound-sensitive heuristic) Given
an MCF planning problem ΠMCF = 〈V,O, sI , G, C0,C 〉, the
optimal bound-sensitive heuristic h∗(s, b) for a state s and
budget vector b is given by the minimal primary cost C0(π)
of a plan π for s such that Ci(π) ≤ bi for i = 1, . . . , n.

By analogy with standard admissible heuristics, an ad-
missible bound-sensitive heuristic is a non-overestimating
bound-sensitive heuristic:

Definition 3 (Admissible bound-sensitive heuristic) Given
an MCF planning problem ΠMCF = 〈V,O, sI , G, C0,C 〉, an
admissible bound-sensitive heuristic h(s, b) for a state s and
budget vector b is a heuristic h such that h(s, b) ≤ h∗(s, b)
for all s, b.

Any classical planning heuristic that completely ignores Ci
and Bi can be thought of as an admissible bound-sensitive
heuristic that assumes b = ∞. As the value of b decreases,
the value of h∗(s,b) can only increase. In general, it is useful
to keep in mind the following property:
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Theorem 1 Given a state s and budget vectors b, b’ such that
b ≤ b’ (where ≤ is interpreted as a pairwise comparison),
h∗(s, b) ≥ h∗(s, b’).

Proof sketch: This follows from the fact that any plan π for
s such that Ci(π) ≤ bi also has the property that Ci(π) ≤ b’i
for i = 1, . . . , n since b ≤ b’, yet the opposite is not the case.

Theorem 1 applied to MCF planning problems obtained
as the soft goals compilations of OSP problems states that
for any s, decreasing b increases h∗(s,b), and decreases the
achievable utility, since the primary cost here indicates the
utility that the plan must declare unachievable through ov,ϑ
actions with C0(ov,ϑ) ≥ 0.

Bound-Sensitive hmax

The admissible classical heuristic hmax estimates the cost of a
set of facts F as the cost of the most expensive fact f ∈ F ,
and applies this approximation recursively to action precon-
ditions in order to obtain the cost of the goal [Bonet and
Geffner, 2001]:

hmax
C (F, s) = max

f∈F
hmax
C (f, s)

hmax
C (f, s) =

{
0 f ∈ s

min
o∈achievers(f,s)

hmax
C (o, s) otherwise

hmax
C (o, s) = C(o) + hmax

C (pre(o), s)

where hmax
C denotes the value of hmax computed with a cost

function C, and achievers(f, s) denotes the set of actions o
for which f ∈ eff(o). Note that the hmax cost of a fact
f that is not present in s is computed by choosing an ac-
tion o from this set that achieves it with minimum possible
cost. Given a set of secondary cost functions and bounds
C = {〈C1,B1〉, . . . , 〈Cn,Bn〉}, a bound-sensitive version of
hmax can easily be obtained by replacing the set of achievers
used to compute hmax

C0 with

achievers(f, s)C0 = {o |f ∈ eff(o) ∧
∧

i=1,...,n

hmax
Ci (o, s) ≤ Bi}

where actions o for which any estimate hmax
Ci (o, s) exceeds Bi

are not considered. Note that due to the admissibility of hmax,
this restriction of the set of achievers is sound but not com-
plete: it is guaranteed that any action removed from the set of
achievers cannot be used in a valid plan, but there may be ad-
ditional actions that cannot be achievers but are not pruned by
the heuristic. In general, any admissible estimate hmax

Ci (o, s)

could be used to compute achievers(f, s)C0 , but we have cho-
sen hmax here for simplicity.

Theorem 2 Bound-sensitive hmax
C0 is an admissible bound-

sensitive heuristic.

Proof sketch: This follows from the admissibility of the
heuristic used to compute achievers(f, s)C0 .

Bound-Sensitive Merge-and-shrink
Merge-and-shrink heuristics are a family of abstraction
heuristics that incrementally build a representation of the full
state space of a problem [Helmert et al., 2014]. The construc-
tion process begins with the set of transition systems induced
over each state variable; at each step, two transition systems
are selected to be merged and replaced with their synchro-
nized product. Since the transition systems need to be rep-
resented explicitly in memory, before the merge a shrinking
step is perfomed on the two selected transition systems to en-
force a user-specified threshold on the size of the synchro-
nized product. This step is performed by abstracting multi-
ple states in the current representation into a single state (and
thereby losing optimality). The final output of the algorithm
consists of a single abstract transition system in which mul-
tiple states and actions from the original task are mapped to
a single state or transition, respectively. hMS(s) is then given
by the cost of a shortest path from the abstract state represent-
ing s to the closest abstract goal state in the final transition
system. This estimate is admissible by definition.

To adapt merge-and-shrink to the MCF setting, we main-
tain for each transition in the abstract state space the mini-
mum Ci cost for i = 1, . . . , n among all of the transitions
from the original task represented by that transition. The dis-
tance Ci between any two abstract states s, s′ then represents
a non-overestimate of the secondary cost of reaching s′ from
s. A bound-sensitive heuristic value for a state s can be com-
puted as the minimum C0 cost of a path π from s to an abstract
goal state sg whose Ci cost in the abstract state space does not
exceed Bi, for any i. The C0 cost of such such a path can be
computed with a modified version of Dijkstra’s algorithm that
stores secondary cost information for each node and discards
nodes for which Ci > Bi for any i.

Theorem 3 Bound-sensitive hMS is an admissible bound-
sensitive heuristic.

Proof sketch: This follows from the fact that the secondary
costs used in the abstract state space are the minimums of
the secondary costs Ci of the represented transitions in the
original problem, and the proof of admissibility of standard
hMS.

While the msb heuristic can be implemented by running Di-
jkstra’s algorithm in the abstract state space for each heuristic
computation, an important optimization when a single sec-
ondary cost function is present (which is the case in the com-
piled OSP problems that we consider) is to run Dijkstra only
once during preprocessing, and compute the primary cost
in the presence of different bounds on the secondary cost.
This information can then be stored as a sequence of pairs
〈〈b0, c0〉, . . . , 〈bn, cn〉〉, where b0, . . . , bn is strictly increas-
ing and c0, . . . , cn is strictly decreasing (recall Theorem 1).
hMS(s,b) is then given by the first ci such that bi ≤ b.

Experiments
We implemented our approach in the Fast Downward plan-
ner [Helmert, 2006], and evaluated it on a set of publically
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25 50 75 100
Coverage BnB bl maxb max msb ms BnB bl maxb max msb ms BnB bl maxb max msb ms BnB bl maxb max msb ms
airport 27 ±0 -1 -1 -9 -9 22 ±0 ±0 -1 -4 -4 21 ±0 -1 ±0 -4 -4 21 ±0 -3 -3 -5 -5
barman11 12 ±0 +1 ±0 ±0 ±0 8 ±0 ±0 ±0 ±0 ±0 4 ±0 ±0 ±0 ±0 ±0 4 ±0 ±0 ±0 ±0 ±0
barman14 6 ±0 ±0 ±0 +2 ±0 3 ±0 ±0 -3 ±0 ±0 0 ±0 ±0 ±0 ±0 ±0 0 ±0 ±0 ±0 ±0 ±0
blocks 35 ±0 ±0 ±0 ±0 ±0 28 ±0 +1 -2 +4 ±0 21 ±0 ±0 ±0 +8 ±0 18 ±0 ±0 ±0 +8 ±0
childsnack14 0 ±0 +1 ±0 +2 ±0 0 ±0 ±0 ±0 ±0 ±0 0 ±0 ±0 ±0 ±0 ±0 0 ±0 ±0 ±0 ±0 ±0
depot 16 ±0 -1 -2 -1 ±0 11 ±0 ±0 -4 ±0 -1 7 ±0 ±0 -1 ±0 ±0 4 ±0 ±0 ±0 +1 ±0
driverlog 15 ±0 ±0 ±0 ±0 ±0 13 ±0 +1 -1 +1 ±0 10 ±0 +1 ±0 +2 ±0 7 ±0 +1 ±0 +4 ±0
elevators08 30 ±0 ±0 -1 -1 ±0 25 ±0 -1 -1 ±0 ±0 23 ±0 -1 -1 +1 ±0 17 +1 ±0 -1 +3 +1
elevators11 20 ±0 ±0 ±0 ±0 ±0 19 ±0 ±0 ±0 ±0 ±0 18 ±0 -1 -1 +1 ±0 14 +1 ±0 -1 +2 +1
floortile11 9 ±0 ±0 ±0 -2 ±0 4 ±0 +1 ±0 ±0 ±0 2 ±0 +2 +2 +1 ±0 2 ±0 +4 +4 ±0 ±0
floortile14 9 ±0 ±0 ±0 -2 -3 2 ±0 ±0 ±0 ±0 ±0 0 ±0 +2 +1 ±0 ±0 0 ±0 +5 +5 ±0 ±0
freecell 77 ±0 -14 -33 -12 -6 30 ±0 -2 -13 -2 -1 21 ±0 -6 -6 -1 -1 20 ±0 -6 -6 -2 -4
ged14 20 ±0 ±0 ±0 ±0 ±0 20 ±0 ±0 ±0 ±0 ±0 20 ±0 ±0 ±0 -1 ±0 20 ±0 ±0 ±0 ±0 ±0
grid 5 ±0 ±0 -1 ±0 ±0 3 ±0 ±0 ±0 -1 ±0 2 ±0 ±0 ±0 -1 ±0 1 ±0 ±0 ±0 +1 ±0
gripper 11 ±0 ±0 ±0 +1 ±0 8 ±0 ±0 ±0 ±0 ±0 8 ±0 -1 ±0 ±0 ±0 8 ±0 -1 ±0 ±0 ±0
hiking14 19 ±0 -1 -5 +1 ±0 14 ±0 -1 -3 +3 ±0 13 ±0 -2 -2 +2 ±0 11 ±0 -2 -2 +3 ±0
logistics00 21 ±0 +1 ±0 ±0 ±0 16 ±0 ±0 ±0 ±0 ±0 12 ±0 +2 ±0 +2 ±0 10 ±0 ±0 ±0 +4 ±0
logistics98 6 ±0 +1 ±0 ±0 ±0 4 ±0 +1 ±0 +1 ±0 2 ±0 +1 ±0 +1 ±0 2 ±0 ±0 ±0 ±0 ±0
miconic 96 ±0 -1 -4 +12 -1 65 ±0 ±0 -1 +7 ±0 55 ±0 ±0 ±0 +11 ±0 50 +5 ±0 ±0 +11 +4
mprime 35 ±0 ±0 -2 -4 -2 28 -1 -1 -5 -3 -1 24 ±0 -1 -2 -2 ±0 19 ±0 +1 -5 -2 ±0
mystery 29 ±0 ±0 ±0 -2 ±0 27 -1 ±0 -3 -4 -1 21 ±0 ±0 -3 -1 ±0 18 ±0 ±0 -3 -1 ±0
nomystery11 20 ±0 ±0 ±0 ±0 ±0 14 ±0 ±0 -2 ±0 ±0 10 ±0 -1 -2 ±0 ±0 8 ±0 ±0 ±0 +3 +1
openstacks08 30 ±0 ±0 ±0 ±0 ±0 25 ±0 ±0 ±0 ±0 ±0 24 ±0 ±0 ±0 ±0 ±0 22 ±0 -3 -2 ±0 ±0
openstacks11 20 ±0 ±0 ±0 ±0 ±0 18 ±0 ±0 ±0 ±0 ±0 17 ±0 ±0 ±0 ±0 ±0 17 ±0 -3 -3 ±0 ±0
openstacks14 20 -1 -1 -1 -1 -1 15 -2 -4 -4 -2 -2 7 ±0 -3 -3 ±0 ±0 3 ±0 -1 ±0 ±0 ±0
openstacks 9 ±0 -2 -2 -2 -2 7 ±0 ±0 ±0 ±0 ±0 7 ±0 ±0 ±0 ±0 ±0 7 ±0 ±0 ±0 ±0 ±0
parcprinter08 17 -2 +1 -2 -3 -3 13 ±0 +1 ±0 ±0 -1 11 ±0 +2 ±0 ±0 -1 11 -1 +2 +2 +1 ±0
parcprinter11 13 -1 +1 -2 -2 -2 9 ±0 +1 ±0 ±0 ±0 7 ±0 +2 ±0 +1 ±0 6 ±0 +3 +2 +2 +2
parking11 11 -1 -1 -2 -3 -1 1 ±0 ±0 ±0 ±0 ±0 0 ±0 ±0 ±0 ±0 ±0 0 ±0 ±0 ±0 ±0 ±0
parking14 14 -2 -3 -6 -3 -3 4 ±0 -3 -4 ±0 ±0 0 ±0 ±0 ±0 +1 ±0 0 ±0 ±0 ±0 ±0 ±0
pathways-nn 5 ±0 ±0 ±0 ±0 ±0 4 ±0 +1 ±0 +1 ±0 4 ±0 ±0 ±0 ±0 ±0 4 ±0 ±0 ±0 ±0 ±0
pegsol08 30 ±0 ±0 ±0 ±0 ±0 30 ±0 ±0 ±0 ±0 ±0 29 -1 ±0 -2 ±0 ±0 27 ±0 ±0 ±0 ±0 ±0
pegsol11 20 ±0 ±0 ±0 ±0 ±0 20 ±0 ±0 ±0 ±0 ±0 19 -2 ±0 -2 ±0 ±0 17 ±0 ±0 ±0 ±0 ±0
pipes-notank 45 ±0 ±0 -2 -30 -27 30 ±0 -1 -5 -14 -12 22 ±0 -2 -6 -5 -5 15 ±0 -1 -2 ±0 -1
pipes-tank 35 -2 -6 -11 -9 -9 20 ±0 -3 -5 -3 -3 16 -1 -4 -5 -1 -1 11 ±0 -1 -3 ±0 ±0
psr-small 50 ±0 ±0 ±0 ±0 ±0 50 ±0 ±0 ±0 ±0 ±0 49 ±0 ±0 ±0 +1 ±0 49 ±0 ±0 ±0 ±0 ±0
rovers 15 ±0 +1 -2 -1 ±0 8 ±0 +1 ±0 +1 ±0 6 ±0 ±0 ±0 +1 ±0 5 +1 +1 +1 +1 +1
satellite 9 ±0 +2 ±0 +2 ±0 7 ±0 ±0 ±0 +1 ±0 6 ±0 ±0 ±0 +1 ±0 5 ±0 ±0 -1 +1 ±0
scanalyzer08 13 +1 ±0 ±0 -1 -1 12 ±0 ±0 -3 ±0 ±0 12 ±0 -3 -3 ±0 ±0 12 ±0 -3 -3 ±0 ±0
scanalyzer11 10 ±0 ±0 ±0 -1 -1 9 ±0 ±0 -3 ±0 ±0 9 ±0 -3 -3 ±0 ±0 9 ±0 -4 -3 ±0 ±0
sokoban08 30 ±0 ±0 ±0 ±0 ±0 29 ±0 ±0 -1 ±0 ±0 24 ±0 +3 ±0 ±0 ±0 22 ±0 +3 +1 ±0 ±0
sokoban11 20 ±0 ±0 ±0 ±0 ±0 20 ±0 ±0 ±0 ±0 ±0 20 ±0 ±0 ±0 ±0 ±0 19 ±0 +1 -1 ±0 ±0
storage 20 ±0 ±0 -1 -1 ±0 17 ±0 ±0 -1 -1 ±0 15 ±0 ±0 ±0 ±0 ±0 14 ±0 ±0 ±0 ±0 ±0
tetris14 17 ±0 ±0 ±0 -15 -15 14 ±0 -3 -4 -13 -12 11 -1 -3 -3 -11 -9 9 ±0 -4 -4 -8 -7
tidybot11 20 ±0 ±0 ±0 -19 -19 20 ±0 -1 -3 -19 -19 18 -1 -4 -6 -17 -17 13 ±0 -6 -8 -13 -12
tidybot14 20 ±0 ±0 ±0 -20 -20 18 ±0 -2 -5 -18 -18 14 -1 -6 -10 -14 -14 6 ±0 -6 -6 -6 -6
tpp 9 ±0 ±0 ±0 -1 ±0 7 ±0 ±0 ±0 -1 ±0 6 ±0 ±0 ±0 ±0 ±0 6 ±0 ±0 ±0 ±0 ±0
transport08 17 ±0 +1 -2 -1 ±0 15 ±0 ±0 -1 -2 ±0 12 +1 +1 -1 +1 +1 11 ±0 ±0 ±0 -1 ±0
transport11 15 ±0 +1 -1 -2 -1 11 ±0 ±0 ±0 -2 -1 8 +1 +1 -2 +1 +1 6 ±0 ±0 ±0 +1 ±0
transport14 13 +1 ±0 -1 ±0 ±0 9 ±0 ±0 ±0 -3 ±0 9 ±0 ±0 -3 -2 ±0 7 ±0 -1 -2 -1 ±0
trucks 13 -1 ±0 -1 -1 -1 8 ±0 ±0 ±0 ±0 ±0 6 ±0 ±0 ±0 ±0 ±0 5 ±0 ±0 +1 ±0 ±0
visitall11 16 ±0 +1 -1 ±0 ±0 12 -1 ±0 -1 ±0 ±0 9 ±0 ±0 ±0 ±0 ±0 9 ±0 ±0 ±0 ±0 ±0
visitall14 10 ±0 ±0 -1 -1 ±0 6 ±0 ±0 ±0 ±0 ±0 4 ±0 ±0 ±0 ±0 ±0 3 ±0 ±0 ±0 +1 ±0
woodwork08 25 ±0 ±0 -3 -6 -11 15 ±0 -1 -3 -7 -4 10 ±0 +1 -1 ±0 -1 7 ±0 +2 +2 +2 ±0
woodwork11 18 ±0 -1 -2 -3 -5 10 ±0 -1 -3 -4 -4 5 ±0 +1 -1 ±0 -2 2 ±0 +2 +2 +3 -1
zenotravel 13 ±0 ±0 ±0 ±0 ±0 10 ±0 ±0 ±0 +2 ±0 8 ±0 +1 ±0 +2 ±0 8 ±0 ±0 ±0 ±0 ±0
Sum all 1190 -8 -20 -92 -139 -143 897 -5 -16 -85 -82 -84 748 -5 -22 -66 -22 -53 651 +7 -20 -39 +13 -26

Table 1: The coverage results as diff from the baseline BnB, for four domain suites defined by the 25%, 50%, 75%, and 100% of
best known solution cost for the classical planning task as an OSP task cost bound. bl stands for blind, maxb and max for hmax,
bound-sensitive and regular variants, msb and ms for merge-and-shrink, bound-sensitive and regular variants, respectively.
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Figure 2: Expansions up to the last layer, A∗ with blind heuristic vs. (a) bound-sensitive hmax and (b) bound-sensitive
merge-and-shrink; A∗ with bound-sensitive vs. regular heuristic for (c) hmax and (c) merge-and-shrink.

available OSP benchmarks [Katz et al., 2019b]. The set of
benchmarks is taken from the International Planning Compe-
titions of recent years, in which goal facts are replaced with
utilities, and the bound set at 25%, 50%, 75%, or 100% of the
cost of the optimal or best known solution to each problem.
The baseline for our comparison is a blind branch-and-bound
search, currently the best available configuration for oversub-
scription planning that we know of [Katz et al., 2019a]. We
compare this baseline to our proposed approach of A∗ search
on the MCF compilation of the OSP task. Since the compila-
tion introduces intermediate states at which some but not all
of the ov,ϑ have been applied, we use a further optimization
that avoids generating these nodes and applies all of the ov,ϑ
actions in a single step, reducing the state space to that of the
original OSP task. We experiment with blind A∗ search, and

A∗ using classical hmax and hMS, as well as the two heuris-
tics’ bound-sensitive variants introduced here. For hMS, we
used exact bisimulation with an abstract state space threshold
of 50000 states and exact generalized label reduction [Siev-
ers et al., 2014]. The experiments were performed on Intel(R)
Xeon(R) CPU E7-8837 @2.67GHz machines, with time and
memory limits of 30min and 3.5GB, respectively. Per-domain
and overall coverage, as well as per-task node expansions for
the various configurations and problem suites are shown in
Table 1 and Figure 2, respectively. We now report some ob-
servations from our results.

• Blind branch-and-bound search usually slightly outper-
forms blind A∗ in terms of coverage, except for the
100% suite. The difference between the two may come
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down to the fact that A∗ must do extra work in ordering
the priority queue, while the variant of branch and bound
search that we consider uses no ordering heuristic and
can use a simple stack as its search queue. Alternately it
may be due to small differences in implementation.

• Bound-sensitive heuristics are much more informative
than their classical variants on OSP problems, some-
times decreasing expansions by orders of magnitude.
Compared to non-bound-sensitive heuristics, they also
almost always result in better coverage.

• Blind search dominates informed search in terms of cov-
erage when bounds are low, but the effect diminishes as
the bound increases and it becomes intractable to explore
the full state space under the bound. For the 25% suite
of problems, heuristic configurations solve an average
of approximately 100 instances fewer than the baseline,
compared to approximately 15 instances fewer on the
100% suite. Notably, bound-sensitive hMS has the best
coverage in the 100% suite, solving 13 problems more
than the baseline, and 6 more than blind A∗.

• Coverage on several domains benefits from more in-
formed search schemes. On BLOCKSWORLD, DRIVER-
LOG, and MICONIC, bound-sensitive hMS solves the
largest number of problems, and this is also the case for
bound-sensitive hmax on FLOORTILE, PARC-PRINTER,
and SOKOBAN.

• hMS often times out in the construction phase and before
search has begun. This occurs on average in approxi-
mately 300 problems per suite, or 1200 problems total.
This is especially pronounced in the TIDYBOT, TETRIS,
and PIPESWORLD-NOTANKAGE domains. This sug-
gests a hybrid approach that combines the strengths of
blind search and hMS: setting an upper bound on the
time allotted to heuristic construction, and running blind
search instead if construction does not terminate within
this bound. Using this configuration with a value of 10
minutes for the upper bound results in a planner that
outperforms blind A∗ by +11, +16, +37, and +38 in-
stances for the 25%, 50%, 75%, and 100% suites, re-
spectively. This makes hMS schemes that are less ex-
pensive to construct but maintain informativeness in this
setting an appealing future subject of research.

Conclusions and Future Work
We have shown that a previously introduced compilation to
multiple cost function classical planning allows the A∗ algo-
rithm to be used to solve oversubscription planning problems,
and introduced a family of bound-sensitive heuristics that are
much more informed than their classical counterparts in this
setting. Our experiments show that this approach results in a
state-of-the-art method for some bound settings and domains.

One future research direction we would like to explore
that builds on the methods introduced here is the use of
non-admissible heuristics for satisficing OSP. The method by
which bound-sensitive hmax is obtained is fairly general and
should be equally applicable for hadd or general relaxed plan
heuristics [Keyder and Geffner, 2008]. A second direction is

the use of these heuristics in other planning settings in which
tradeoffs must be made between different cost functions, e.g.
minimizing fuel use in the presence of bounds on time or vice
versa in logistics problems.

Finally, our methods may be applicable to numeric plan-
ning problems in which the variables describe resources that
are strictly decreasing and can be expressed in terms of
secondary cost functions and associated bounds. Bound-
sensitive heuristics could provide a principled way of reason-
ing about numeric variables in this context.
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Abstract

Current classical planners are very successful in finding (non-
optimal) plans, even for large planning instances. To do so,
most planners rely on a preprocessing stage that computes a
grounded representation of the task. Whenever the grounded
task is too big to be generated (i.e., whenever this preprocess
fails) the instance cannot even be tackled by the actual plan-
ner. To address this issue, we introduce a partial grounding
approach that grounds only a projection of the task, when
complete grounding is not feasible. We propose a guiding
mechanism that, for a given domain, identifies the parts of a
task that are relevant to find a plan by using off-the-shelf ma-
chine learning methods. Our empirical evaluation attests that
the approach is capable of solving planning instances that are
too big to be fully grounded.

Introduction
Given a model of the environment, classical planning at-
tempts to find a sequence of actions that lead from an initial
state to a state that satisfies a set of goals. Planning mod-
els are typically described in the Planning Domain Defini-
tion Language (PDDL) (McDermott et al. 1998) in terms of
predicates and action schemas with arguments that can be
instantiated with a set of objects. However, most planners
work on a grounded representation without free variables,
like STRIPS (Fikes and Nilsson 1971) or FDR (Bäckström
and Nebel 1995). Grounding is the process of translating a
task in the lifted (PDDL) representation to a grounded repre-
sentation. It requires to compute all valid instantiations that
assign objects to the arguments of predicates and action pa-
rameters, even though only a small fraction of these instan-
tiations might be necessary to solve the task.

The size of the grounded task is exponential in the num-
ber of arguments in predicates and action schemas. Although
this is constant for all tasks of a given domain, and ground-
ing can be done in polynomial time, it may still be pro-
hibitive when the number of objects is large and/or some
predicates or actions have many parameters.

The success of planners like FF (Hoffmann and Nebel
2001a) or LAMA (Richter, Westphal, and Helmert 2011) in
finding plans for large planning tasks is undeniable. How-
ever, since most planners rely on grounding for solving a
task, they fail without even starting the search for a plan

whenever an instance cannot be grounded, making ground-
ing a bottleneck for the success of satisficing planners.

Grounding is particularly challenging in open multi-task
environments, where the planning task is automatically gen-
erated with all available objects even if only a few of them
are relevant to achieve the goals. For example, in robotics,
the planning task may contain all objects with which the
robot may interact even if they are not needed (Lang and
Toussaint 2009). In network-security environments, like the
one modeled in the Caldera domain (Miller et al. 2018),
the planning task may contain all details about the network.
However, to the best of our knowledge, no method exists that
attempts to focus the grounding on relevant parts of the task.

We propose partial grounding, where, instead of instan-
tiating the full planning task, we focus on the parts that are
required to find a plan. The approach is sound – if a plan
is found for the partially grounded task then it is a valid
plan for the original task – but incomplete – the partially
grounded task will only be solvable if the operators in at
least one plan have been grounded. To do so, we give prior-
ity to operators that we deem more relevant to achieve the
goal. Inspired by relational learning approaches to domain
control knowledge (e.g., Yoon, Fern, and Givan (2008), de la
Rosa et al. (2011), Krajnansky et al. (2014)), we use machine
learning methods to predict the probability that a given op-
erator belongs to a plan. We learn from small training in-
stances, and generalize to larger ones by using relational
features in standard classification and regression algorithms
(e.g., Kramer, Lavrač, and Flach (2001)). As an alternative
model, we also experiment with relational trees to learn the
probabilities (Muggleton and Raedt 1994).

Empirical results show that our learning models can pre-
dict which operators are relevant with high accuracy in sev-
eral domains, leading to a very strong reduction of task size
when grounding and solving huge tasks.

Background
Throughout the paper, we assume for simplicity that tasks
are specified in the STRIPS subset of PDDL (Fikes and Nils-
son 1971). Our algorithms and implementation, however, are
directly applicable to a larger subset of PDDL containing
ADL expressions (Pednault 1989).

A lifted (PDDL) task ΠPDDL is a tuple
(P,A,ΣC ,ΣO, I, G) whereP is a set of (first-order) atomic
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predicates, A is a set of action schemas, Σ := ΣC ∪ ΣO

is a non-empty set of objects consisting of constants ΣC ,
and non-constant objects ΣO, I is the initial state, and G is
the goal. Predicates and action schemas have parameters.
We denote individual parameters with x, y, z and sets of
parameters with X,Y, Z. An action schema a[X] is a triple
(pre(a), add(a), del(a)), consisting of preconditions, add
list, and delete list, all of which are subsets of P , possibly
pre-instantiated with objects from ΣC , such that X is the
set of variables that appear in pre(a) ∪ add(a) ∪ del(a). I
and G are subsets of P , instantiated with objects from Σ.

A lifted task ΠPDDL can be divided into two parts:
the domain specification (P,A,ΣC) which is common to
all instances of the domain, and the problem specification
(ΣO, I, G) which is different for each instance of a domain.

A STRIPS task Π is a tuple (F,O, I,G), where F is a
set of grounded predicates, called facts, and O is a set of
grounded action schemas, called operators. A state s ⊆ F
is a set of facts, I ⊆ F is the initial state and G ⊆ F is the
goal. An operator o is applicable in a state s if pre(o) ⊆ s.
In that case, the outcome state is s′ = (s \ del(o))∪ add(o),
and we write s o−→ s′ for the transition from s to s′ via o. For
a sequence of operators o, we write s o−→ t if the operators in
o can be iteratively applied to s, resulting in t. A sequence
o, with I o−→ sG, is a plan for Π if G ⊆ sG. A task Π is
solvable if a plan exists. The plan is optimal if its length is
minimal among all plans for Π.

We define the delete-relaxation of a task Π as the task Π+

obtained by setting del(o) = ∅, for all o ∈ O. We say that Π
is delete-relaxed solvable if Π+ is solvable.

Given a lifted task ΠPDDL, we can compute the corre-
sponding STRIPS task Π by instantiating the predicates and
action schemas with the objects in Σ. Then, F contains a
fact for each possible assignment of objects in Σ to the ar-
guments of each predicate P [X] ∈ P , andO contains an op-
erator for each possible assignment of objects in Σ to each
action schema a[X] ∈ A. In practice, we do not enumerate
all possible assignments of objects in Σ to the arguments in
facts and action schemas. Instead, only those facts and oper-
ators are instantiated that are delete-relaxed reachable from
the initial state (Helmert 2009).

Partial Grounding
We base our method on the grounding algorithm of Fast
Downward (Helmert 2006). To ground a planning task, this
algorithm performs a fix-point computation similar to the
computation of relaxed planning graphs (Blum and Furst
1997), where a queue is initialized with the facts in the ini-
tial state and in each iteration one element of the queue is
popped and processed. If the element is a fact, then those
operators of which all preconditions have already been pro-
cessed (are reached) are added to the queue. If the element is
an operator, all its add effects are pushed to the queue. The
algorithm terminates when the queue is empty. Then, all pro-
cessed facts and operators are delete-relaxed reachable from
the initial state. For simplicity, the algorithm we describe
here considers only STRIPS tasks but it can be adapted to
support other PDDL features like negative preconditions or

Algorithm 1: Partial Grounding.

Input: A lifted task ΠPDDL = (P,A,ΣC ,ΣO, I, G)
Output: A STRIPS task Π = (F,O, I,G)

1 q ← I;
2 F ← ∅ ; // Processed facts
3 O ← ∅ ; // Processed operators
4 while ¬(q.empty() ∨ G ⊆ F ) ∧ ¬StoppingCondition

do
5 if q.containsFact() then
6 f ← q.popFact() ;
7 F ← F ∪ {f} ;
8 for o 6∈ O ∧ pre(o) ⊆ F do
9 q.insert(o) ;

10 else
11 o← q.popHighPriorityOperator() ;
12 O ← O ∪ {o} ;
13 for f 6∈ F ∧ f ∈ add(o) do
14 q.insert(f ) ;
15 return (F,O, I,G)

conditional effects as it is done by Helmert (2009).
Algorithm 1 shows details of our approach. The main dif-

ference with respect to the approach by Helmert (2009) is
that (1) the algorithm can stop before the queue is empty,
and (2) operators are instantiated in a particular order. For
these two choice points we suggest an approach that aims
at minimizing the size of the partially grounded task, while
keeping it solvable. That said, our main focus is the operator
ordering, and we only consider a simple stopping condition.

Stopping condition. Typical grounding approaches termi-
nate only when the queue is empty, meaning that all (delete-
relaxed) reachable facts and operators have been grounded.
In partial grounding, we allow the algorithm to stop earlier.
Intuitively, this is a good idea because most planning tasks
have short plans, usually in the order of at most a few hun-
dred operators, compared to possibly millions of grounded
operators. Hence, if the correct operators are selected, partial
grounding can potentially stop much sooner than complete
grounding. The key issue is how to decide when the proba-
bility of finding a plan using the so-far grounded operators
is sufficient. Consider the following claims:

1. The grounded task is delete-relaxed solvable iff G ⊆ F .

2. The grounded task is solvable iff there exists a plan π for
ΠPDDL such that π ⊆ O.

Item 1 provides a necessary condition for the task to be
relaxed-solvable, so grounding should continue at least until
G ⊆ F . But this is not sufficient, as it does not guarantee that
a plan can be found for the non-relaxed task. Item 2 provides
an obvious, but difficult to predict, condition for success.

In this work, we consider only a simple stopping condi-
tion. To maximize the probability of the task being solvable,
it is desirable to ground as many operators as possible. The
main constraint on the number of operators to ground are the
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resources (time and memory) that can be spent on ground-
ing. For that reason, one may want to continue grounding
while these resources are not compromised1. We provide a
constant Nop as a parameter, an estimate on the number of
operators that can be grounded given the available resources,
and let the algorithm continue as long as |O| ≤ Nop.

If not all actions are grounded, the resulting grounded task
is a partial representation of the PDDL input and the over-
all planning process of grounding and finding a plan for the
grounded task is incomplete. We implemented a loop around
the overall process that incrementally grounds more actions,
when finding the partially grounded task unsolvable. This
converges to full grounding, resulting in a complete planner.

Queue order. Standard grounding algorithms extract ele-
ments from the queue in an arbitrary order – since all op-
erators are grounded, order does not matter. Our algorithm
always grounds all facts that have been added to the queue,
giving them preference over operators. This ensures that the
effects of all grounded operators are part of the grounded
task. After all facts in the queue have been processed, our al-
gorithm picks an operator according to a heuristic criterion,
which we will call the priority function. Some simple prior-
ity functions include FIFO, LIFO, or random. Since our aim
is to ground all operators of a plan, the priority queue should
sort operators by their probability of belonging to a plan. To
estimate these probabilities, we use machine learning tech-
niques as detailed in the next section. Additionally, one may
want to increase the diversity of selected operators to avoid
being misguided by a bias in the estimated probabilities. We
consider a simple round robin (RR) criterion, which clas-
sifies all operators in the queue by the action schema they
belong to, and chooses an operator from a different action
schema in each iteration. RR works in combination with a
priority function that is used to select which instantiation of
a given action schema should be grounded next.

We define a novelty criterion as a non-trivial priority
function that is not based on learning, inspired by nov-
elty pruning techniques that have successfully been ap-
plied in classical planning (Lipovetzky and Geffner 2012;
2017). During search, the novelty of a state is defined as the
minimum number m for which the state contains a set of
facts of size m, that is not part of any previously generated
state. This can be used to prune states with a novelty < k.

We adapt the definition of novelty to operators in the
grounding process as follows. Let Σ be the set of objects,
a[X] an action schema, and O the set of already grounded
operators corresponding to all instantiations of a[X]. Let
σ = {(x1, σ1), . . . , (xk, σk)} be an assignment of objects
in Σ to parameters X instantiating an operator o, such that
o 6∈ O. Then, the novelty of o is defined as the number of as-
signments (xi, σi) such that there does not exist an operator
o′ ∈ O where xi got assigned σi. In the grounding we will
prioritize operators with a higher novelty, which are likely
to generate facts that have not been grounded yet.

1While search can benefit from grounding less operators, an or-
thogonal pruning method that uses full information of the grounded
task, can be employed at that stage (e. g. Heusner et al. (2014)).

Learning Operator Priority Functions
To guide the grounding process towards operators that are
relevant to solve the task, we use a priority queue that gives
preference to more promising operators. We use a priority
function f : O → [0, 1] that estimates whether operators
are useful or not. Ideally, we want to assign 1 to operators
in an optimal plan and 0 to the rest, so that the number of
grounded operators is minimal. We approximate this by as-
signing to each operator a number between 0 and 1 that esti-
mates the probability that the operator belongs to an optimal
plan for the task. This is challenging, however, due to lack
of knowledge about the fully grounded task.

We use a learning approach, training a model on small in-
stances of a domain and using it to guide grounding in larger
instances. Our training instances need to be small enough to
compute the set of operators that belong to any optimal plan
for the task. We do this by solving the tasks with a symbolic
bidirectional breadth-first search (Torralba et al. 2017) and
extracting all operators that belong to an optimal solution.

Before grounding, the only information that we have
available is the lifted task ΠPDDL = (P,A,ΣC ,ΣO, I, G).
Our training data uses this information, consisting of tu-
ples (I,G,ΣO, o, {0, 1}) for each operator o in a training
instance, where o is assigned a value of 1 if it belongs to
an optimal solution and 0 otherwise. We formulate our pri-
ority functions as a classification task, where we want to
order the operators according to our confidence that they
belong to the 1 class. To learn a model from this data, we
need to characterize the tuple (I,G,ΣO, o) with a set of fea-
tures. Since training and testing problems have different ob-
jects, these features cannot refer to specific objects in ΣO,
so learning has to be done at the lifted level. We propose re-
lational rules that connect the objects that have instantiated
the action schema to the training sample (I,G,ΣO) to cap-
ture meaningful properties of an operator. Because different
action schemas have different (numbers of) arguments, the
features that characterize them will necessarily be different.
Therefore, we train a separate model for each action schema
a[X] ∈ A. All these models, however, predict the proba-
bility of an operator being in an optimal plan, so the values
from two different models are still comparable.

We considered two approaches to conduct the learning:
inductive relational trees and classification/regression with
relational features.

Inductive Relational Learning Trees. Inductive Logic
Programming (ILP) (Muggleton and Raedt 1994) is a well-
known machine learning approach suitable when the train-
ing instances are described in relational logic. ILP has been
used, e.g., to learn domain control knowledge for plan-
ning (de la Rosa et al. 2011; Krajnansky et al. 2014). We
use the Aleph tool (Srinivasan 1999) to learn a tree where
each inner node is a predicate connecting the parameters of
a to-be-grounded operator to the facts in the initial state or
goal, to objects referred to in a higher node in the tree, or to a
constant. The nodes are evaluated by checking if there exists
a predicate instantiated with the given objects in the initial
state or goal. A wildcard symbol (“ ”) indicates that we do
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goal:have-image(?to, )

0.01 goal:have-image(?from, )

0.1 goal:pointing( ,?from)

0.38 goal:pointing(?s,?from)

0.19 0

Figure 1: The relational tree learned for the action schema
turn-to(?s - satellite, ?from - direction, ?to - direction) in
the Satellite domain.

not require a particular object, but that any object instantiat-
ing the predicate at this position is fine. In Figure 1, the left
child corresponds to this check evaluating to false and the
right child to true. For a given action, the tree is evaluated by
checking if there exists an assignment to the free variables
in a path from the root to a leaf node, such that all nodes on
the path evaluate to the correct truth value. We then take the
real value in the leaf node as an estimate of the probability
that the operator is part of an optimal plan. This evaluation
is akin to a CSP problem, so we need to keep the depth of
the trees at bay to have an efficient priority function.

Figure 1 shows the tree learned for the turn-to action
schema in Satellite. In this domain, the goal is to take pic-
tures in different modes. Several satellites are available, each
with several instruments that support some of the modes.
The actions are switching the instruments on and off, cali-
brating them, turning the satellite into different directions,
and taking images. The turn-to action changes the direction
satellite ?s is looking at. In this case, the learned tree con-
siders that the operators turning to and from relevant direc-
tions are more likely part of an optimal plan than turning
away from the goal direction. More concretely, if for a to-
be-instantiated operator turn-to(s, from, to) with objects s,
from, and to, there is no goal have-image(to, ), i. e., taking
an image in direction to using any mode, then the opera-
tor is deemed not useful by the trained model, it only has
a probability of 1% of belonging to an optimal plan. In the
opposite case, and if there is a have-image goal in the from
direction, but no goal pointing( , from), then the operator is
expected to be most useful, with a probability of 38% of be-
ing in an optimal plan. This is relevant information to predict
the usefulness of turn-to. However, there is some margin of
improvement since the initial state is ignored.

Classification and Regression with Relational Features.
An alternative is to use relational rules as features for
standard classification and regression algorithms (Kramer,
Lavrač, and Flach 2001). Our features are relational rules
where the head is an action schema, and the body consists
of a set of goal or initial-state predicates, partially instan-
tiated with the arguments of the action schema in the head
of the rule, constant objects in ΣC , or free variables used
in other predicates in the rule. This is very similar to a path
from root to leaf in the aforementioned relational trees.

We generate rules by considering all possible predicates
and parameter instantiations with two restrictions. First, to

guarantee that the rule takes different values for different in-
stantiations of the action schema, one of the arguments in
the first predicate in the body of the rule must be bound to
a parameter of the action schema. Second, at least one argu-
ment of each predicate after the first one, must be bound to a
free variable used in a previously used predicate. This aims
at reducing the number of features by avoiding redundant
rules that can be described as a conjunction of simpler rules.
We assume that, if the conjunction of two rules is relevant
for the classification task, the machine learning algorithms
will be able to infer this.

Most of the generated rules do not provide useful infor-
mation to predict whether an operator will be part of an op-
timal plan or not. This is because we brute-force generate all
possible rules, including many that do not capture any use-
ful properties. Therefore, it is important to select a subset of
relevant features. We do this filtering in two steps. First, we
remove all rules that evaluate to the same value in all train-
ing instances (e.g., rules that contain goal:predicate in
the body will never evaluate to true if predicate is never
part of the goal description in that domain). Then, we use
attribute selection techniques in order to filter out those fea-
tures that are not helpful to predict whether the operator is
part of an optimal plan. As an example, the most relevant
rule generated for the turn-to schema is:
turn-to(?s, ?to, ?from) :- goal:have-image(?to, ?M1),

goal:have-image(?from,?M2), ini:on-board(?I, ?s),
ini:supports(?I, ?M1), ini:supports(?I, ?M2).

This can be read as: “do we have to take images in direc-
tions ?to and ?from in modes that are supported by one of
the instruments on board?”. This rule surprisingly accurately
describes a scenario where turn-to is relevant (and can be
complemented with other rules to capture different cases).

Given a planning task and an operator, a rule is evaluated
by replacing the arguments in the head of the rule by the ob-
jects that are used to instantiate the operator and checking if
there exists an assignment to the free variables such that the
corresponding facts are present in the initial state and goal
of the task. Doing so, we generate a feature vector for each
grounded action from the training instances with a binary
feature for every rule indicating whether the rule evaluates
to true for that operator or not. This results in a training set
where for each operator we get a vector of boolean features
(one feature per rule), together with a to-be-predicted class
that is 1 if the operator is part of an optimal plan for the task,
and 0 if not. On this training set, we can use either classifi-
cation or regression methods to map each operator to a real
number. With classification methods we use the confidence
that the model has in the operator belonging to the positive
class. In regression, the model directly tries to minimize the
error by assigning values to 1 for operators in an optimal
plan and 0 to others. It is important to note that it is possible
that there are two training examples with the same feature
vector, but with different values in the target. In these cases,
we merge all training examples with the same feature vector
and replace them with a single one that belongs to the 1 class
if any of the examples did2.

2For regression algorithms, we also considered taking the aver-
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During grounding, for every operator that is inserted in the
queue, we evaluate all rules and call the model to get its pri-
ority estimate. To speed-up rule evaluation, we precompute,
before grounding, all possible assignments to the arguments
of the action schema that satisfy the rule. The computational
cost of doing this is exponential in the number of free vari-
ables but it was typically negligible for the rules used by our
models. We evaluate the relational trees in a similar way.

Experiments
For the evaluation of our partial grounding approach, we
adapted the implementation of the “translator” component of
the Fast Downward planning system (FD) (Helmert 2006).
The translator parses the given input PDDL files and out-
puts a fully grounded task in finite-domain representation
(FDR) (Bäckström and Nebel 1995; Helmert 2009) that cor-
responds to the PDDL input. Our changes are minimally
invasive, only changing the ordering in which actions are
handled and the termination condition, as indicated in Algo-
rithm 1. Therefore, none of the changes affect the correct-
ness of the translator, i. e., the generated grounded planning
task will always be a proper FDR task. The changes do not
affect the performance too much either, except when using a
computationally expensive priority function.

Experimental Setup. For the evaluation of our technique,
we require domains for which (1) instance generators are
available to generate a set of diverse instances small enough
for training, and (2) the size of the grounded instances grows
at least cubically with respect to the parameters of the gen-
erator so that we have large instances that are hard to fully
ground, for evaluation. We picked four domains that were
part of the learning track of the international planning com-
petition (IPC) 2011 (Blocksworld, Depots, Satellite, and
TPP), as well as two domains of the deterministic track of
IPC’18 (Agricola and Caldera). For all domains, we used
the deterministic track IPC instances and a set of 25 large
instances that we generated ourselves for the experiments.

For the training of the models, we used between 40 and
250 small instances, to get enough training data for each
action schema. Since the number of grounded actions per
schema varies significantly across domains, we individually
adapted the number of training instances.

To generate the large instances, we started at roughly the
same size as the largest IPC instances, scaling the parame-
ters of the generator linearly when going beyond that. As an
example, in Satellite, the biggest IPC instance has around 10
satellites and 20 instruments, which is the size of our small-
est instances. In the largest instances that we generated, there
are up to 15 satellites and 60 instruments. In Blocksworld,
where IPC instances only scale up to 17 blocks, we scale in
a different way, starting at 75 blocks and going up to 100,
which can still easily be solved by our techniques.

Regarding the domains, we used the typed domain en-
coding of Satellite from the learning track, which simplifies
rule generation, but does not semantically change the do-
main. In Blocksworld, we use the “no-arm” encoding, which

age but this resulted in slightly worse results in most cases.
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Figure 2: Evaluation of logistic regression in Blocksworld.

shows a cubic explosion in the grounding, in contrast to the
“arm” encoding, where the size of the grounded task is only
quadratic in the PDDL description.

Beside the static queue orderings, FIFO, LIFO, and
novelty-based methods, we experiment with learning-based
approaches using classification and regression models.
While the former exemplify what is possible without learn-
ing, the latter methods aim at grounding only those actions
that belong to a plan for a given task. In all cases, we com-
bine the methods with the round robin queue setup (RR).

Learning Framework. We report results for a logistic re-
gression classifier (LOGR), kernel ridge regression (KRN),
linear regression (LINR), and a support vector machine re-
gressor (SVR). While LINR and LOGR learn linear func-
tions to combine the features, differing mostly in the loss
function and underlying model that is used, KRN and SVR
are capable of learning non-linear functions. We expect non-
linear functions to be useful to combine features, which can-
not be done with linear functions. We also report the results
of the decision trees learned by Aleph. To implement the
machine learning algorithms, we use the scikit Python
package (Pedregosa et al. 2011), which nicely connects to
the translator in FD.

For feature selection, i. e., to select which rules are use-
ful to predict the probability of an operator to be in a plan,
we used the properties included in the trained models. For
each feature (rule) contained in the feature vector, the model
returns a weight according to its relevance to discriminate
the target vector. After experimenting with multiple differ-
ent models, we decided to use a decision tree regressor to
predict rule usefulness, for all trained models.

We evaluated our models in isolation on a set of validation
instances that are distinct from both our training and testing
set, and small enough to compute the set of operators that
are part of any optimal plan. Figure 2 shows the outcome of
the priority function learned by LOGR in Blocksworld. The
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Solved within 30min overall Last iteration solved within 30min
Novelty LINR LOGR KRN SVR Aleph Novelty LINR LOGR KRN SVR Aleph

Domain # Base FIFO LIFO RND RR RR RR RR RR RR FIFO LIFO RND RR RR RR RR RR RR
Agricola-IPC 20 10 1 1 2 1 3 1 7 5 5 8 5 4 10 10 3 9 9 9 7 10 9 12 11 12 9 12 10 12 11 10
Agricola-large 25 4 0 0 0 0 0 0 1 2 1 0 1 0 22 17 0 4 4 4 0 10 1 24 20 23 6 24 19 24 24 24
Blocksworld-IPC 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35
Blocksworld-large 25 0 0 0 0 21 25 14 25 25 23 25 24 25 22 25 25 0 0 0 21 25 14 25 25 24 25 25 25 24 25 25
Caldera-IPC 20 13 13 12 13 9 14 17 18 18 18 11 18 19 18 13 14 17 13 17 15 17 19 19 19 19 17 19 20 19 15 18
Caldera-large 25 0 10 0 3 0 5 22 18 18 23 1 19 20 17 0 7 19 0 5 12 16 25 25 24 25 8 25 25 25 0 19
Depots-IPC 22 20 19 20 19 19 20 20 20 19 21 19 20 20 21 20 20 19 20 19 19 20 20 20 19 21 19 20 20 21 20 20
Depots-large 25 1 0 0 0 0 0 5 3 1 2 2 3 1 4 2 0 0 0 0 0 0 5 3 1 2 2 3 1 4 2 0
Satellite-IPC 36 36 35 36 36 35 26 36 35 36 35 35 35 36 35 36 36 35 36 36 36 35 36 36 36 36 36 36 36 36 36 36
Satellite-large 25 0 0 0 0 1 0 0 11 0 14 15 14 0 14 1 1 0 0 0 1 0 0 14 0 16 19 15 0 16 1 1
TPP-IPC 30 30 30 30 30 30 30 26 28 30 30 30 30 30 29 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30
TPP-large 25 7 5 8 2 6 8 1 2 4 4 5 6 4 6 8 6 6 8 6 6 8 5 5 7 5 5 6 7 9 8 6∑

313 156 148 142 140 157 166 177 203 193 211 186 210 194 233 197 177 174 155 161 182 206 199 248 227 248 211 250 228 255 207 224

Table 1: Number of instances solved by the baseline with full grounding (Base), and incremental grounding with static action
orderings (FIFO, LIFO, random (RND)), novelty-based ordering, and several learning models (see text). “RR” indicates that
we use a separate priority queue for each action schema, taking turns over the schemas. Best coverage highlighted in bold face.

bars indicate the number of operators across all validation
instances that got a priority in a given interval, highlighting
operators from optimal plans in a different color. The plots
nicely illustrate that the priority function works very well
for the action schemas move-t-to-b and move-b-to-t, where
it is able to distinguish “optimal” from “non-optimal” op-
erators. The distinction works not so well for move-b-to-b,
but in general gives a significantly lower priority to this ac-
tion schema. Another important observation is that the to-
tal number of grounded move-b-to-b actions is much higher
than that of the other two action schemas.

Projecting these observations to the grounding process,
we expect the model to work well when used in a sin-
gle priority queue, since it will prioritize move-t-to-b and
move-b-to-t (which are the only ones needed to solve any
Blocksworld instance) over move-b-to-b (which is only
needed to optimally solve a task). On the validation set,
grounding all operators with a priority of roughly > 0.6 suf-
fices to solve the tasks, pruning all move-b-to-b operators
and most non-optimal ones of the other schemas. RR in con-
trast will ground an equal number of all action schemas, in-
cluding many unnecessary operators. These conjectures are
well-supported by the plots in Figure 3.

When working with machine learning techniques, there is
always the risk of overfitting. In our case the results on the
training set are very similar to those on the validation set
shown in Figure 2, suggesting that overfitting is not an issue
in our setup. The results in other domains are similar.

Incremental Grounding. We use the incremental ap-
proach, where the first iteration grounds a given task until
the goal is found to be relaxed-reachable. The left half of
Figure 3 shows detailed information on how many opera-
tors need to be grounded until this is achieved for different
priority functions. We discuss details later. In case this first
iteration fails, i. e., the partial task is not solvable, we set a
minimum number of operators to be grounded in the next
iteration by using an increment of 10 000 operators. This

strategy does not aim to maximize coverage but rather to find
out what is the minimum number of operators that need to
be grounded to solve a task for each priority function (with
a granularity of 10 000 operators). The number of operators
that were necessary to actually solve a given instance is il-
lustrated in the right half of Figure 3.

For all configurations, after grounding, we run the first it-
eration of the LAMA planner (Richter and Westphal 2010),
a good standard configuration for satisficing planning that is
well integrated in FD. We also use LAMA’s first iteration as
a baseline on a fully grounded task, with runtime and mem-
ory limits for the entire process of 30 minutes and 4GB. All
other methods perform incremental grounding using their re-
spective priority function. We allowed for a total of 5 hours
and 4GB for the incremental grounding, while restricting the
search part to only 10 minutes per iteration to keep the over-
all runtime of the experiments manageable.

We show coverage, i. e., number of instances solved, in
Table 1, with the time and memory limits mentioned in the
previous subsection. The left part of the table considers in-
stances as solved when the overall incremental grounding
process (including finding a plan) finished within 30 min.
In the right part, we approximate the results that could be
achieved with a perfect stopping condition by considering
an instance as solved if the last iteration, i. e., the successful
grounding and search, finished within 30 min.

The baseline (Base) can still fully ground most instances
except in Caldera and TPP, but fails to solve most of the large
instances with up to 9 million operators. We scaled instances
in this way so that a comparison of the number of grounded
operators to the baseline is possible; further scaling would
make full grounding impossible.

The table nicely shows that the incremental grounding
approach, where several iterations of partial grounding and
search are performed (remember that we only allow 10min
for the search), significantly outperforms the baseline, even
when considering an overall time limit of 30min. In fact,
all instances in Blocksworld can be solved in less than 10s
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by LOGR. This illustrates the power of our approach when
the learned model captures the important features of a do-
main. The static orderings typically perform worse than the
baseline, only the novelty-based ordering can solve more in-
stances in Blocksworld, and in Caldera when using RR.

The plots in Figure 3 shed further light on the number of
operators when (leftmost two columns) the goal is relaxed
reachable in the first iteration and (rightmost two columns)
the number of operators needed to actually solve the task.
Each data point corresponds to a planning instance, with the
number of ground actions of a fully grounded task on the x-
axis. The y-axis shows the number of grounded actions for
several priority functions, including FIFO (LIFO in TPP),
novelty, the learned model that has the highest reduction on
the number of grounded actions, and Aleph.

In general, the models capture the features of most do-
mains quite accurately, leading to a substantial reduction in
the size of the grounded task, and still being able to find
a solution. The plots show that our models obtain a very
strong reduction of the number of operators in the partially
grounded task in Agricola, Blocksworld, and Caldera; some
reduction (one order of magnitude) in Depots, and Satellite,
and a small reduction in TPP. In terms of the size of the
partially grounded tasks, different learning models perform
best in different domains, and there is not a clear winner. In
comparison, the baselines FIFO, LIFO, and Random do not
significantly reduce the size of the grounded task in most
cases, with a few exceptions like LIFO in TPP and FIFO
in Caldera. The novelty criterion is often the best method
among those without learning.

Grounding a delete-relaxed reachable task with less oper-
ators is often beneficial, but may be detrimental for the cov-
erage if the task is unsolvable, as happens for the Novelty
method in Agricola or the LIFO method in TPP. This also
explains why the learning models with highest reductions
in some domains (e.g. LOGR in Agricola) are not always
the same as the ones with highest coverage. The RR queue
mechanism often grounds more operators before reaching
the delete-relaxed goal but this makes the first iteration solv-
able more often leading to more stable results. The excep-
tion is Aleph, where RR has the opposite effect, making the
partially grounded tasks unsolvable.

Related Work
Some approaches in the literature try to alleviate the ground-
ing problem, e. g. by avoiding grounding facts and opera-
tors unreachable from the initial state (Helmert 2009), refor-
mulating the PDDL description by splitting action schemas
with many parameters (Areces et al. 2014), or using sym-
metries to avoid redundant work during the grounding pro-
cess (Röger, Sievers, and Katz 2018).

Lifted planning approaches that skip grounding en-
tirely (Penberthy and Weld 1992) have lost popularity due
to the advantages of grounding to speed-up the search and
allow for more informative heuristics which are not easy to
compute in a lifted level. Ridder and Fox (2014) adapted the
delete-relaxation heuristic (Hoffmann and Nebel 2001a) to
the lifted level. This is related to our partial grounding ap-
proach since their relaxed plan extraction mechanism can

be used to obtain a grounded task where the goal is relaxed
reachable, and it could be used to enhance the novelty and
learning priority functions that we use here.

There are many approaches to eliminate irrelevant facts
and operators from grounded tasks (Nebel, Dimopoulos,
and Koehler 1997; Hoffmann and Nebel 2001b; Haslum,
Helmert, and Jonsson 2013; Torralba and Kissmann 2015).
The closest to our approach is under-approximation refine-
ment (Heusner et al. 2014), which also performs search with
a subset of operators. However, all these techniques use in-
formation from the fully grounded representation to decide
on the subset of relevant operators, so are not directly appli-
cable in our setting. The results of our learning models (see
Figure 2) show that applying learning to identify irrelevant
operators is a promising avenue for future research.

Recently, Toyer et al. (2018) introduced a machine learn-
ing approach to learn heuristic functions for specific do-
mains. This is similar to our work, in the sense that a heuris-
tic estimate has been learned, though for states in the search,
not actions in the grounding. Furthermore, the authors used
neural networks instead of our, more classical, models.

Conclusion
In this paper, we proposed an approach to partial ground-
ing of planning tasks, to deal with tasks that cannot be fully
grounded under the available time and memory resources.
Our algorithm heuristically guides the grounding process
giving preference to operators that are deemed most rele-
vant for solving the task. To determine which operators are
relevant, we train different machine learning models using
optimal plans from small instances of the same domain. We
consider two approaches, a direct application of relational
decision trees, and using relational features with standard
classification and regression algorithms. The empirical re-
sults show the effectiveness of the approach. In most do-
mains, the learned models are able to identify which oper-
ators are relevant with high accuracy, helping to reduce the
number of grounded operators by several orders of magni-
tude, and greatly increasing coverage in large instances.

Acknowledgments This work was supported by the bi-
lateral project of the German Academic Exchange Ser-
vice (DAAD) and the Argentinian Ministry of Science,
Technology, and Productive Innovation (MinCyT) number
DA/16/01 “Optimizing Planning Domains”. Daniel Gnad
was partially supported by the German Research Founda-
tion (DFG), under grant Nr. HO 2169/6-1, “Star-Topology
Decoupled State Space Search”.

References
Areces, C.; Bustos, F.; Dominguez, M.; and Hoffmann, J. 2014.
Optimizing planning domains by automatic action schema split-
ting. In Proc. ICAPS’14.
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Figure 3: The scatter plots show the number of operators of a fully grounded task on the x-axis. The y-axis shows the number
of operators that are needed to make the goal reachable in the grounding (leftmost two columns), and the number of operators
that are needed to solve the task (rightmost two columns), for several priority functions.
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Abstract

Heuristic search research often deals with finding algorithms
for offline planning which aim to minimize the number of
expanded nodes or planning time. In online planning, algo-
rithms for real-time search or deadline-aware search have
been considered before. However, in this paper, we are inter-
ested in the problem of situated temporal planning in which
an agent’s plan can depend on exogenous events in the ex-
ternal world, and thus it becomes important to take the pas-
sage of time into account during the planning process. Previ-
ous work on situated temporal planning has proposed simple
pruning strategies, as well as complex schemes for a simpli-
fied version of the associated metareasoning problem. In this
paper, we propose a simple metareasoning technique, called
the crude greedy scheme, that can be applied in a situated
temporal planner. Our empirical evaluation shows that the
crude greedy scheme outperforms standard heuristic search
based on cost-to-go estimates.

Introduction
For many years, research in heuristic search has focused on
the objective of minimizing the number of nodes expanded
during search (e.g (Dechter and Pearl 1985)). While this is
the right objective under various scenarios, there are vari-
ous scenarios where it is not. For example, if we still want
an optimal plan but want to minimize search time, selective
max (Domshlak, Karpas, and Markovitch 2012) or Rational
Lazy A˚ (Karpas et al. 2018) can be used. Other work has
dealt with finding a boundedly suboptimal plan as quickly as
possible (Thayer et al. 2012), or with finding any solution as
quickly as possible (Wilt and Ruml 2015). Departing from
this paradigm even more, in motion planning the setting is
that edge-cost evaluations are the most expensive operation,
requiring different search algorithms (Mandalika, Salzman,
and Srinivasa 2018; Haghtalab et al. 2018).

While the settings and objectives mentioned above are
quite different from each other, they are all forms of offline
planning. Addressing online planning raises a new set of ob-
jectives and scenarios. For example, in real-time search, an
agent must interleave planning and execution, requiring still
different search algorithms (Koenig and Sun 2009; Sharon,
Felner, and Sturtevant 2014; Cserna, Ruml, and Frank 2017;
Cserna et al. 2018). Deadline-aware search (Dionne, Thayer,
and Ruml 2011) must find a plan within some deadline. The

BUGSY planner (Burns, Ruml, and Do 2013) attempts to
optimize the utility of a plan, which depends on both plan
quality and search time.

In this paper we are concerned with a recent setting, called
situated temporal planning (Cashmore et al. 2018). Situated
temporal planning addresses a problem where planning hap-
pens online, in the presence of external temporal constraints
such as deadlines. In situated temporal planning, a plan must
be found quickly enough that it is possible to execute that
plan after planning completes. Situated temporal planning is
inspired by the planning problem a robot faces when it has
to replan (Cashmore et al. 2019), but the problem statement
is independent of this motivation.

The first planner to address situated temporal planning
(Cashmore et al. 2018) used temporal reasoning (Dechter,
Meiri, and Pearl 1991) prune search nodes for which it is
provably too late to start execution. It also used estimates of
remaining search time (Dionne, Thayer, and Ruml 2011) to-
gether with information from the temporal relaxed planning
graph (Coles et al. 2010) to estimate whether a given search
node is likely to be timely, meaning that it is likely to lead
to a solution which will be executable when planning fin-
ishes. It also used dual open lists: one only for timely nodes,
and another one for all nodes (including nodes for which
it is likely too late to start execution). However, the plan-
ner still used standard heuristic search algorithms (GBFS or
Weighted A˚) with these open lists, while noting that this is
the wrong thing to do, and leaving for future work finding
the right search control rules.

Inspired by this problem, a recent paper (Shperberg et al.
2019) proposed a rational metareasoning (Russell and We-
fald 1991) approach for a simplified version of the problem
faced by the situated planner. The problem was simplified in
several ways: first, the paper addressed a one-shot version of
the metareasoning problem, and second, the paper assumed
distributions on the remaining search time and on the dead-
line for each node are known. The paper then formulated
the metareasoning problem as an MDP, with the objective
of maximizing the probability of finding a timely plan, and
showed that it is intractable. It also gave a greedy decision
rule, which worked well in an empirical evaluation with var-
ious types of distributions.

In this paper, we explore using such a metareasoning ap-
proach as an integrated part of a situated temporal planner.
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This involves addressing the two simplifications described
above. The naive way of addressing the first simplification
— the one-shot nature of the greedy rule — is to apply it
at every expansion decision the underlying heuristic search
algorithm makes, in order to choose which node from the
open list to expand. The problem with this approach is that
the number of nodes on the open list grows very quickly
(typically exponentially), and so even a linear time metar-
easoning algorithm would incur too much overhead. Thus,
we introduce an even simpler decision rule, which we call
the crude greedy scheme, which does not require access to
the distributions, but only to their estimated means. Addi-
tionally, the crude greedy scheme allows us to compute one
number for each node, Q̂, and expand nodes with a high Q̂-
value first. This allows us to use a regular open list, although
one that is not sorted according to cost-to-go estimates, as in
standard heuristic search. In fact, as we will see, cost-to-go
estimates play no role in the ordering criterion at all.

An empirical evaluation on a set of problems from the
Robocup Logistics League (RCLL) domain (Niemueller,
Lakemeyer, and Ferrein 2015; Niemueller et al. 2016) shows
that using the crude greedy scheme in the situated temporal
planner (Cashmore et al. 2018) leads to a timely solution
of significantly more problems than using standard heuris-
tic search, even with pruning late nodes and dual open lists.
Next, we briefly survey the main results of the metareason-
ing paper (Shperberg et al. 2019), and then describe how we
derive the crude greedy decision rule, and conclude with an
empirical evaluation that demonstrates its efficacy.

The metareasoning MDP and practical
approximations

A model called AE2 (‘allocating effort when actions expire’)
that assigns processing time under the simplifying assump-
tion of n independent processes was proposed by Shperberg
et al. (2019). In order to make this paper self-contained, we
re-state the model and its properties below.

The AE2 Model
The AE2 model abstracts away from the search, and assumes
n processes (e.g., each process can be thought of as a node
on the open list) that each attempts to solve the same prob-
lem under time constraints. (For example, these may repre-
sent promising partial plans for a certain goal, implemented
as nodes on the frontier of a search tree, but as discussed
below the problems may be completely unrelated to plan-
ning.) There is a single computing thread or processor to
run all the processes, so it must be shared. When process i
terminates, it will, with probability Pi, deliver a solution or,
otherwise, indicate its failure to find one. For each process,
there is a deadline, defined in absolute wall clock time, by
which the computation must be completed in order for any
solution it finds to be valid, although that deadline may only
be known to us with uncertainty. For process i, let Diptq be
the CDF over wall clock times of the random variable denot-
ing the deadline. Note that the actual deadline for a process
is only discovered with certainty when its computation is
complete. This models the fact that, in planning, a depen-

dence on an external timed event might not become clear
until the final action in the plan is added. If a process ter-
minates with a solution before its deadline, we say that it is
timely. The processes have performance profiles described
by CDFs Miptq giving the probability that process i will
terminate given an accumulated computation time on that
process of t or less. Although some of the algorithms we
present may work with dependent random variables, we as-
sume in our analysis that all the variables are independent.
Given the Diptq, Miptq, and Pi, the objective of AE2 is to
schedule processing time over the n processes such that the
probability that at least one process finds a solution before
its deadline is maximized. This is the essential metareason-
ing problem in planning when actions expire.

The Deliberation Scheduling MDP
We now represent the AE2 problem of deliberation schedul-
ing with uncertain deadlines as a Markov decision process.
For simplicity, we initially assume that time is discrete and
the smallest unit of time is 1. Allowing continuous time is
more complex because one needs to define what is done if
some time-slice is allocated to a process i, and that process
terminates before the end of the time-slice. Discretization
avoids this complication.

We can now define our deliberation scheduling problem
as an the following MDP, with distributions represented by
their discrete probability function (pmf). Denote miptq “
Miptq ´ Mipt ´ 1q, the probability that process i com-
pletes after exactly t time units of computation time, and
diptq “ Diptq ´Dipt´ 1q, the probability that the deadline
for process i is exactly at time t. Without loss of generality,
we can assume that Pi “ 1: otherwise modify the deadline
distribution for process i to have dip´1q “ 1 ´ Pi, sim-
ulating failure of the process to find a solution at all with
probability 1 ´ Pi, and multiply all other diptq by Pi. This
simplified problem we call SEA2. We formalize the SEA2
MDP as an indefinite duration MDP with terminal states,
where we keep track of time as part of the state. (An alter-
nate definition would be as a finite-horizon MDP, given a
finite value d for the last possible deadline.)

The actions in the MDP are: assign the next time unit to
process i, denoted by ai with i P r1, ns. We allow action ai
only if process i has not already failed.

The state variables are the wall clock time T and one state
variable Ti for each process, with domain N Y tF u. Ti de-
notes the cumulative time assigned to each process i until the
current state, or that the process has completed computation
and resulted in failure to find a solution within the deadline.
We also have special terminal states SUCCESS and FAIL.
Thus the state space is:

S “ pdompT q ˆ
ą

1ďiďn
dompTiqq Y tSUCCESS, FAILu

The initial state is T “ 0 and Ti “ 0 for all 1 ď i ď n.
The transition distribution is determined by which process

i has last been scheduled (the action ai), and the Mi and Di

distributions. If all processes fail, transition into FAIL with
probability 1. If some process is successful, transition into
SUCCESS with probability 1. More precisely:
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• The current time T is always incremented by 1.
• Accumulated computation time is preserved, i.e. for ac-

tion ai, Tjpt` 1q “ Tjptq for all processes j ‰ i.
• Tiptq “ F always leads to Tipt` 1q “ F .
• For action ai (assign time to process i), the probability

that process i’s computation is complete given that it has
not previously completed is P pCiq “ mipTi`1q

1´MipTiq . If com-
pletion occurs, the respective deadline will be met with
probability 1´DipTiq. Therefore, transition probabilities
are: with probability 1´P pCiq set Tipt`1q “ Tiptq`1,
with probability P pCiqDipTiq set Tipt`1q “ F (process
i failed to meet its deadline), and otherwise (probability
P pCiqp1 ´ DipTiq) transition into SUCCESS (the value
of Ti in this case is ‘don’t care’).

• If Tipt` 1q “ F for all i, transition into FAIL.
The reward function is 0 for all states, except SUCCESS,
which has a reward of 1.

Solving the AE2 Model
It was shown in Shperberg et al. (2019) that solving the AE2
MDP is NP-hard, and it was conjectured to be even harder
(possibly even PSPACE-complete, like similar MDPs). On
the other hand, under the restriction of known deadlines and
a special condition of diminishing returns (non-decreasing
logarithm of probability of failure) that an optimal schedule
can be found in polynomial time. However, neither known
deadlines nor diminishing returns strictly hold in practice
in planning processes. Still, the algorithm for diminishing
returns provided insights that were used to create an appro-
priate greedy scheme. The greedy scheme, briefly repeated
below, is relatively easy to compute and achieved good re-
sults empirically.

Define miptq “ Miptq ´Mipt ´ 1q, the probability that
process i completes after exactly t time units of computation
time. Under an allocationAi “ p0, tq in which all processing
time starting from time 0 until time t is allocated to process
i, the success distribution for process i is:

fiptq “ PS ipAi “ p0, tqq “ Pi

tÿ

t1“0

mipt1qp1´Dipt1qq (1)

Define the most effective computation time for process i un-
der this assumption to be:

ei “ argmin
t

logp1´ fiptqq
t

(2)

The latter is justified by observing that the term´logp1´
fiptqq behaves like utility, as it is monotonically increasing
with the probability of finding a timely plan in process i;
and on the other hand it behaves additively with the terms
for other processes. That is, if we could start all processes at
time 0 and run them for time t, and if all the random vari-
ables were jointly independent, then indeed maximizing the
sum of the ´logp1´ fiptqq terms results in maximum prob-
ability of a timely plan.

However, since not all processes can start at time 0, the
intuition from the diminishing returns optimization is thus

to prefer the process i that has the best utility per time unit.
i.e. such that ´logp1 ´ fiptqq{peiq is greatest. Still, allocat-
ing time now to process i delays other processes, so it is also
important to allocate the time now to a process that has a
deadline as early as possible, as this is most critical. Shper-
berg et al. (2019) therefore suggested the following greedy
algorithm: Whenever assigning computation time, allocate
td units of computation time to process i that maximizes:

Qpiq “ α

ErDis ´
logp1´ fipeiqq

ei
(3)

where α and td are positive empirically determined param-
eters, and ErDis is the expectation of the random variable
that has the CDF Di, which we use as a proxy for ‘deadline
of process i’. (This is a slight abuse of notation in the interest
of conciseness, as ErDis could be taken to mean the expec-
tation of the CDF, which is not what we want here.) The
α parameter trades off between preferring earlier expected
deadlines (large α) and better performance slopes (small α).

Improved Greedy Scheme
Using the proxy ErDis in the value Qpiq is reasonable, but
somewhat ad-hoc. It also encounters problems if ErDis is
zero or even near-zero. A more disciplined scheme can in-
deed use the utility per time unit as in Qpiq, but the first
term should be better justified theoretically. The reason for
including the deadline in Qpiq is in order to give preference
to processes with an early deadline, because deferring their
processing may cause them to be unable to complete before
their deadline (even if they would have been timely had they
been scheduled for processing immediately). Therefore, in-
stead of the first term it makes sense to provide a measure
of the ”utility damage” to a process i due to delaying its
processing start time from time 0 to time td. This can be
computed exactly, as follows. Define a ‘generalized’ f 1i , the
probability of process i finding a timely plan given a con-
tiguous computation time t starting at time td, as follows:

f 1ipt, tdq “ PS ipAi “ ptd, tqq “ Pi

tÿ

t1“0

mipt1qp1´Dipt1`tdqq
(4)

Note that this is the same as f , except that processing starts
at time td, which is the same as saying that the deadline dis-
tribution is advanced by td (and indeed, fiptq “ f 1ipt, 0q).

Assuming that the time we wish to assign to process
i is ei, before the delay we can achieve a utility of:
´logp1´fipeiqq, and after delay of td can achieve´logp1´
f 1ipei, tdqq. The difference between the former and the latter
values is the ‘damage’ caused by the delay. Thus, our im-
proved greedy scheme is to assign td time units to the pro-
cess that maximizes:

Q1piq “ αrlogp1´f 1ipei, tdqq´logp1´fipeiqqs´
logp1´ fipeiqq

ei
(5)

Observe that the first term is proportional to the logarithm
of:

1´ f 1ipei, tdq
1´ fipeiq (6)
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Integrating the greedy scheme into a planner
In order to actually use the greedy scheme in a planner, sev-
eral issues must be handled. Foremost is the issue of obtain-
ing the distributions, which is non-trivial. Second, although
the greedy scheme is quite efficient, it is not quite efficient
enough for making decisions about node expansions, which
must be done in essentially negligible time. Hence, we con-
sider a crude version of the greedy scheme below.

Crude version of the greedy scheme

Crude Greedy with α “
Id h ´104 ´1 0 0.1 1 104

1 3.61 0.45 0.47 0.45 0.85 0.45 0.59
2 13.45 1.91 1.81 1.78 2.52 1.77 x
3 x 1.75 1.74 1.61 2.24 1.65 5.14
4 x 1.03 1.04 1 1.41 1.02 1.19
5 9.42 0.59 0.51 0.57 0.73 0.49 0.4
6 - - - - - - -
7 x 10.89 9.74 9.63 17.55 9.97 x
8 x x 3.57 3.77 5.98 3.88 2.04
9 x 2.36 2.46 2.5 3.16 2.4 2.27
10 0.66 0.37 0.37 0.38 0.49 0.38 0.36
11 0.28 0.24 0.24 0.25 0.31 0.27 9.05
12 0.31 0.25 0.3 0.24 0.34 0.24 0.17
13 0.9 0.44 0.45 0.46 0.55 0.45 0.43
14 11.88 1.55 1.64 1.6 2.11 1.59 1.19
15 1.54 x x x x x 0.59
16 x 2.33 2.27 2.29 3.56 2.29 1.71
17 x 1.59 1.55 1.54 2.52 1.59 3.93
18 x 2.27 2.27 2.35 4.34 2.29 x
19 x 1.61 1.6 1.62 2.73 1.6 6.6
20 - - - - - - -
21 x x x x x x 1.71
22 0.76 0.43 0.43 0.41 0.42 0.48 1.37
23 x 2.06 2.33 1.99 2.04 2.36 1.78
24 14.67 1.55 1.61 1.49 1.63 1.92 0.52
25 0.57 0.31 0.32 0.28 0.28 0.35 0.46
26 4 x x x x x x
27 x 1.92 1.88 1.75 1.72 1.82 x
28 x 0.52 0.74 0.49 0.47 0.47 0.48
29 50.03 x 1.21 1.13 1.13 1.23 0.56
30 - - - - - - -
31 2.48 x x x x x 0.96
32 x 1.74 1.79 1.56 1.91 1.74 1.59
33 x x x x x x x
34 3.37 0.54 0.63 0.54 0.27 0.59 0.26
35 2.73 x x x x 0.34 0.23
36 10.18 0.75 0.76 0.62 0.57 0.87 0.71
37 - - - - - - -
38 - - - - - - -
39 1.09 0.54 0.65 0.48 0.49 0.52 0.49
40 - - - - - - -
41 1.28 0.27 0.28 0.27 0.52 0.28 0.24
42 1.32 x x x x x 0.42
SOLVED 21 27 29 29 29 30 30

Table 1: Planning Time on RCLL Instances

Consider Equation 3 defining Qpiq. The estimate for
ErDis in the first term can use any current estimate of the
deadline time. For the second term in Qpiq, we can approx-
imate ei by the expected time to return a solution. We use

estimate both of these quantities as described by Cashmore
et al. (2018). We now briefly review these estimates, but re-
fer the interested reader to the original paper.

To estimate the current deadline ErDis, we use the tem-
poral relaxed planning graph (TRPG) (Coles et al. 2010).
Specifically, we compute the slack of the chosen relaxed
plan, that is, how much we can delay execution of the en-
tire plan (the actions leading to the current node together
with the actions in the relaxed plan). Note that, because the
relaxed plan is not guaranteed to be optimal, this is not nec-
essarily an admissible estimate.

To estimate the remaining search time ei, we use an idea
from Deadline Aware Search (Dionne, Thayer, and Ruml
2011). We estimate the ‘distance from solution’ (i.e. esti-
mation of number of expansions from the current node, also
based on the relaxed), and divide it by the ‘progress rate’
(i.e. the reciprocal of the time difference between the time
a node is expanded and the time its parent was expanded,
averaged over multiple nodes).

The numerator logp1 ´ fipeiqq is more problematic, as
it requires fi, which uses the complete distribution. Note
that this term is negative, and we want it to be as large as
possible in absolute value. The simplest crude approxima-
tion is a constant logp1 ´ fipeiqq, but that is an oversim-
plification. Note that if the most effective computation time
ei is greater than ErDis then in fact we are not likely to
find a solution in time in process i. For simplicity, we thus
use ´logp1 ´ fipeiqq « maxp0, βpErDis ´ eiqq for some
parameter β as a first approximation. The idea here is that
ErDis ´ ei is an estimate of the slack (spare time) we have
in completing the computation before the deadline. We are
then assuming that the negative logarithm of the probability
of not completing in time is approximately proportional to
the slack. This slack is also already estimated by the situ-
ated temporal planner, based on the partial plan to the cur-
rent node and the temporal relaxed planning graph from it
(Cashmore et al. 2018).

Note that once we plug this into Equation 3, the β can be
absorbed into the α parameter. An additional issue is that in
a planner, since ErDis is relative to the time now, this value
keeps decreasing and may approach 0. This may cause the
α

ErDis term to grow without bound. To fix this, we bound the
denominator away from 0 to the time t10, the time required
for 10 node expansions.

In summary, for our crude greedy approach, we expand
next the node with the highest value of

Q̂piq “ maxp0, ErDis ´ eiq
ei

` α

maxpErDis, t10q (7)

This crude version of the greedy scheme has two advan-
tages: it does not require the complete distributions Di and
Mi, and is more computationally efficient as it does not have
to compute the summation in the equation for fi. This comes
at the cost of a potential oversimplification that may cause
schedule quality to excessively degrade. An additional prob-
lem is that the original greedy scheme itself using theErDis
was only a first-order approximation, and in fact distribu-
tions can be devised where it fails badly.
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Empirical Results
To evaluate the crude greedy scheme, we implemented it
on top of the situated temporal planner of Cashmore et
al. (2018), which itself is implemented on top of OPTIC
(Benton, Coles, and Coles 2012). We ran the planner us-
ing the crude greedy scheme, with different values of α,
and compared it to the original situated temporal planner,
which sorts its open lists based on cost-to-go estimates (de-
noted h below). Both planners used exactly the same prun-
ing method for nodes which are guaranteed to be too late,
and the same dual open list mechanism for preferring nodes
which are likely to be timely.

We compared the results of the different planners
on instances of the Robocup Logistic League Challenge
(Niemueller, Lakemeyer, and Ferrein 2015; Niemueller et
al. 2016), a domain that involves robots moving workpieces
between different workstations. The goal is to manufacture
and deliver an order within some time window, and thus sit-
uated temporal planning is very natural here. Table 1 shows
the planning time for the baseline planner (h) and the plan-
ner using the crude greedy scheme with different values of
α. In the table, ‘x’ means ‘failed to find a plan in time to sat-
isfy the deadline(s)’. As these results show, the crude greedy
scheme solves significantly more problems than the baseline
for any value of α. This provides support for a metareason-
ing approach to allocating search effort in situated planning.
It also suggests that, for situated temporal planning, cost-
to-go estimates are not the right primary source of heuristic
guidance.

Conclusion
In this paper, we have provided the first practical metarea-
soning approach for situated temporal planning. We showed
empirically that this approach outperforms standard heuris-
tic search based on cost-to-go estimates. Nevertheless, the
temporal relaxed planning graph (Coles et al. 2010) serves
an important purpose here, allowing us to estimate both re-
maining planning time and the deadline for a node. Thus, we
believe our results suggest that cost-to-go estimates are not
as important for situated temporal planning as they are for
minimizing the number of expanded nodes or planning time
as in classical heuristic search.

The metareasoning scheme we provided is a crude version
of the greedy scheme of Shperberg et al. (2019). We intro-
duced approximations in order to make the metareasoning
sufficiently fast and in order to utilize only readily available
information generated during the search. We also proposed
a more refined and better theoretically justified version of
the algorithm (‘improved greedy’), but making the improved
version applicable in the planner is a non-trivial challenge
that forms part of our future research.

Ongoing Work: Crude version of the improved
greedy scheme
The improved greedy scheme is better justified, but has an
additional term where we need the complete distribution
(f 1pt, tdq is needed, rather than just the expectation ErDis).

We would like to replace this distribution with a small num-
ber of parameters than can be easier to obtain. Basically the
same considerations apply here as well, except that the the
term involving f 1i requires access to the full distributionsmi,
Di. Given specific distribution types, it may be possible to
compute this term as a function of ErDis and ei. However,
this part of the work is still in progress and at present we are
not sure what parameters we can obtain during the search
that would support the improved scheme.
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